Alejandro Vélez-Santiago

            Assistant Professor of Mathematics            

            Department of Mathematical Sciences
            University of Puerto Rico at Mayagüez (UPRM)

            Call Box 9000
            Mayagüez, PR 00681


           Other Online Pages:  Webpage UPRMMath Alliance;  ResearchGate;  LinkedIn;  Facebook.

      Work Experience:

Courses Teaching

    Present University (UPRM)

    Past Universities


         Research Interests:


            1) Books:

·         L. F. Cáceres, O. Colón, B. Morales, A. Portnoy, P. A. Torres, A. Vélez-Santiago, OMPR Olimpiadas Matemáticas de Puerto Rico 2017-2018Publicaciones AFAMaC, 2018.

·         L. F. Cáceres, O. Colón, A. Portnoy, P. A. Torres, A. Vélez-Santiago, M. Zepeda, OMPR Olimpiadas Matemáticas de Puerto Rico 2016-2017Publicaciones AFAMaC, 2017.

            2) Research Papers:

·         J. Henríquez-Amador, A. Vélez-Santiago, Generalized anisotropic Neumann problems of AmbrosettiProdi type with nonstandard growth conditions, Submitted.

·         K. Ríos-Soto, C. Seda-Damiani, A. Vélez-Santiago, The variable exponent Bernoulli differential equation, Submitted.

·         M. R. Lancia, A. Vélez-Santiago, P. Vernole, A quasi-linear nonlocal Venttsel' problem of Ambrosetti--Prodi type on fractal domains, Discrete & Continuous Dynamical Systems - Series A (to appear).

·         M.-M. Boureanu, A. Vélez-Santiago, Fine regularity for elliptic and parabolic anisotropic Robin problems with variable exponentsJ. Differential Equations 266 (2019), 8164—8232. 

·         S. Creo,  M. R. Lancia,  A. Vélez-Santiago,  P. VernoleApproximation of a nonlinear fractal energy functional on varying Hilbert spacesCommunications on Pure and Applied Analysis 17 (2018), 647669.

·         A. Vélez-SantiagoA quasi-linear Neumann problem of AmbrosettiProdi type on extension domains, Nonlinear Analysis: Theory, Methods & Applications 160 (2017), 191210.

·         M. R. Lancia,  A. Vélez-Santiago,  P. VernoleQuasi-linear Venttsel' problems with nonlocal boundary conditions on fractal domains, Nonlinear Analysis: Real World Applications 35 (2017), 265—291.

·         A. Vélez-SantiagoEmbedding and trace results for variable exponent Sobolev and Maz'ya spaces on non-smooth domains, Glasgow Mathematical J58 (2016), 471—489.

·         A. Vélez-Santiago, AmbrosettiProdi-type problems for quasi-linear elliptic equations with nonlocal boundary conditionsCalculus of Variations and Partial Differential Equations 54 (2015), 3439—3469.

·         A. Vélez-SantiagoGlobal regularity for a class of quasi-linear local and nonlocal elliptic equations on extension domains, J. Functional Analysis 269 (2015), 1—46.

·         A. Vélez-SantiagoOn the well-posedness of first order variable exponent Cauchy problems with Robin and Wentzell-Robin boundary conditions on arbitrary domains, J. Abstract Differential Equations and Applications 6 (2015), 1—20.

·         A. Vélez-Santiago, Quasi-linear variable exponent boundary value problems with Wentzell-Robin and Wentzell boundary conditions,  J. Functional Analysis 266 (2014), 560—615.

·         A. Vélez-Santiago, Solvability of linear local and nonlocal Robin problems over C(Ω), J. Mathematical Analysis and Applications 386 (2012), 677—698.

·         A. Vélez-Santiago, Quasi-linear boundary value problems with generalized nonlocal boundary conditionsNonlinear Analysis: Theory, Methods & Applications 74 (2011), 4601—4621.

·         A. Vélez-Santiago,  M. Warma, A class of quasi-linear parabolic and elliptic equations with nonlocal Robin boundary conditionsJ. Mathematical Analysis and Applications 372 (2010), 120—139.



        Other Activities:

         * I am currently working in the project: Olimpiadas de Matemáticas en Puerto Rico (OMPR).   

           * I am a professional violinist.  I have played in the Central Iowa symphony, and in the Puerto Rico symphony orchestra, among many other orchestras and groups.