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ABSTRACT 
 

Many modern applications of automatic document classification require learning 

accurately with little training data. Addressing the need to reduce the manual labeling process, 

the semi-supervised classification technique has been proposed. This technique use labeled 

and unlabeled data for training and it has shown to be effective in many cases. However, the 

use of unlabeled data for training is not always beneficial and it is difficult to know a priori 

when it will be work for a particular document collection. On the other hand, the emergence 

of web technologies has originated the collaborative development of ontologies. Ontologies 

are formal, explicit, detailed structures of concepts.  

In this thesis, we propose the use of Ontologies in order to improve automatic 

document classification, when we have little training data. We propose that making use of 

ontologies to assist the semi-supervised document classification can substantially improve 

the accuracy and efficiency of the semi-supervised technique. 

Many learning algorithms have been studied for text. One of the most effective is 

Support Vector Machines, which is the basis of this work. Our algorithm enhances the 

performance of Transductive Support Vector Machines through the use of ontologies. We 

report experimental results applying our algorithm to three different real-world text 

classification datasets. Our experimental results show an increment of accuracy of 4% on 

average and up to 20% for some datasets, in comparison with the traditional semi-supervised 

model.  
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RESUMEN 

Muchas aplicaciones modernas de la clasificación automática de documentos 

requieren obtener un clasificador eficiente utilizando pocos datos de entrenamiento. La 

técnica de clasificación semi-supervisada surgió con el fin de reducir el proceso de 

clasificación manual. Esta técnica utiliza en el entrenamiento tanto documentos etiquetados 

como no etiquetados y ha demostrado ser muy eficaz en muchos casos. Sin embargo, el uso 

de los datos no etiquetados no siempre es beneficioso y es difícil saber a priori cuándo es 

efectivo para una colección de documentos en particular. Por otro lado, la madurez de 

tecnologías web ha originado el desarrollo colaborativo de ontologías. Las ontologías son 

estructuras formales, explícitas y detalladas de conceptos. 

En esta tesis se propone el uso de ontologías para mejorar la clasificación de 

documentos, cuando se tienen pocos datos de entrenamiento. Proponemos que el uso de 

ontologías en la clasificación semi-supervisada de documentos puede ayudar a mejorar 

considerablemente la precisión y la eficiencia. 

El algoritmo de clasificación que utilizamos como base de nuestro trabajo es la 

versión semi-supervisada de las máquinas de vectores soporte, TSVM. Nuestro algoritmo 

mejora el rendimiento de los TSVM a través del uso de ontologías. Presentamos los 

resultados experimentales utilizando tres conjuntos de documentos. Los resultados 

experimentales muestran un incremento de la precisión del 4% en promedio y hasta un 20% 

para algunos conjuntos de datos, en comparación con el modelo TSVM.  
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1 INTRODUCTION 

 

Automatic document classification has become an important subject due the 

proliferation of electronic text documents in the last years. This problem consists in learn to 

classify unseen documents into previously defined categories. The importance of make an 

automatic document classification is noticeable in many practical applications: Email 

filtering (Sahami et al., 1998), online news filtering (Chan et al., 2001), web log 

classification (Yu et al., 2005), social media analytics (Melville et al., 2009), etc.  

 Supervised learning methods construct a classifier with a training set of documents. 

This classifier could be seen as a function or decision rule that is used for classifying future 

documents into previously defined categories. Supervised text classification algorithms have 

been successfully used in a wide variety of practical domains. In experiments conducted by 

Namburú et al., using high accuracy classifiers with the most widely used document datasets, 

they report up to 96% of accuracy with a binary classification in the Reuters dataset. 

However, they needed 2000 manually labeled documents to achieve this good result 

(Namburú et al., 2005). 

The problem with supervised learning methods is that they require a large number of 

labeled training examples to learn accurately. Manual labeling is a costly and time-

consuming process, since it requires human effort. In some applications, this approach 

becomes impractical, since most users would not have time to spend in label thousands of 

documents. On the other hand, there exists many unlabeled documents readily available, and 
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it has been proved that in the document classification context, unlabeled documents are 

valuable and very helpful in the classification task (Nigam et al., 1998). 

The use of unlabeled documents in order to assist the text classification task has been 

successfully used in numerous researches in the last years (Bennett et al., 1998), (Joachims, 

1999), (Nigam, 2001), (Krithara et al., 2008). This process has received the name of semi-

supervised learning. In experiments conducted by Nigam, on the 20 Newsgroups dataset, the 

semi-supervised algorithm performed well even with a very small number of labeled 

documents (Nigam et al., 1998). With only 20 labeled documents and 10,000 unlabeled 

documents, the accuracy of the semi-supervised algorithm was 5% superior than the 

supervised algorithm using the same amount of labeled documents. 

Unfortunately, semi-supervised classification does not work well in all cases. In the 

experiments found in literature some methods perform better than others and for distinct 

datasets the performance differs (Namburú et al., 2005). There are some datasets that do not 

benefit from unlabeled data or even worst, sometimes, unlabeled data decrease performance. 

Nigam (Nigam et al., 1998) suggests two improvements to the probabilistic model in which 

he tries to contemplate the hierarchical characteristics of some datasets.  

Another technique that is used to overcome the problem of manual labeling is Active 

Learning. Active Learning tries to minimize the annotation cost by labeling as few examples 

as possible and focusing in the most useful documents. Some researchers (Krithara, 2008), 

(Nigam et al., 1998), (Tong, 2001) have proposed the combination of both techniques semi-

supervised learning and active learning, using active learning in the top of each iteration of 
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the semi-supervised learner. The disadvantage with this approach is that it still requires 

manual labeling of the most useful examples in every iteration of the learning algorithm. 

Thus, this approach is used only when the learning algorithm can interact with a human 

during the labeling effort.  

Simultaneously, with the advances of web technologies, ontologies have increased on 

the World-Wide Web. Ontologies represent shared knowledge as a set of concepts within a 

domain, and the relationships between those concepts. The ontologies on the Web range from 

large taxonomies categorizing Web sites to categorizations of products for sale and their 

features. They can be used to reason about the entities within that domain, and may be used 

to describe the domain. In this thesis we propose the use of ontologies in order to assist the 

semi-supervised classification. 

1.1 Motivation 
 

In certain applications, the learner can generalize well using little training data. Even 

when it is proved that, for the case of document classification, unlabeled data could improve 

efficiency. However, the use of unlabeled data is not always beneficial, and in some cases it 

decreases performance.  

Ontologies provide another source of information, which, with little cost, helps to 

attain good results when using unlabeled data. The kind of ontologies that we focus in this 

thesis give us the words we expect to find in documents of a particular class. 
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Using this information we could guide the direction of the use of unlabeled data, 

respecting the particular method rules. We just use the information provided by the 

ontologies when the learner needs to make a decision, and we give the most probable label 

when otherwise arbitrary decision is to be made. 

The advantages of using ontologies are twofold: 

 They are easy to get since they are either readily available or they could be built with 

little cost. 

 Improve the time performance of the algorithm by speeding up convergence. 

 

1.2 Problem Statement 
 

Provide a learning approach that exploits the use of ontologies readily available, in 

order to assist the semi-supervised document classification task. 

This method has to be efficient, effective and improve the benefits of traditional semi-

supervised learning. 

The method has to overcome the challenges of the semi-supervised learning from 

documents: 

1. High dimensionality. Text classification deals with a large space of input documents and 

for each document, the corresponding vector has thousands of dimensions. Training 

classifiers in high dimensional spaces is a computational difficult problem. It is necessary 

to develop training algorithms that can handle the large number of features efficiently. 
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2. Limited training data. In most learning problems, the required number of training data 

has to be bigger than the dimension of the data, in order to learn accurately. In this case, 

we face the problem of having few labeled examples. 

1.3 Contributions 
 

In this thesis, we study and implement the use of ontologies in order to assist the 

semi-supervised document classification. 

Our contributions are as follows: 

1. Incorporate the use of ontologies to semi-supervised learning algorithms, in order to learn 

more accurate and more efficiently. Specifically, we modified the Transductive Support 

Vector Machine algorithm in order to make use of ontologies. 

2. Provide an efficient implementation that works accurate and efficiently. 

3. Present empirical evaluations that confirm our premise. 

 

1.4 Summary of Following Chapters 
 

 

Chapter 2 introduces the basic concepts and characteristics that are common in Text 

Mining Systems. We develop the necessary theoretical background in Chapter 3.  Chapter 4 

deals with the theoretical model for semi-supervised SVM using ontologies. In chapter 5 we 

present experiments and data analysis related to the semi-supervised SVM model using 
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ontologies. Conclusions are presented in Chapter 6. Chapter 7 presents the ethical 

considerations relative to this thesis.  
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2 BASICS IN TEXT MINING 
 

 

Text mining, sometimes called Knowledge Discovery from Text (KDT), is the 

process of automatically analyzing text documents from different perspectives and extracting 

useful information from them. Text mining comes to be the analogue of data mining applied 

to text documents. Therefore, it derives much of its motivation, methodologies and direction 

from basic research on data mining. 

Feldman and Sanger (Feldman et al., 2007) define Text Mining as a "knowledge-

intensive process in which a user interacts with a document collection over time by using a 

suite of analysis tools". They emphasize that preprocessing is a major step in text mining 

compared to data mining since it involves significant processing steps for transforming a text 

into a structured format suitable for later analysis. 

Hearst (Hearst, 1999) uses this metaphor for text mining: 'the use of large online text 

collections to discover new facts and trends about the world itself'. This point of view has a 

strong focus on undiscovered information within texts. Text mining includes exploratory data 

analysis that leads to the discovery of a priori unknown facts derived from texts, and 

hypothesis generation. The latter has successfully been applied in biology and medicine, such 

as investigations and medical hypothesis generation of causes for certain diseases by mining 

abstracts and texts of related biomedical literature (Fan et al., 2006). 

Weiss et al. (Weiss et al., 2004) emphasize that text is different from classical input in 

data mining, and give a detailed explanation of necessary preprocessing steps due to the 
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nature of unstructured text. They also highlight the importance of texts in daily (private and 

business) communication and the importance of the use of predictive methods to analyze this 

kind of unstructured information. 

In summary, text mining can be defined as: 

 Automated Processing of Text. 

 A knowledge-intensive process of text documents. 

 Use of text collections to discover new facts. 

 Analyzing unstructured information. 

 Intelligent text processing. 

 

2.1 Text Mining Technologies 
 

As mentioned before, a central difference between text mining systems and data 

mining systems is that the former is designed to handle unstructured or semi-structured data 

from XML files and heterogeneous documents  (such as email, full-text documents, and 

HTML files) (Fan et al., 2006).  

 

 

 

 Figure 2-1 Generic architecture of text mining systems 

 

Figure 2-1 outlines a generic architecture of text mining systems. Starting with a 

collection of documents, a text-mining tool retrieves a particular document and preprocesses 

it. In order to run their knowledge discovery algorithms, text mining systems require 

Document 

Collection 

Document 

Preprocessing Structured 

data format 

Text 

Mining 

Task 
Knowledge 
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transforming raw, unstructured, original-format content into a carefully structured data 

format (Konchady, 2006). Once we have a structured data, we are ready to perform a text 

mining task in order to provide knowledge. Technologies in the text-mining process include 

information extraction, topic tracking, summarization, concept linkage, information 

visualization; question answering, document classification and clustering (Fan et al., 2006). 

In this work, we are interested in the two latter technologies mentioned above: 

document classification and document clustering also known as supervised and unsupervised 

document classification respectively. We will explain them in detail in section 2.3. In the 

following, we will briefly describe the other technologies: 

2.1.1 Information extraction 

  

Information extraction looks for predefined sequences in the text (Fan et al., 2006). 

Information-extraction software should be able to identify people, places, companies, time, 

etc. and infer the relationships among all the identified objects to give the user meaningful 

information.  

2.1.2 Topic tracking 

 

A topic-tracking system predicts documents of interest to the user according user 

profiles, based on the documents a user examines, or letting users select particular categories 

of interest (Fan et al., 2006). There are many possible applications, for example it can be 

used for a company to keep track of news on itself and on its own products.  
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2.1.3 Concept linkage 

 

Concept-linkage finds related documents by identifying their shared concepts, helping 

users find information they perhaps wouldn‟t have found through traditional search methods 

(Fan et al., 2006). 

2.1.4 Information Visualization 

 

Information visualization consists in showing large textual sources in a visual 

hierarchy or map and providing browsing capabilities, in addition to simple searching (Fan et 

al., 2006). 

 

2.2 Preprocessing 
 

    Data mining preprocessing focuses on tasks such as normalization, error detection 

and correction and dimension reduction. For text mining systems, preprocessing operations 

focus on the identification and extraction of representative features for natural language 

documents. These preprocessing operations are responsible for transforming unstructured 

data stored in document collections into a more explicitly structured intermediate format, 

which is a concern that is not relevant for most data mining systems (Feldman et al., 2007). 

In the following we will describe the techniques for the transformation of 

unstructured text into structured formats. 
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2.2.1 Document standardization 

 

Text documents exist in many formats, depending on how the documents were 

generated. If we will process all the documents, it is helpful to convert them to a standard 

format. Most of the text-processing community, has adopted XML (Extensible Markup 

Language) as its standard exchange format (Weiss et al., 2004). Many word processors allow 

documents to be saved in XML format, and stand-alone filters can be obtained to convert 

existing documents without having to process each one manually (Weiss et al., 2004). 

The main advantage of standardizing the data is that the mining tools can be applied 

without having to consider the format of the document (Weiss et al., 2004). 

2.2.2 Tokenization 

 

The first step in handling text is to break the stream of characters into words or, more 

precisely, tokens (Weiss et al., 2004). A token is a more formal definition of a single unit of 

text. A single word may not be the smallest unit of text and a token may consist of one or 

more words (Feldman et al., 2007). 

According to Konchady (Konchady, 2006), a token is a word, number, punctuation 

mark, or any other sequence of characters that should be treated as a single unit. 

 The accurate extraction of tokens is important for precise results in higher-level 

applications. Vector representations of documents used in document classification are made 

up of a sequence of tokens and weights. Documents can be correctly categorized only when 

the vector represents accurately the contents of documents (Konchady, 2006). 
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To get the best possible features, one should always customize the tokenizer for the 

available text, otherwise extra work may be required after the tokens are obtained. Note that 

the tokenization process is language-dependent. In this thesis, we focus on documents in 

English. For other languages, although the general principles will be the same, the details 

will differ (Weiss et al., 2004). 

The algorithm for the single token extraction as proposed in (Konchady, 2006) is 

shown in Figure 2-2. 

Single_Tokens_Extraction 

Input 

Output 

S: The text stream 

T: list of tokens 

 

1. Define the set of legal token characters (alphanumeric characters and optional characters) and 

initialize a token list. 

 

2. Scan the text stream one character at a time; if the current character is not in the ASCII range of 

32 to 122, assign a space to the character. 

a. If the current character is a token character: 

i. If the previous character was not a token character, add the previous token to the 

list and create a new token. 

ii. Concatenate the current character to the current token. Continue at step 2. 

b. Else, (if the current character is a space character): 

i. If the previous character was not a space, add the previous token to the list. 

ii. Create a new token with a space (consecutive space characters form one token). 

Continue at step 2. 

c. Default: All others characters turn into individual tokens. 

3. Handle the last token. 

 
Figure 2-2 Algorithm for the single token extraction. 
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The tokenization process described in Figure 2-2 (Konchady, 2006), consists of the 

following: A text stream is received as input. First, extract the single tokens. Then, assemble 

composite tokens using a set of rules and dictionary tables. Several passes are made over the 

list of tokens to find composite tokens such as abbreviations, numbers, internet tokens, and 

multi word tokens. 

 

2.2.3 Stop Words Removal 

 

    An obvious reduction in dictionary size is to compile a list of 'stopwords' and 

remove them from the dictionary. These are words that almost never have any predictive 

capability, such as articles a and the and pronouns such as it and they. These common words 

can be discarded before the feature generation process, but it's more effective to generate the 

features first, apply all the other transformations, and at the very last stage reject the ones that 

correspond to 'stopwords' (Weiss et al., 2004). 

 

2.2.4 Lemmatization or stemming 

 

Stemming consists of converting each word to its stem. For instance, the words 

"taller" and "tallest" would both be converted to their stem "tall" (Larocca et al., 2000). 

Whether or not this step is necessary is application-dependent. One effect of 

stemming is to reduce the number of distinct types in a document collection and to increase 
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the frequency of occurrence of some individual types. Stemming algorithms usually 

incorporate a great deal of linguistic knowledge, so that they are language-dependent. 

Inflectional Stemming 
 

Inflectional Stemming consists in regularize grammatical variants such as 

singular/plural and present/past. In English, with many irregular word forms and non-

intuitive spelling, the process is not easy. There is no simple rule, for example, to bring 

together "seek" and "sought." Similarly, the stem for "rebelled" is "rebel," but the stem for 

"belled" is "bell" (Weiss et al., 2004). 

According to (Weiss et al., 2004), an algorithm for inflectional stemming must be part 

rule-based and part dictionary-based. Any stemming algorithm for English that operates only 

on tokens, without more grammatical information such as part-of-speech, will make some 

mistakes because of ambiguity. Although the inflectional stemmer is not expected to be 

perfect, it will correctly identify quite a significant number of stems. 

Stemming to a Root 
 

Weiss (Weiss et al., 2004) defines stemming to a root as "the process of reaching a 

root form with no inflectional or derivational prefixes and suffixes". For example, 

"denormalization" is reduced to the stem "norm". 

    Extending the concept, we can also map synonyms to the same token. This adds a 

layer of complexity to the processing of text. Overall, stemming will achieve a large 

reduction in dictionary size. 



` 

 

 

 

 15 

2.2.5 Vectorization 

 

Vector based representations has been widely used in text mining process for their 

simplicity. They are also referred to as a „bag of words‟, emphasizing that document vectors 

are invariant with respect to term permutations, since the original word order in the document 

is clearly lost. However, many text retrieval and categorization tasks can be performed quite 

well in practice using the vector-space model. 

The collective set of tokens or words is typically called a dictionary or vocabulary (V). 

They form the basis for creating the numeric vectors corresponding to the document 

collection. 

More precisely, a text document d can be represented as a sequence of terms,  

            | | , where |d| is the length of the document and     . A vector-space 

representation of d is then defined as a real vector    | |, where each component    is a 

statistic related to the occurrence of the     vocabulary entry in the document. 

Note that typically the total number of terms in a set of documents is much larger than 

the number of distinct terms in any single document, |V|>>|d|, so that vector-space 

representations tend to be very sparse. This property can be advantageously exploited for 

both memory storage and algorithm design. 

The simplest vector-based representation is Boolean. In Boolean representation 

         indicates the presence or the absence of term    in the document being 

represented. 
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Several refinements can be obtained by extending the Boolean vector model and 

introducing real-valued weights associated with terms in a document. Other vector-based 

representations are described in the next subsections. 

Term Frequency 
 

A more informative weighting scheme consists of counting the actual number of 

occurrences of each term in the document. This value may be multiplied by the constant 
 

| |
 to 

obtain a vector of term frequencies (TF) within the document. 

    Let                be a collection of documents. For each term     , let     

denote the number of occurrences of    in document   . Then we define: 

  (     )  
   

|  |
 

The idea is that terms occurring most often in a document are more relevant than 

terms that do not. However, a frequent term may occur in almost every document. Such 

terms do not contribute to discriminate between classes. To assign lower weights to such 

term, sometimes the document frequency        is used. This measure corresponds to the 

number of documents in which   occurs at least once.  

Finally, since documents can be of different length a normalization component 

adjusts the weights so that small and large documents can be compared on the same scale. 
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 For example, the weight of term    in document     with normalized length 

according to   , is:  

    
  (     )

√∑   (     )
 

 

 

The TF-IDF weight 
 

An important family of weighting schemes combines term frequencies with inverse 

document frequency    . As document frequency, inverse document frequency (IDF) is an 

„absolute' measure of term importance within the collection.     decreases as the number of 

documents in which the term occurs increases in a given collection. So terms that are 

globally rare receive a higher weight. 

Let                be a collection of documents and       , then we define: 

        
| |

       
 

    The logarithmic function is employed as a damping factor. 

Let         be the vector representation of the TF-IDF weight of term      in 

document   , it can be computed as: 

        (     )      
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Alternative versions of the basic TF-IDF exist. For example, the following weighting 

scheme uses TFIDF representation with normalized length according to    

  
  (     )    

√∑ (  (     )    )
 

 

 

2.3 Document Classification 
 

2.3.1 Supervised classification 

 

Automatic document classification consists in learning to classify unseen documents 

into previously defined categories. Given a collection of text documents and a set of 

categories, the task is to learn to predict the category for an unseen document. 

We can describe supervised document classification as an automatic process with two 

phases: 

Learning Phase 

In the learning phase the system takes as its input a set of documents, which have 

been previously labeled, and learns a function f from them. This assignment function is 

called a classifier. The labels that are assigned to the training documents belong to a 

predefined set of categories C.  

Formally, the learner   is given a training set                               of n 

examples drawn according to an unknown probability distribution         . Each example 

consists of the document vector    and the class label  . 
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The process of learning consists in learning a function              where D is 

the set of all possible documents and C is the set of predefined categories. The value        

is 1 if the document x belongs to the category y and -1 otherwise. 

In other words, the system learns to predict the category of new documents.  

Prediction Phase 

In the prediction phase a new unlabeled document is presented to the system and it 

assigns a label according to the classifier it has learned. 

Figure 2-3 Supervised classification process 

 

The practical applications of supervised text classification are extensive. They vary 

from automatic email sorting (or specifically filtering spam emails) (Sahami et al., 1998), 

sentiment detection of a text or opinion mining (Pang et al., 2002), classification of news 

articles (Chan et al., 2001), classification of the e-commerce customer logs/notes (Yu et al., 

2005), detecting a document's encoding (ASCII, Unicode, UTF-8, etc.), detecting the 

document language (English, Turkish, etc.) (Feinerer, 2008), etc.  
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Supervised text classification algorithms have been successfully used in a wide 

variety of practical domains. In experiments conducted by Namburú et al. (Namburú et al., 

2005), using high accuracy classifiers with the most widely used document datasets, they 

report up to 96% of accuracy with a binary classification in the Reuters dataset. However, 

they needed 2000 manually labeled documents to achieve this good result. 

The problem with the supervised learning methods is that they require a large number 

of labeled training examples to learn accurately. Manual labeling is a costly and time-

consuming process, since it requires human effort. In some applications, this approach 

becomes impractical, since most users would not have time to spend in label thousands of 

documents (Nigam, 2001). 

2.3.2 Supervised algorithms for document classification 

 

There are many traditional learning methods which have shown good results on text 

classification problems in previous studies. Some of them, among others, are the following: 

Naïve Bayes classifier (Sahami et al., 1998), k-nearest neighbor classifier, Logistic 

Regression, Boosting (Weiss et al., 2004), Support Vector Machines (Joachims, 1998). 

2.3.3 Unsupervised document classification 

 

Unsupervised document classification, also known as document clustering, is a 

process through which documents are classified into meaningful groups called clusters, 

without any prior information. Any labels associated with objects are obtained exclusively 

from the data.  
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A clustering task may include a definition of proximity or similarity measure suitable 

to the domain. There are many possible similarity measures; however, the cosine similarity 

measure is the most common for text clustering: 

Let x and y vector representations of two documents, and let n the dimension of the 

vectors. 

           ̅  ̅    ∑  ̅   ̅ 

 

 

 

 where  ̅ is the normalized vector  ̅  
 

‖ ‖
 . 

 An unsupervised learning system takes as its input a collection of unlabeled 

documents. The system classifies documents according to a similarity measure and generates 

clusters of documents which are similar with certain probability. This description is depicted 

in Figure 2-4. 

Figure 2-4 Unsupervised classification process 

 

 

Document clustering is useful in a wide range of data analysis fields, including data 

mining, document retrieval, image segmentation, and pattern classification. Clustering 

methodology is especially appropriate in problems in which little prior information is 

 

Unlabeled 

documents 

Clusters of 

Documents 
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available and the system must make as few assumptions about the data as possible (Feldman 

et al., 2007).   

An application of clustering is the analysis and navigation of big text collections such 

as Web pages. The basic assumption, called the cluster hypothesis, states that relevant 

documents tend to be more similar to each other than to non-relevant ones. If this assumption 

holds for a particular document collection, the clustering of documents based on the 

similarity of their content may help to improve the search effectiveness (Feldman et al., 

2007).    

2.3.4 Unsupervised algorithms document classification 

 

    Traditionally clustering techniques are divided in hierarchical and partitioning 

(Berkhin, 2002). Each of these can either be a hard clustering or a soft one. In a hard 

clustering, every object may belong to exactly one cluster. In soft clustering, the membership 

is fuzzy, objects may belong to several clusters with a fractional degree of membership in 

each (Feldman et al., 2007). 

    Hierarchical algorithms build clusters gradually. The basics of hierarchical 

clustering include the idea of conceptual clustering. Classic algorithms SLINK (Single 

LINKage), COBWEB, as well as newer algorithms CURE (Clustering Using 

Representatives) and CHAMELEON are in this category. 

    Partitioning algorithms learn clusters directly. In doing so, they either try to 

discover clusters by iteratively relocating points between subsets (Partitioning Relocation 
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Methods), or try to identify clusters as areas highly populated (Density-Based Partitioning). 

Partitioning Relocation Methods are further categorized into probabilistic clustering (EM 

(Expectation Maximization), framework algorithms (SNOB, AUTOCLASS, MCLUST), k-

medoids methods like algorithms (Kaufman and Rousseeuw) PAM (Partitioning Around 

Medoids), CLARA (Clustering LARge Applications), CLARANS (clustering Large 

Application based upon Randomized Search) and its extensions, and k-means methods 

(different schemes initialization, optimization, harmonic means, extensions). Such methods 

concentrate on how well points fit into their clusters and tend to build clusters of proper 

convex shapes. 

    Many other clustering techniques are developed, that work well in particular 

scenarios. The most commonly used algorithms are the K-means, the EM-based mixture 

resolving (soft, flat, probabilistic), and the HAC (hierarchical, agglomerative). 

    The clustering of textual data has several unique features that distinguish it from 

other clustering problems. The most prominent feature of text documents as objects to be 

clustered is their very complex and rich internal structure. With big document collections, the 

dimension of the feature space may easily range into the tens and hundreds of thousands. 

 

2.4 Related fields 
 

There is a huge amount of contributions that underlines the cross-disciplinary 

research in text mining with connections to various related fields, like statistics, computer 
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science, or linguistics. In the following we will describe those which, we consider, are the 

most important: 

2.4.1 Natural Language Processing 

 

Text mining aims to extract or generate new information from textual information but 

does not necessarily need to understand the text itself. Instead, natural language processing 

tries to obtain a thorough impression on the language structure within texts. This allows a 

deeper analysis of sentence structures, grammar, morphology, and thus better retrieves the 

latent semantic structure inherent to texts (Feinerer, 2008). Some applications of natural 

language processing closely related to text mining are: 

Automatic Summarization 
 

Summarization reduces the length and detail of a document while retaining its main 

points and overall meaning (Fan et al., 2006). Text summarization helps users figure out 

whether a lengthy document meets their needs and is worth reading. 

Question answering 
 

Another application area of natural language processing is natural language queries, 

or question answering (QandA), which deals with how to find the best answer to a given 

question (Fan et al., 2006).  
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2.4.2 Information Retrieval 

 

Information retrieval (IR) is concerned with searching for documents, for information 

within documents, and for metadata about documents, as well as that of searching relational 

databases and the World Wide Web.  

Automated information retrieval systems are used to reduce overload of information. 

Many universities and public libraries use IR systems to provide access to books, journals 

and other documents. Web search engines are the most visible IR applications. 
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3 THEORETICAL BACKGROUND 
 

In this chapter, we review the main theoretical fundamentals in which we base our 

thesis.  We also provide a review of early work related to this thesis. 

Section 1 introduces the optimization theory which is a fundamental block in the 

construction of Support Vector Machines. Section 2 introduces the naive Bayesian 

classification for text documents. Section 3 introduces the traditional Support Vector 

Machines applied to text documents. In Section 4 we give an overview of early work in semi-

supervised document classification. Finally, section 5 introduces the concept of Ontology. 

 

3.1 Optimization Theory 
 

Optimization theory is the branch of mathematics that studies the extremal values of a 

function. It is concerned with determining the most profitable or least disadvantageous 

solution out of a set of alternatives and developing effective algorithms for finding them. 

Typically the set of alternatives is restricted by several constraints on the values of a number 

of variables and an objective function locates the optimum in the remaining set. 

3.1.1 Mathematical Formulation 

 

Optimization is the minimization or maximization of a function subject to constraints 

on its variables (Nocedal et al., 1999).  

The general optimization problem can be stated as follows: 
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Definition 3.1 (Primal Optimization Problem) 

 

Given functions f,   , i=1,...,k and   , i=1,...,m, defined on a domain     ,  

                      

subject to         , i=1,...,k 
3-1 

        , i=1,...,m  

where: 

    is the vector of variables, also called unknowns or parameters, 

      is the objective function 

       , i=1,2,...,k are the inequality constraints, and, 

       , i=1,2,...,m are the equality constraints.  

The optimal value of the objective function is called the value of the optimization 

problem. The region of the domain where the objective function is defined and where all the 

constraints are satisfied is called the feasible region. 

A solution of the optimization problem is a point x
*
 in the feasible region such that 

there exists no other point x in the feasible region for which            . Such a point is 

known as a global minimum. A point    in the feasible region is called a local minimum of 

     if      such that                 such that ‖    ‖    . 

The choice of minimization in definition 3.1 does not represent a restriction, since 

maximization problems can be converted to minimization ones by reversing the sign of the 

objective function and rewrite the constraints (Cristianini et al., 2002). 
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An inequality constraint        is said to be active if the solution    

satisfies     
    , otherwise is said to be inactive. Equality constraints are always active. 

3.1.2 Convexity 

 

The term convex can be applied both to sets and to functions (Nocedal et al., 1999). 

      is a convex set if, for any two points     and    , it follows that: 

 

            for all   [   ] 
 

   is a convex function if its domain D is a convex set, and for any two points     and 

 y   , it follows that: 

 

                             for all   [   ] 
 

A function that is twice differentiable will be convex if its Hessian matrix is positive 

semi-definite (Cristianini et al., 2002). Convexity allows us to make strong claims about the 

convergence of optimization algorithms (Nocedal et al., 1999). 

An affine function is one that can be expressed in the form           for some 

matrix A and vector b. Affine functions are convex since they have zero Hessian. 

For the purpose of this work, we can restrict the study to the case where the 

constraints are all linear and the objective function is convex and quadratic. 
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3.1.3 Lagrange  Duality 

 

The purpose of Lagrangian theory is to characterize the solution of an optimization 

problem. It also leads to an alternative dual description, which often turns out to be easier to 

solve than the primal problem since handling inequality constraints directly is difficult 

(Cristianini et al., 2002). 

For the simplest case, when there are no constraints, the stationarity of the objective 

function is sufficient to characterize the solution (Cristianini et al., 2002). 

Theorem 3.1 (Fermat) A necessary condition for    to be a minimum of     ,     , is 

 
      

  
   

 

This condition, together with convexity of  , is also a sufficient condition. 

 

In order to characterize the solution in constrained problems, it is necessary to define 

a function, known as the Lagrangian, that incorporates information about both the objective 

function and the constraints (Cristianini et al., 2002). 

Definition 3.2 (Lagrangian Function) 

Given an optimization problem with objective function     , and equality constraints 

                , the Lagrangian function is defined as 

            ∑       

 

   

 

where the coefficients    are called the Lagrange multipliers. 
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If a point    is a local minimum of     ,     , for a problem with only equality 

constraints, it is possible that 
      

  
  , but the directions in which we could move to reduce 

  cause us to violate one or more of the constraints (Cristianini et al., 2002). In order to 

respect the equality constraint   , we must move perpendicular to 
     

  

  
, and so to respect all 

of the equality constraints we must move perpendicular to the subspace V spanned by 

{
     

  

  
        } 

if the 
     

  

  
 are linearly independent no legal move can change the value of the 

objective function, whenever 
      

  
 lies in the subspace  , or in other words when there 

exists    such that 

      

  
 ∑      

  

 

   

   

Theorem 3.2 (Lagrange)  

A necessary condition for a normal point    to be a minimum of     , subject to 

                , with        , is 

         

  
   

         

  
   

for some values   . The above conditions are also sufficient provided that         is 

a convex function of x. 
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The first of the 2 conditions gives a new system of equations, whereas the second 

condition returns the equality constraints. By jointly solving the two systems one obtain the 

solution. 

Definition 3.3 (Generalized Lagrangian function) 

 

Given an optimization problem defined on a domain     ,  

                      

subject to         , i=1,...,k 
  

        , i=1,...,m  

the Generalized Lagrangian function is defined as 

              ∑       

 

   

 ∑       

 

   

 

where the coefficients    and    are called the Lagrange multipliers. 

Definition 3.4 (Lagrangian dual problem) 

 

The Lagrangian dual problem of the primal problem of Definition 3.1 is the 

following problem: 

                     

subject to     ,  
3-2 

where                      . 

Lagrange multipliers are also called dual variables. 
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Theorem 3.3 (Weak duality) 

  

Let     be a feasible solution of the primal problem of Definition 3.1 and       a 

feasible solution of the dual problem of Definition 3.4. Then            . (Cristianini et 

al., 2002) 

Corollary 3.1 

The value of the dual is upper bounded by the value of the primal. 

Corollary 3.2 

If               , where      and     
    ,     

    , then    and         solve 

the primal and dual problem respectively. In this case   
     

    , for i=1,...,k. 

The solutions of the primal and dual having the same value is not in general 

guaranteed. The difference between the values of the primal and the dual problems is known 

as the duality gap. 

Theorem 3.4 (Strong duality) 

 

Given an optimization problem with convex domain     ,  

                      

subject to         , i=1,...,k 
  

        , i=1,...,m  

 

where    and    are affine functions, that is            for some matrix A and 

some vector b, then the duality gap is zero. 
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Theorem 3.5 (Kuhn-Tucker) 

Given an optimization problem with convex domain     ,  

                      

subject to         , i=1,...,k 
  

        , i=1,...,m  

with      convex and    and    affine, necessary and sufficient conditions for a 

point    to be an optimum are the existence of      such that: 

(Karush-Kuhn-Tucker (KKT) conditions) 

            

  
   

            

  
   

  
     

                

    
                

  
               

The third relation is known as the Karush-Kuhn-Tucker (KKT) complementary 

condition. It implies that for inactive constraints,   
   . Perturbing inactive constraints has 

no effect on the solution of the optimization problem. 

We can transform the primal problem into its corresponding dual by setting to zero 

the derivatives of the Lagrangian with respect to the primal variables, and substituting the 

resulting relations back into the Lagrangian. In this way we remove the dependence of the 
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primal variables. The resulting function contains only dual variables and must be maximized 

under simpler constraints (Cristianini et al., 2002). 

3.2 Naive Bayesian Text Classification 
 

3.2.1 The probabilistic model 

In order to model the data, Naïve Bayes classifiers assume that documents are 

generated by a mixture of multinomial distributions model, where each mixture component 

corresponds to a class.  

Bayes‟ rule says that to achieve the highest classification accuracy, a document 

 should be assigned to the class   for which     |   is highest. 

Suppose that C is the number of classes, the vocabulary is of size |V|, and each 

document di has |di| words in it. 

The likelihood of seeing document di is a sum of total probability over all mixture 

components. That is,  

    |   ∑ (  | ) (  |    )

 

   

 3-3 

 

Using the above along with standard Naive Bayes assumption: that the words of a 

document are  conditionally independent among them, given the class label, we can expand 

the second term of  equation 3-3, and express the probability of a document given a mixture 
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component in terms of its constituent features: the document length and the words in the 

document. 

 (  |    )    |  | ∏     |        

    

 3-4 

Where     refers to the number of times word wt occurs in document di. 

The full generative model, given by combining equations 3-3 and 3-4, assigns 

probability P(di|Ө) to generate document di as follows: 

    |     |  | ∑    |  

 

   

∏     |        

    

 3-5 

3.2.2 Dirichlet distribution  

Let             a random vector such that ∑             
           . 

The Dirichlet distribution with parameters            is given by: 

   |        
  ∑     

∏       
∏  

    

 

   

 3-6 

Where an   with large components correspond to strong prior knowledge about the 

distribution and   with small components correspond to ignorance. 

3.2.3 Multinomial Naive Bayes using Dirichlet Prior 

 

Using maximum a posteriori (MAP) to estimate the parameters of a multinomial 

distribution with Dirichlet prior, yields: 
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 ̂  |  
     |      

  ∑       
| |
   

| |  ∑ ∑       
| |
   

| |
   

 3-7 

 ̂  
     |   

  ∑    
| |
   

  | |
 3-8 

Given estimates of these parameters, it is possible to calculate the probability that a 

particular mixture component generated a given document to perform classification. By 

applying Bayes rule it follows that: 

 (     |    ̂)  
    | ̂ ∏     |    ̂    

    

∑     | ̂ ∏     |    ̂    
    

 
   

 3-9 

Then, to classify a test document into a single class, the class with the highest 

posterior probability is selected. See more details in (Mitchel, 2005). 

3.3 Support Vector machines (SVM) 
 

The learning method of Support Vector Machines (SVM) was introduced by Vladimir 

Vapnik et al (Boser et al., 1992). Supervised support vector machine technique has been 

successfully used in text domains (Joachims, 1998). 

Support Vector Machines is a system for efficiently training linear learning machines 

in kernel-induced feature spaces. Linear learning machines are learning machines that form 

linear combinations of the input variables (Cristianini et al., 2002). 



` 

 

 

 

 37 

3.3.1 Notation 

In order to describe SVM, first let us introduce some notation for the learning 

problem. Let      denote the input space and   denote the output domain. For binary 

classification         , for m-class classification            . 

3.3.2 Binary Linear Classification 

 

Let          be a real-valued function, the input              is assigned 

to the positive class, if       , and otherwise to the negative class. In the case that      is 

a linear function of    , it can be written as the equation of an hyperplane : 

     〈   〉    ∑    

 

   

   

 

where   is the unit normal vector of the hyperplane and b is the distance from the 

origin (see Figure 3-1). 

 

Figure 3-1 A hyperplane defined by the normal vector w at a distance b from the origin 

for a two dimensional training set. 
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Then, the decision rule is given by          . The parameters that control the 

learning function and must be learned from the data are           . The hyperplane 

defined by the function above is called the decision boundary. 

The quantities   and b are usually called the weight vector and bias, respectively. 

Sometimes b is replaced by   and is called threshold (Cristianini et al., 2002). 

If there exists a hyperplane that correctly classifies the training data, we say that the 

data are linearly separable. If no such hyperplane exists the data are said to be nonseparable. 

Intuitively, we can see that if a point is far from the separating hyperplane, then we may be 

significantly more confident in the prediction for the value of y at this point. And, for a given 

training set, it would be good if we manage to find a decision boundary that allows us to 

make all correct and confident predictions on the training examples (meaning far from the 

decision boundary). We will formalize this later using the concepts of margins. 

3.3.3 Geometric and Functional Margins 

 
Geometric Margin 

The geometric margin of some input example     is the distance from this point 

to the decision boundary. In Figure 3-2, let the point at A represent the input    of some 

training example with label     . Its distance to the decision boundary    is given by the 

line segment   ̅̅ ̅̅ . The direction of the vector   ⃗⃗⃗⃗  ⃗  is given by the unit-length vector 
 

‖ ‖
. 

Therefore B is given by      
 

‖ ‖
. 
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Figure 3-2 Geometric margin of an input example. 

 

Since B lies on the decision boundary then it satisfies the equation:  

〈   〉             

Hence,  

   (     

 

‖ ‖
)      

        

    

‖ ‖
     

        

‖ ‖ 

‖ ‖
     

  ‖ ‖          

   
  

‖ ‖
    

 

‖ ‖
 

Making the analogous process for the case of a negative example we get: 
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    (
  

‖ ‖
    

 

‖ ‖
) 

In general, we define the geometric margin of an hyperplane       with respect to a 

training example (       to be 

     (
  

‖ ‖
    

 

‖ ‖
)  3-10 

  

It is worth noting that the geometric margin is invariant to rescaling of the parameters 

to             . This fact will be useful later. 

Finally, giving a training set                       , we define the geometric 

margin of an hyperplane       with respect to S to be the smallest of the geometric margins 

on the individual training examples. 

     
 

   

Functional Margin 
 

We define the functional margin of an hyperplane       with respect to a training 

example (       to be the quantity: 

  ̂      
         (3-11) 

 

If     , then for the functional margin to be large, and in consequence, for our 

prediction to be confident and correct, we need         to be a large positive number. In 

the other hand, if      , then for the functional margin to be large, we need         to 

be a large negative number. Furthermore,  ̂    implies correct classification of (      . 

Thus, a large functional margin represents a confident and a correct prediction. 
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Since the geometric margin equals the functional margin when ‖ ‖   , thus 

geometrical and functional margin are related by   
 ̂

‖ ‖
. 

Note that in the definition of linear classifiers there is an inherent degree of freedom, 

due to the fact that the function associated with the hyperplane       does not change if we 

rescale the hyperplane to             . There will, however, be a change in the 

(functional) margin as measured by the function output as opposed to the geometric margin 

(Cristianini et al., 2002). 

The functional margin distribution of a hyperplane       with respect to a training 

set                       , is the distribution of the margins of the examples in S. We 

refer to the minimum of the functional margin distribution as the functional margin of a 

hyperplane       with respect to a training set S. 

3.3.4 The Maximal Margin Classifier 

 

The maximal margin classifier is the simplest model of Support Vector Machine. It 

tries to find a decision boundary that maximizes the geometric margin, since this would 

reflect very confident predictions on the training set. For this model, we assume that the 

training data are linearly separable. 

Since we are trying to maximize the geometrical margin  
 ̂

‖ ‖
 , we can pose the 

following optimization problem: 
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  ̂
‖ ‖

 

subject to     
          ̂ , i=1,2,...,m 

With this formulation we have the problem that the objective function 
  ̂

‖ ‖
 is not a 

convex one, and hence, it is difficult to solve. However, we can make use of the fact that we 

can multiply w and b by an arbitrary scale constant without changing neither the decision 

function nor the geometric margin. Since multiplying w and b by some constant results in the 

functional margin being multiplied by that same constant, we can equally well optimize the 

geometric margin by fixing the functional margin to be equal to 1 and minimizing the norm 

of the weight vector w. Indeed, maximizing 
  ̂

‖ ‖
 

 

‖ ‖
 is the same as minimizing ‖ ‖  

〈   〉. Now, we have the following proposition: 

Proposition 3.1 

Given a linearly separable training set                      , the hyperplane 

      that solves the optimization problem 

              
 
〈   〉  

s.t.    〈    〉       , i=1,...,m 

releases the maximal margin hyperplane with geometric margin   
 

‖ ‖
. 

This is an optimization problem that can be efficiently solved, given that it has a 

convex quadratic objective function with linear constraints. Its solution give us the maximal 

margin classifier. 
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Dual Formulation 

Using the Lagrange theory outlined in section 3.1.3, we transform the optimization 

problem of Proposition 3.1 into its corresponding dual problem. 

The primal Lagrangian is  

         
 

 
〈   〉  ∑  [   〈    〉      ]

 

   

 

where      are the Lagrangian multipliers. 

Differentiating with respect to w and b 

         

  
   ∑      

 

   

   

         

  
 ∑    

 

   

   

From which we get: 

  ∑      

 

   

 

  ∑    

 

   

 

Substituting back into the primal to obtain: 
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∑         〈     〉

 

     

 ∑         〈     〉

 

     

 ∑  

 

   

 

          
 

 
∑         〈     〉

 

     

 ∑  

 

   

 

Proposition 3.2 

Given a linearly separable training set                      , and suppose the 

parameters    solve the following quadratic optimization problem: 

                  ∑   
 
    

 

 
∑         〈     〉

 
       

s.t. 
∑     

 
       (3-12) 

 

               

then the weight vector    ∑   
     

 
    is a normal vector for the maximal margin 

hyperplane with geometric margin   
 

‖ ‖
. 

Since the value of    does not appear in the dual problem, it must be found making 

use of the primal constraints: 

    
   
     

 〈     〉     
    

 〈     〉 

 
 

 

Theorem 3.5 (Kuhn-Tucker) applies to this optimization problem. The KKT 

complementary conditions for this problem state: 
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 [   〈 

    〉       ]            

This means that for inputs    for which the functional margin is one and that therefore 

lie closest to the hyperplane the corresponding   
  are non-zero. In consequence, in the 

expression for the weight vector only this points are involved (Cristianini et al., 2002). For 

this reason they are called support vectors, see Figure 3-3.  

 

Figure 3-3 Optimal margin linear classifier. The examples closest to the hyperplane are 

called support vectors. 

 

The optimal hyperplane can be expressed in the dual representation in terms of this 

support vectors. Let SV be the set of indices of the support vectors: 

           ∑  
   〈    〉
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           ∑   
   〈    〉

    

    

Hence, given   
       the decision function depends only on the inner product 

between   and the support vectors. 

Another important result of the KKT complementary conditions, as described in 

(Cristianini et al., 2002) is that for      

        
        (∑   

   〈     〉

    

   )    

and consequently: 

〈     〉  ∑   
   

     〈     〉

 

     

 

 ∑   
   

    

∑   
   〈     〉

    

 

 ∑   
 

    

(     
 ) 

 ∑   
 

    

 

And therefore, we have the following proposition (Cristianini et al., 2002). 

Proposition 3.3 

Given a linearly separable training set                      , and suppose the 

parameters    and    solve the quadratic optimization problem of Proposition 3.2. Then the 
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weight vector    ∑   
     

 
    is a normal vector for the maximal margin hyperplane with 

geometric margin 

  
 

‖ ‖
 (∑   

 

    

)

 
 
 

  

 

 This property is exploited in the next section with the use of Kernels. 

3.3.5 Kernels  

In real situations, data usually is not linear separable. To handle this problem, input 

data is transformed from its original space into another space so that a linear decision 

boundary can separate the data. The original data space is called input space and the 

transformed space is called feature space. 

The idea is to map the data in the input space X to a feature space F via a nonlinear 

mapping  , 

      

       

The same linear SVM solution is then applied to F. 

An important fact is that explicit transformation could be avoided, noting that in the 

dual representation both the construction of the optimal hyperplane and the evaluation of the 

corresponding classification function only require the evaluation of dot products. This is 

done through the use of kernel functions. 
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Definition 3.5 (Kernel) 

 

A Kernel is a function K, such that for all       

       〈         〉 

Kernel functions are sometimes more precisely referred to as Mercer kernels, because 

they must satisfy Mercer's condition, which guarantees that a kernel function must be 

continuous, symmetric, and have a positive definite Gram matrix (Cristianini et al., 2002). 

Such a means that there exists a mapping to a reproducing kernel Hilbert space (a Hilbert 

space is a vector space closed under dot products) such that the dot product there gives the 

same value as the function K. 

Proposition 3.4 

 

Given a training set                      , that is linearly separable in the 

feature space implicitly defined by the kernel        and suppose the parameters    and    

solve the following quadratic optimization problem: 

                  ∑   
 
    

 

 
∑          (     )

 
       

s.t. 
∑     

 
       (3-13) 

 

               

Then the decision rule given by          , where      ∑   
          

 
       is 

equivalent to the maximal margin hyperplane in the feature space implicitly defined by the 

kernel        and that hyperplane has geometric margin 
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  (∑   
 

    

)

 
 
 

  

 

There are many different kernel functions; some of them are listed below. 

Linear 

       〈   〉 

Polynomial (homogeneous) 

       〈   〉      

Polynomial (inhomogeneous) 

                    

Gaussian Radial Basis Function: 

             ‖   ‖         

In this thesis a linear kernel was used. More explanation on kernel functions can be 

found in the book (Cristianini et al., 2002).  

3.3.6 Soft Margin Optimization 

 

If the data is noisy, there will in general be no linear separation in the feature space 

(Cristianini et al., 2002). To handle the problem of nonlinearly separable data, slack variables 

are introduced to allow the margin constraints to be violated. 
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2-norm Soft Margin 
 

This approach consists in solving the generalized optimal plane (GOP) problem 

(Bennett et al., 1998) given by: 

         ∑   

 

   

 
 

 
‖ ‖   

                        
3-14 

             

Where     is a penalty parameter. For each point, is added a slack term   such that 

if the point is misclassified,     . 

1-norm Soft Margin 
 

A Robust Linear Programming approach is presented in (Bennett, 1992). It considers 

the use of the 1-norm instead of the 2-norm, ‖ ‖  ∑ |  |
 
   . The problem becomes the 

following optimization problem: 

           ∑   

 

   

 ∑  

 

   

 
 

                        3-15 

             

                  

 



` 

 

 

 

 51 

3.3.7 Multiclass discrimination 

 

We can also solve the problem of binary classification by defining a weight vector    

and bias    for each class (Cristianini et al., 2002). When a new instance x  has to be 

classified, both  functions are evaluated, and the point x is assigned to class 1 if 〈    〉  

   〈     〉     , otherwise x is assigned to class -1. This approach is equivalent to 

discrimination using the single hyperplane (             ) (Cristianini et al., 2002). 

This approach could be used for multiclass discrimination with output domain 

           . For each class, define a weight vector    and bias   , and the decision 

function is given by 

           
 

 〈    〉      

This is equivalent to associating a hyperplane to each class, and to assigning a new 

point x to the class whose hyperplane is furthest from it (Cristianini et al., 2002). 

 

 

3.4 Semi-supervised Document Classification 
 

The general idea of semi-supervised learning is to use a small number of labeled 

examples and a large number of unlabeled examples to achieve high-accuracy classification. 

The motivation for the use of unlabeled documents for text classification is that we have 

many electronic documents readily available. But, labeling the documents must typically be 

done by a person, which is a costly and time-consuming process. Nigam et al. showed that, in 

certain circumstances, it is possible to train a system using both unlabeled and labeled 
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documents and explained why unlabeled data could benefit the classification task (Nigam, 

2001). 

3.4.1 The value of unlabeled data 

 

An intuitive idea given by Nigam can make us understand why unlabeled data can be 

helpful. "Suppose we have some web pages about academic courses, along with a large 

number of web pages that are unlabeled. By looking at just the labeled data we determine 

that pages containing the word homework tend to be about academic courses. If we use this 

fact to estimate the classification of the many unlabeled web pages, we might find that the 

word lecture occurs frequently in the unlabeled examples that are now believed to belong to 

the positive class. This co-occurrence of the words homework and lecture over the large set 

of unlabeled training data can provide useful information to construct a more accurate 

classifier that considers both homework and lecture as indicators of positive examples" 

(Nigam, 2001). 

3.4.2 Semi-supervised Expectation Maximization with Naive Bayes 

 

The model considered in (Nigam, 2001) uses an algorithm for learning from labeled 

and unlabeled documents based on the combination of Expectation-Maximization (EM) and 

the naive Bayes classifier. 

When we have unlabeled data available, we would still like to find MAP parameter 

estimates, as in the supervised setting above. Using the Expectation-Maximization (EM) 

technique, we can find locally MAP parameter estimates for the generative model. 
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The probability of an individual unlabeled document is a sum of total probability over 

all the classes, as in equation 3-3.  Hence, the expected log probability of the data, containing 

|D|, is: 

   |               ∑   

| |

   

∑    |   (  |    )

 

   

 3-16 

The Expectation-Maximization (EM) is a two-step process that provides an iterative 

approach to finding a local maximum of model probability in parameter space. The E-step of 

the algorithm estimates the expectations of the class given the latest iteration of the model 

parameters. The M-step maximizes the likelihood of the model parameters using the 

previously computed expectations of the missing values as if they were the true ones. 

In practice, the E-step corresponds to performing classification of each unlabeled 

document using equation 3-9. The M-step corresponds to calculating a new maximum a 

posteriori estimate for the parameters, using Equations 3-7 and 3-8 with the current estimates.  

This algorithm is guaranteed to converge to some local maxima. The algorithm 

iterates until it converges to a point where the parameters does not change from one iteration 

to the next.  

For the semi-supervised case, we consider using a limited number of labeled data in 

the initialization step. We first train a classifier using the labeled data, and then estimate the 

parameters. After that, the algorithm iterates trying to improve the log likelihood of the data. 

The algorithm for the semi-supervised document classification is shown in Figure 3-4. 
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EM_Semi-supervised_NaiveBayes 

Inputs: 

   Dl= Collection of labeled documents 

   Du= Collection of unlabeled documents 

 

1. Train a classifier with the labeled data and use maximum a posteriori parameter estimation to find 

θ. 

2. Loop while classifier parameters improve, as measured by the change in l θ|D Y   

(E-step) Use the current classifier, θ , to estimate component membership of each document, 

P(cj|Di θ   

(M-step) Re-estimate the classifier, θ , given the estimated component membership of each 

document. Use MAP estimation to find θ       θ  D Y|θ   θ   

Figure 3-4 Algorithm for the semi-supervised Naïve Bayes document 

classification using EM  

 

3.4.3 Semi-supervised Probabilistic Latent Semantic Analysis 

 

Probabilistic Latent Semantic Analysis (PLSA) introduced by Hofmann (Hofmann, 

1999) has been presented as a probabilistic version of the Latent Semantic Analysis. PLSA 

algorithm for textual information has the nice property that avoids the ambiguity generated 

by the words that have synonyms and by the words that are polysems. PLSA tries to find 

some meaning behind the words, including in the model an unobserved variable representing 

the topic or aspect. In this model the correspondence between classes and topics is one-to-

many (Krithara et al., 2008). 

PLSA characterizes each word in a document as a sample form a mixture model, 

where mixture components are conditionally-independent multinomial distributions. 

Let us assume we have a dataset of l labeled documents 

                             and a dataset of u unlabeled documents 
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                    .  In order to make use of the unlabeled documents, we introduce a 

"fake" label z for each document, such that       for every labeled document, and      

for every unlabeled document (Krithara et al., 2006). 

In this model, each example x is the co - ocurrence of a word w with a document d, 

which we denote        . The probabilistic model is a mixture of multinomial 

distributions over (w,d,z). 

             ∑   |     |     |  

 

   

 
3-17 

where C is the number of the latent components. Note that they assume that w,d and z 

are conditionally independent given c. 

Then, a variant of Expectation-Maximization algorithm is used to train the model. In 

the Expectation (E) step, we calculate: 

           |          
   |     |        |  

∑     |     |         |     
 3-18 

In the Maximization (M) step, the parameters of the model are updated using the 

following: 

   |   ∑              
 

 3-19 

   |   ∑              
 

 3-20 
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   |   ∑ ∑              
         

 3-21 

After training the model, the probability obtained for the “fake” label is distributed 

onto the “real” labels: 

   |        |       |         |   3-22 

Where   is a suitable parameter.  

3.4.4 Semi-supervised Support Vector Machines 

 

Bennet (Bennett et al., 1998) proposed the semi-supervised Support Vector Machine 

called S
3
VM. Either formulation given in equation 3-14 or in equation 3-15 could be used as 

an initial situation. In order to use the unlabeled data, two constraints are added for each 

point in the working set. One constraint calculates the misclassification error as if the point 

was in class 1 and the other constraint calculates the misclassification error as if the point 

was in class -1. The objective function calculates the minimum of the two possible 

misclassification errors. The class of the points corresponds to the one that results in the 

smallest error. S
3
VM is defined by the following formulation: 

             *∑   

 

   

 ∑            

   

     

+  ‖ ‖  

                                        3-23 
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                        l     l     

 (      )                  

Where C is a positive constant for the misclassification penalty. 

The solution of this problem, using integer programming leads to the use of decision 

variable    for each unlabeled example   . This variable indicates the class of the point. If 

  =1 then the point is in class 1 and if      then the point is in class -1. The formulation 

becomes: 

             *∑   

 

   

 ∑            

   

     

+  ‖ ‖  

                                        3-24 

            (    )                l     l     

 (      )                               

M is a positive constant that is chosen sufficiently large such that if      then     = 

0 is feasible for any optimal w and b. Likewise, if      then   = 0. 

The idea of the use of both labeled and unlabeled with Support Vector Machines is 

related to the use of transductive inference. We will expand this concept in chapter 4.  
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3.5 Ontology 
 

The evolution of the web has originated new forms of information sharing. The 

continuous growing of information in the WWW makes the existence of explicit semantics 

that supports machine processing of information necessary. The concept of Ontologies was 

originated in the Artificial Intelligence community as an effort to formalize descriptions of 

particular domains. 

The term 'ontology' in the context of information management is defined as a formal, 

explicit specification of a shared conceptualization (Gruber, 1993). A conceptualization 

refers to an abstract model of some phenomenon in the world which identifies the relevant 

concepts, relations and constraints. These concepts, relations and constraints must be 

explicitly defined. Formal refers to the fact that the ontology should be machine-readable. 

Finally, an ontology represents shared knowledge, that is a common understanding of the 

domain between several parties. Ontologies enable semantic mapping between information 

sources (Lacy, 2005). 

In other words, ontology specifies a domain theory. It is a formal description of 

concepts and their relations, together with constraints on those concepts and relations. 

(Alexiev et al., 2005). 

It is worth noting that a database schema differs from an ontology given the fact that 

the last one does not represent shared knowledge. They are typically developed for one or a 

limited set of applications. 
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3.5.1 Types of ontologies 

 

There are many different types of ontologies. Typically they are classified according 

to their expressiveness.  Alexiev et. al. (Alexiev et al., 2005) classifiy ontologies into two 

groups: 

1. Light-weight ontologies. The ontologies in this group are those with the lower level of 

expressiveness, they are: 

 controled vocabulary: a list of terms. 

 thesaurus: relation between terms are provided. 

 informal taxonomy: there is an explicit hierarchy, but there is not strict inheritance. 

 formal taxonomy: there is strict inheritance. 

 frames or classes: a frame ( or class) contains a number of properties and these 

properties are inherited by subclasses and instances. 

2. Heavy-weight ontologies.  

1. value restrictions: values of properties are restricted. 

2. general logic constraints: values may be constraint by logical or mathematical 

formulas. 

3. first-order logic constraints: very expressive ontology languages that allow first-order 

logic constraints between terms and more detailed relationships such as disjoint 
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classes, disjoint coverings, inverse relationships, part-whole relationships, etc. 

feasible for any optimal w and b. Likewise if      then   = 0. 

3.5.2 Examples of ontologies 

 

Currently, there exist many published ontologies, some of them are listed below: 

 WordNet (Princeton University, 2010), a lexical reference system. 

 Opencyc (Cycorp, 2011), a large Foundation Ontology for formal representation of the 

universe of discourse. 

 Gene Ontology for genomics (IFOMIS, 2011) . 

 CContology (Jarrar, 2007). Customer Complaint Ontology, an e-business ontology to 

support online customer complaint management. 

 BMO (Jenz & Partner), an e-Business Model Ontology based on a review of enterprise 

ontologies and business model literature 

 COSMO (MICRA, 2011), a Foundation Ontology that is designed to contain 

representations of all of the primitive concepts needed to logically specify the meanings 

of any domain entity. It is intended to serve as a basic ontology that can be used to 

translate among the representations in other ontologies or databases.  

 DOLCE (LOA, 2006), a Descriptive Ontology for Linguistic and Cognitive Engineering. 

 Dublin Core (University of Maryland, 2000), a simple ontology for documents and 

publishing 
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 Foundational Model of Anatomy (University of Washington, 2011), an ontology for 

human anatomy. 

In addition, semantic web search engines have also been developed. Some of them 

are Swoogle (UMBC, 2007) and SWSE (SWSE, 2010) (pronounced "swizzy"). 

In this thesis, we have mainly used Wordnet (Princeton University, 2010), Opencyc 

(Cycorp, 2011) and other ontologies found using the semantic web search engine Swoogle 

(UMBC, 2007). 
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4 SEMI-SUPERVISED SUPPORT VECTOR 

MACHINES USING ONTOLOGIES 
 

 

 

4.1 Transductive Support Vector Machines (TSVM) 
 

 

Transductive learning refers to the estimation of the class of the unlabeled working 

set.  In contrast with the inductive approach where the learner induces a function with low 

error rate; transductive learning aims to classify a given set of unlabeled examples with as 

few errors as possible. The most representative technique of transductive learning is 

Transductive Support Vector Machines (TSVM). It was introduced by Joachims (Joachims, 

1999) with particular application in Text Classification. 

TSVM maximizes margin not only on the training, but also on the test set. For 

transductive learning, the learner L receives as input a training set 

                            and a test set T={  
    

      
 } (from the same distribution) 

(Joachims, 1999). 

Including T={  
    

      
 }, the corresponding labeling   

    
      

  to be found  

and the slack variables   
         for the unlabeled data  in the derivation, we arrive to 

the following optimization problem for the non-separable case: 
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‖ ‖   ∑  

 

   

   ∑  
 

 

   

 

s.t. 

                 
            4-1 

     
 (    

   )      
     

            

     
                   

          are parameters set by the user. They allow trading off margin size against 

misclassifying training examples or excluding test examples. 

Solving this problem means finding a labeling   
    

      
  of the test data and a 

hyperplane 〈   〉 , so that this hyperplane separates both training and test data with 

maximum margin. 

For a very small number of test examples, this problem can be solved simply by 

trying all possible assignments of   
    

      
  to the two classes. However, this approach 

becomes intractable for large test sets. (Joachims, 2001), proposed an algorithm that 

repeatedly optimize approximations to the TSVM  training problem using local search. Local 

search algorithms start with some initial instantiation of the variables. In each iteration the 

current variable instantiation is modified so that it moves closer to a solution. This process is 

iterated until no more improvement is possible. 
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(A) 

 

(B) 

Figure 4-1 Example of the influence of unlabeled examples in TSVM. 

 

 

An intuitive graphical interpretation explaining how TSVM works is shown in Figure 

4-1. Plus signs indicate positive examples; minus signs indicate negative examples and dots 

stand for unlabeled examples. In part (a) the dashed line indicates the hyperplane with the 

maximum margin when no unlabeled examples are taken into account. In part (b) the solid 

line represents the hyperplane with the maximum margin when unlabeled examples are taken 

into account. 

The algorithm proposed by (Joachims, 2001) is shown in Figure 4-2. The algorithm 

takes the training data and the test examples as input. The user can specify the number of test 

examples to be assigned to the positive class. This version of  the algorithm covers the linear 

case. It could be easily adapted for the use of kernels. 

At each level of approximation, the algorithm improves the solution by switching the 

labels of a pair of test examples. The criterion in the condition of loop 2 identifies two 

examples for which changing the class labels leads to a decrease in the current objective 



` 

 

 

 

 65 

function. If there are no more such examples, the algorithm moves to a closer approximation 

in loop 1.  The function solve_svm_qp is used as a sub procedure that solves the optimization 

problem 4.1, it uses the current solution as a starting point. 

This algorithm is guaranteed to converge as proved by (Joachims, 2001). He also 

states that the algorithm was empirically found to be robust against getting stuck in local 

minima far away from the optimum. 

ALGORITHM TSVM 

Input: labeled examples                   

unlabeled examples   
      

  

Output Predicted labels of the unlabeled examples   
      

  

 

1. Train an inductive SVM M1using the labeled data                  . 

2. Classify unlabeled documents   
      

  using M1 

3. Loop1:  

 

 

 

 

 

 

 

 

 

4. Return labels   
      

  for unlabeled documents  

Figure 4-2 Algorithm for training TSV (Joachims, 1999) 

While there exist unlabeled documents 

1. Increase the influence of unlabeled data by incrementing 

the cost factors (parameters in the algorithm) 

2. Loop 2: While there exist unlabeled examples that do not 

meet the restriction of the optimization problem 

1. Improve the solution by switching the labels 

of a pair of unlabeled examples 

2. Retrain 
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4.2 Incorporating ontologies to TSVM 
 

Given a collection of ontologies related to the classification problem, we build a 

vector of the form: 

                     

where c is the number of classes in the classification problem.  Each    is a vector of 

words that are known to be good discriminator for class   . 

Additionally, to each word could be associated a weight    that corresponds to the 

importance of word    in discriminating its corresponding class. 

For this work we focus our attention in binary classification, hence the set of classes 

will be        

Our proposal is to incorporate the ontologies in the algorithm, in order to use this 

information to help make the decision of which unlabeled examples are worth switch to 

labeled samples. We use the information of a probabilistic label given to each unlabeled 

document by the ontologies. The intention is not to push too hard to conform strictly to the 

ontologies, but use it as a piece of information in that point of the algorithm. 

In order to use the information provided by the ontology, we first assign to each 

unlabeled document    a probabilistic label   induced by the ontologies. 
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Let                be a document, and let  

 (             )                  be the ontology for a binary problem. 

Then we assign to the unlabeled document d a label     using the following rule: 

           
 

 ∑   

        

   

The algorithm for assigning the labels induced by ontologies is shown in Figure 4-3. 

ALGORITHM ONTOLOGY_LABEL 

Input: training examples   
      

  

ontology  (             )                  

Output Probabilistic labels of the test examples   
      

  

//Words are ordered by id in both document vectors and ontology vectors 

// Repeat for all unlabeled examples 

for                
            
            

 

for                

if       
                                    

 |     } 

} 

for                

if       
                                    

 |     } 

} 

     
                           

If (                          
       

  

  

Figure 4-3 Algorithm for calculating the label induced by the Ontology 
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For weighted ontologies, we just multiply corresponding weights of document word 

and ontology word. 

Once we have obtained the probabilistic label for all unlabeled documents, we can 

make the following modification in the transductive approach shown in section 4.1.  

ALGORITHM TSVM 

Input: labeled examples                   

unlabeled examples   
      

  

labels induced by ontologies   
      

  for unlabeled documents 

Output Predicted labels of the unlabeled examples   
      

  

 

1. Train an inductive SVM M1using the labeled data                  . 

2. Classify unlabeled documents   
      

  using M1 

3. Loop1:  

 

 

 

 

 

 

 

 

4. Return labels   
      

  for unlabeled documents  

Figure 4-4 Algorithm for training transductive support vector machines using 

ontologies. 

 

While there exist unlabeled documents 

3. Increase the influence of unlabeled data by incrementing 

the cost factors (parameters in the algorithm) 

4. Loop 2: While there exist unlabeled examples that do not 

meet the restriction of the optimization problem 

3. Select unlabeled examples to switch given 

that are misclassified according to the 

ontology induced label 𝒛𝟏
    𝒛𝒌

  

4. Retrain 
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A graphical interpretation of this algorithm could be seen in Figure 2-1, (a) in any 

iteration, the algorithm decides to make a switch between the examples that are closer to the 

margin. In this case we can also make use of the probabilistic label of the unlabeled example 

(label 0.8) to decide that this example is likely to be positive. (b) The new separating 

hyperplane is shown in purple. 

 

(A) 

 

(B) 

Figure 4-5 Graphical interpretation of the use of labels induced by ontologies. 

 

 

4.3 Justification for using Ontologies 
 

The reasons for incorporating ontologies to our model are: 

1. We could easily get the ontologies vectors. The manual construction of these vectors does 

not represent a significant cost in human effort, since extracting the keywords from 

ontologies for each class is easy than read and label thousands of documents. 
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2. We can guide the classification task for the unlabeled data in a desired direction, since we 

can give specific words for a class, and we can even assign weights to them. Depending 

on the problem, this could be desirable. 

 

4.4 Time Complexity of the Algorithm 
 

Using the sparse vector representation the time complexity of the dot products depend 

only on the number of non-zero entries. 

Let m the maximum number of non-zero entries in any of the training examples, let q 

be the rows of the Hessian. For each iteration, most time is spent on the Kernel evaluations 

needed to compute the Hessian. Since we used a linear Kernel, this step has time complexity 

O(q
2
m). 

 

4.5 Related work 
 

Traditionally, ontologies were used to help pre-processing text documents, such as 

the use of WordNet to find synonyms to be considered as one word or token.  

A distinct approach is presented in (Carlson, 2010). He extracts facts and 

relationships from the web and builds ontologies. He uses these ontologies as constraints to 

learn semi-supervised functions at one in a coupled manner.  

Recently, (Chenthamarakshan et al., 2011) present an approach in which they first 

map concepts in an ontology to the target classes of interest. They label unlabeled examples 
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using this mapping, in order to use them as training set for any classifier. They called this 

process concept labeling. 
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5 EXPERIMENTAL EVALUATION 
 

5.1 Datasets 
 

We used three well known data sets among researchers in text mining and 

information retrieval. These datasets are described below. 

 

Reuters-1 (RCV1) 
 

    In 2000, Reuters Ltd. made available a large collection of Reuters News stories for 

use in research and development of natural language processing, information retrieval, and 

machine learning systems. This corpus, known as "Reuters Corpus, Volume 1" or RCV1, is 

significantly larger than the older, well-known Reuters-21578 collection heavily used in the 

text classification community. This is distributed on two CDs and contains about 810,000 

Reuters, English Language News stories. It requires about 2.5 GB for storage of the 

uncompressed files. 

In Fall of 2004, NIST took over distribution of RCV1 and any future Reuters 

Corpora. These datasets can be obtained from NIST upon request. 

This data set is described in detail by Lewis et. al. (Lewis et al., 2004). In this thesis, 

we randomly selected a portion of documents from the most populated categories. The 

quantity of selected documents is proportional to the total amount of documents in each 

category. In Table 5-1, we show the quantity of selected documents, for each category. For 

the negative class of each category, we randomly selected the same amount of documents 

from the other categories. 
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CATEGORY LABELED  UNLABELED TOTAL 

Accounts/earnings 1325 25069 26394 

Equity markets 1048 20296 21344 

Mergers/acquisitions 960 18430 19390 

Sports 813 15260 16073 

Domestic politics 582 11291 11873 

War, civil war 1001 17652 18653 

Crime, law enforcement 466 7205 7671 

Labour issues 230 6396 6626 

Metals trading 505 9025 9530 

Monetary/economic 533 5663 6196 

 

Table 5-1 Number of labeled and unlabeled documents used in experiments for 

10 categories of Reuters dataset. 

 

20 Newsgroups 
 

    The 20 Newsgroups data set was collected by Ken Lang, consists of 20017 articles 

divided almost evenly among 20 different UseNet discussion groups. 

    Some of the newsgroups are very closely related to each other (e.g. 

comp.sys.ibm.pc.hardware / comp.sys.mac.hardware), while others are highly unrelated (e.g 

misc.forsale / soc.religion.christian). Here is the list of the 20 newsgroups,: 

    comp.graphics 

    comp.os.ms-windows.misc 

    comp.sys.ibm.pc.hardware 

    comp.sys.mac.hardware 

    comp.windows.x. 

    rec.autos 

    rec.motorcycles 

    rec.sport.baseball 

    rec.sport.hockey 

    sci.crypt 

 

    sci.electronics 

    sci.med 

    sci.space 

    talk.politics.misc 

    talk.politics.guns 

    talk.politics.mideast 

    talk.religion.misc 

    alt.atheism 

    soc.religion.christian 

    misc.forsalehre 
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This data set is available from many online data archives such as CMU Machine 

Learning Repository (UCI, 2011). 

For our experiments we used 10000 documents corresponding to 10 categories. For 

each class we used 100 labeled documents and 900 unlabeled documents. 

 

WebKB 
 

 The WebKB data set described at (Craven et al., 1998) contains 8145 web pages 

gathered from universities computer science departments. The collection includes the entirety 

of four departments, and additionally, an assortment of pages from other universities. The 

pages are divided into seven categories: student, faculty, staff, course, project, department 

and other. 

In this thesis, we used the four most populous categories (excluding the category 

other): student, faculty, course and project. A total of 4199 pages, distributed in the following 

way: 

CATEGORY LABELED UNLABELED TOTAL 

Course 93 837 930 

Department 18 164 182 

Faculty 112 1012 1124 

Student 164 1477 1641 

Table 5-2 Number of labeled and unlabeled documents used in experiments for 4 

categories of Web-Kb dataset. 
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5.2 Ontologies 

The keywords for the ontology vectors for each class were collected mainly from 

Wordnet, Opencyc, among other ontologies, provided by the semantic browser swoogle, 

depending on the class of interest. 

5.3 Performance measures 
 

In order to evaluate and compare the classifiers, we used the most common 

performance measures, which we describe below. The estimators for these measures can be 

defined based on the following contingency table: 

 Label      Label      

Prediction               

Prediction               

Table 5-3 Contingency table for binary classification. 

 

Each cell of the table represents one of the four possible outcomes of a prediction 

     for an example      .  

5.3.1 Error rate and Accuracy 

Error rate is probability that the classification function   predicts the wrong class. 

                 |   

It can be estimated as: 

       
     

           
 



` 

 

 

 

 76 

Accuracy measures the ratio of correct predictions to the total number of cases 

evaluated. 

     
     

           
 

5.3.2 Asymmetric cost 

In text classification problems usually negative examples exceed positive examples. 

For this reason, error rate is not always a good performance measure for text classification. 

Moreover, for many applications, predicting a positive example correctly is more important 

than predicting a negative example correctly. For this reason this measure considers a cost 

weight    for the values in the contingency Table 5-3. 

            
                       

           
 

5.3.3 Recall 

Recall is defined as the probability that a document with label     is classified 

correctly.  It could be estimated as follows: 

            
  

     
 

5.3.4 Precision 

Precision is defined as the probability that a document classified as        is 

classified correctly.  It could be estimated as follows 
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5.3.5 Precision / Recall breakeven point and Fβ-Measure 

 

Precision and recall are combined to give a single measure, to make it easier to 

compare learning algorithms.  

Fβ-Measure is the weighted harmonic mean of precision and recall. It can be 

estimated from the contingency table as:   

           
        

                
 

 

Precision / Recall breakeven point (PRBEP) is the value at which precision and recall 

are equal.   is a parameter. The most commonly used value is    , giving equal weight to 

precision and recall. 

5.4 Design Considerations  
 

Preprocessing 

 

 We created a sparse vector representation of the documents, using normalized term 

frequency.  

 The data sets were preprocessed to remove stop words.  

 Additionally, low-frequency words appearing in less than 0:2% of the documents, were 

eliminated. 

Implementation 

 

 Our algorithms are suited to use a sparse vector representation of documents. 

 

Evaluation 
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 Accuracy, Precision and Recall are used as evaluation measure. 

5.5 Implementation  
 

5.5.1 Sparse Representation 

Let d the number of documents in the collection D and |V| the total number of 

different words (i.e the vocabulary lenght ). In order to store the document vectors, we should 

need a matrix of order O( d |V|). 

    However, most documents contain a small subset of the dictionary's words. In the 

case of text classification, a text corpus might have thousands of word types. Each individual 

document, however, has only a few hundred unique tokens. So, in the numerical vectors, 

almost all of the entries for that document will be zero. Rather than store all the zeros, it is 

better to represent the matrix as a set of sparse vectors, where a row is represented by a list of 

pairs, one element of the pair being a column number and the other element being the 

corresponding nonzero feature value. By not storing the zeros, savings in memory can be 

immense. Processing programs can be adapted to handle this format. 

 In this thesis, we store a sparse representation of the vectors. They are stored in text 

files with the form: 

label ont_label w1:weight1 w2: :weight2  wk: :weightk 

Each line in the text document corresponds to an document vector. Label contains the 

document label for labeled documents and 0 for unlabeled documents, ont_label contains the 

label obtained from the ontologies. 
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Then we have a sequence of pairs word id : weight. Weight is the value that 

corresponds to the word for the current document. This weight could be gotten following any 

of the weighting schemes sawn in section 2.2.5. 

Let m be the non zero weight values of the entire collection. With this representation, 

the storage growth is in the order of O(dm) which is more efficient than storing all the matrix, 

since in this sparse context we have that dm <<d |V|. 

We also use a sparse representation of the ontologies in the same way that the 

representation used for the document vectors. 

For binary classification, let p and n be the number of words extracted from 

ontologies for the positive class and the negative class respectively, the vectors for the 

ontologies are of the form: 

+1 w1, w2, ..., wp 

-1  v1, v2, ..., vn 

They could also include a weight: 

+1 w1:weight1, w2;weight2, ..., wp:weightp 

-1  v1:weight1, v2;weight2, ..., vn:weightn  

 

where weighti indicates a importance measure of a word wi corresponding to a class. 

 

5.5.2 Implementation of the ontology label calculation 

 

We use ordered list of words in order to make the algorithm efficient. In the 

preprocessing step, we keep the same order in words for the ontologies than we used for the 
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document vectors. In a similar way than the merge part of the merge sort algorithm, we pass 

through the ordered lists once. 

 

5.5.3 Implementation of the TSVM using ontologies 

 

We make use of a very efficient implementation of the SVM algorithm called 

SVM
light 

(Joachims, 1999) in order to benefit from the great characteristics that make this 

algorithm computationally efficient. 

The algorithm is implemented using C programming language and it has great 

optimizations such as the use of working sets, shrinking of variables and caching Kernel 

evaluations. The technique of caching the Kernel evaluations consists in keeping in a buffer 

the calculations for the most frequent support vectors. 

5.6 Experimental results  
 

The experiments evaluate the quality and efficiency of the algorithm. The number of 

documents used, and the splitting of each dataset is described in section 5.1. 

For Twenty newsgroups dataset, the experiments are shown in Table 5-4, for selected 

10 categories. Each category consists of 2000 examples from which 10 percent are labeled 

documents. In this table we can see an improvement with respect to the TSVM in the 

accuracy for three categories. The highest improvement is reached for category 

soc.religion.christian.  Table 5-5 shows the values of precision and recall for the same dataset. In 
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this table we note that precision improves in all cases in which accuracy has been improved by the 

use of ontologies. 

We also note that in two cases there has been a little lost in accuracy by the use of 

ontologies. We conjecture that the reason is that the selected ontologies might not agree with 

the manual labeling.  

CATEGORY TSVM TSVM+ONT  GAIN 

alt.atheism 81.25 88.12 6.87 

comp.graphics 93.67 94.3 0.63 

misc.forsale 89.38 94.38 5 

rec.autos 77.36 76.1 -1.26 

rec.motorcycles 74.68 74.68 0 

sci.electronics 66.88 66.88 0 

sci.med 75.32 74.68 -0.64 

soc.religion.christian 73.58 94.34 20.76 

talk.politics.guns 97.45 97.45 0 

rec.sport.baseball 86.16 86.16 0 

Table 5-4 Accuracy of TSVM y TSVM + ontologies for ten categories of Twenty 

Newsgroups. 

 

 

CATEGORY TSVM TSVM+ONT 

alt.atheism 71.15%/100.00% 80.90%/97.30% 

comp.graphics 88.51%/100.00% 89.53%/100.00% 

misc.forsale 82.61%/98.70% 91.46%/97.40% 

rec.autos 96.30%/60.47% 96.15%/58.14% 

rec.motorcycles 96.08%/56.32% 96.08%/56.32% 

sci.electronics 90.91%/44.94% 90.91%/44.94% 

sci.med 91.07%/60.00%  90.91%/58.82% 

soc.religion.christian 62.73%/98.57% 89.61%/98.57% 

talk.politics.guns 96.25%/98.72% 96.25%/98.72% 

rec.sport.baseball 100.00%/73.81% 100.00%/73.81% 

Table 5-5 Precision and Recall of TSVM y TSVM + ontologies for ten categories 

of Twenty Newsgroups. 
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For Web-Kb dataset, the experiments are shown in Table 5-6, for the four categories 

that are commonly used by researchers (Nigam et al., 1998), (Joachims, 2001). We use all the 

available documents for each category. Ten percent of the documents were labeled and the 

rest was selected as unlabeled documents. In Table 5-6 we can see an improvement in the 

accuracy for three categories. Table 5-7 shows the precision and recall measures for Web-Kb 

dataset. This table shows an increment in precision even in the category in which ontologies 

do not report an improvement in comparison with TSVM. 

CATEGORY TSVM TSV+ONT GAIN 

Course 96.5 96.84 0.34 

Department 93.48 94.6 1.12 

Faculty 85.29 84.8 -0.49 

Student 83.94 84.34 0.4 

 

Table 5-6 Accuracy of TSVM y TSVM + ontologies for 4 categories of Web-Kb 

dataset. 

 

CATEGORY TSVM TSV+ONT 

Course 97.05%/98.77% 97.70%/98.50% 

Department 74.85%/88.65% 81.63%/85.11 

Faculty 90.22%/73.13% 90.96%/71.09% 

Student 86.20%/86.79% 87.66%/85.65% 

 

Table 5-7 Precision and Recall of TSVM y TSVM + ontologies for 4 categories of 

Web-Kb dataset. 

 

The third set of experiments corresponds to Reuters dataset, and are shown in Table 

5-8. We selected a sample for the ten most populated categories. In this table we can see an 

improvement in the accuracy in nine of the ten selected categories. There is no lost reported 

in any of the categories. Table 5-9 shows the corresponding precision and recall measures for 

this experiment. We note again an increment in precision for all categories. With this dataset 
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it was easier to find related ontologies since categories are well defined. This might be the 

reason why ontologies were beneficial in nine categories and had no effect in just one 

category. 

 

CATEGORY TSVM TSV+ONT GAIN 

Accounts/earnings 96.30 96.45 0.15 

Equity markets 92.5 93.7 1.20 

Mergers/acquisitions 96.2 96.4 0.20 

Sports 96.46 96.46 0.00 

Domestic politics 83.4 83.9 0.50 

War, civil war 94.06 95.98 1.92 

Crime, law enforcement 92.7 95.14 2.44 

Labour issues 85.5 87.15 1.65 

Metals trading 96.20 97.48 1.28 

Monetary/economic 85.2 89.7 4.50 

Table 5-8 Accuracy of TSVM y TSVM + ontologies for 10 categories of Reuters 

dataset. 

 

 

CATEGORY TSVM TSV+ONT 

Accounts/earnings 96.30%/96.30% 97.16%/95.70% 

Equity markets 92.50%/92.50% 93.71%/92.20% 

Mergers/acquisitions 96.20%/96.20% 97.74%/95.00% 

Sports 100.00%/94.06% 100.00%/94.06% 

Domestic politics 83.40%/83.40% 85.61%/81.50% 

War, civil war 89.11%/99.96% 92.37%/99.95% 

Crime, law 
enforcement 89.20%/99.99% 92.54%/100.00% 

Labour issues 85.50%/85.50% 86.88%/88.10% 

Metals trading 96.20%/96.20% 99.96%/92.09% 

Monetary/economic 85.20%/85.20% 95.21%/81.80% 

 

Table 5-9 Precision and Recall of TSVM y TSVM + ontologies for 10 categories 

of Reuters dataset. 

 



` 

 

 

 

 84 

 

5.6.1 Influence of the ontologies 

Figure 5-1 shows the effect of using ontologies for class soc.religion.christian of Twenty 

Newsgroups dataset. For a total of 2000 documents, we vary the size of the labeled documents. 

 

Figure 5-1 Accuracy of TSVM and TSVM using ontologies for one class of 20 

Newsgroups for 2000 documments varying the amount of labeled documents. 

 

In this particular case, the use of ontologies was equivalent to using about twenty 

percent more of labeled data (400 labeled documents). 

5.6.2 Time efficiency  

 

In Table 5-10 , we present the training times in cpu-seconds for both TSVM and 

TSVM + ontologies for different datasets sizes. We conduct our experiments in a Dell 

Precision Workstation 650 with Intel Xeon dual processor, 2.80GHz.  It has a 533MHz front 

side bus, a 512K cache and 4GB SDRAM memory at 266MHz. 



` 

 

 

 

 85 

We note that there is no significant overhead of the use of the ontologies. 

LABELED UNLABELED TOTAL TSV(s) TSV+ONT (s) 

10 100 110 0.05 0.04 

50 500 550 0.09 0.07 

100 1000 1100 0.14 0.15 

200 2000 2200 7.37 7.19 

500 5000 5500 315.48 471.85 

1000 10000 11000 1162.63 1121.65 

 

Table 5-10 Training time in seconds for different dataset sizes. 

 

Figure 5-2, shows the variation of the training time in cpu-seconds, in logarithmic 

scale, with respect to the number of documents for the two algorithms. As we can note, there 

is no substantial difference between them. In some cases, TSVM + ontologies performs 

better.  This could be due the reduction in the number of iterations when we use ontologies as 

shown in Table 5-11. 

   

Figure 5-2 Training time of TSVM and TSVM using ontologies for different 

documents sizes. 
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LABELED UNLABELED TOTAL TSV(s) TSV+ONT (s) 

10 100 110 0.05 0.04 

50 500 550 0.09 0.07 

100 1000 1100 0.14 0.15 

200 2000 2200 7.37 7.19 

500 5000 5500 315.48 471.85 

1000 10000 11000 1162.63 1121.65 

 

Table 5-11 Number of iterations for different dataset sizes. 
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6 CONCLUSIONS AND FUTURE WORK 
 

In this thesis, we studied and implemented the use of ontologies to help the semi-

supervised document classification task. We compared the performance of these algorithms 

in three benchmark data sets: 20 Newsgroups, Reuters and WebKb.  

Our experiments improve the accuracy of TSVM in many cases. For twenty 

newsgroups datasets, we obtain the best results having an improvement up to 20 percent. 

We note that precision improves in all cases in which accuracy has been improved by the use 

of ontologies. Furthermore, we improve precision in almost all cases even in the categories in 

which ontologies do not report an improvement in comparison with TSVM. 

We have shown that the influence of ontologies in some cases reached up to 20 

percent of data which in our particular experiment it was equivalent to using about 400 

labeled documents. 

 We also evaluate the time performance. Experimental evaluations show that the 

running time of the learning TSVM algorithm is not significantly affected by the use of the 

ontologies in most cases. 

We show that we can benefit from domain knowledge, where experts create 

ontologies in order to guide the direction of the semi-supervised learning algorithm. We also 

have suggested a way to determine if the available ontologies will benefit the semi 

supervised process. In that way, if it is not, one can always select other ontologies. 
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Ontologies represent a new source of reliable and structured information that can be 

used at different levels in the process of classifying documents, and this concept can be 

extended to the use of ontologies in other areas. 

Among future work that can be done based on this thesis are: 

1. Include other kinds of ontologies in the process of semi-supervised learning. For example, 

consider first-order logic constraints ontologies in order to incorporate the constraints to 

the algorithms. 

2. Identify the kernels that are well suited for document classification. 

3. Design learning algorithms that work efficiently for multiclass settings, and make use of 

ontologies.  

4. For multiclass settings, develop a parallel algorithm in which any slave make a binary 

classification. 
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7 ETHICAL CONSIDERATIONS 
 

 

It is essential that fundamental ethical principles be applied in the design and 

implementation of scientific research. The principles of research ethics have grown out of 

abuses in the past. Since its formalization by the declaration of Helsinki in 1974, which 

current version can be found at (WMA, 2008), in the medical field, there has been a lot of 

progress. It has been proposed moral principles and practices adequate to every research area. 

There is common agreement in the scientific community in principles about proper scientific 

work, scientific integrity, and knowledge production practices that we will obey in this 

research. 

In the following, we will examine some specific ethical issues related to the main 

subject of our research. 

7.1 Ethics in Data Mining 
 

Data Mining techniques allow considerable access to data. In (Fule et al., 2004) is 

stated that "The process of generating rules through a mining operation becomes an ethical 

issue when the results are used in decision making processes that effect people, or when 

mining customer data unwittingly compromises the privacy of those customers". 

In data mining research, there are a substantial number of databases that could be 

considered ethically sensitive, for example in the case of medical research. The problem for 

data mining researchers is that investigations using knowledge discovery tools are commonly 
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open ended – it is not possible to know what will be found until it is discovered. Moreover, 

many useful investigations require the use of real data. 

7.2 Ethics when working with documents and online information 
 

There is a growing concern regarding the use of sensitive information stored 

electronic text documents. For example, Olson (Olson, 2008) took under consideration the 

ethical aspects of web mining blogs. They note that not only the privacy but, there are other 

issues, for example, price discrimination. "After identifying price sensitivity by group 

through data mining, the seller may offer special prices to specific customer groups" (Olson, 

2008).  

A main ethical concern is in the medical area, since the patient information must be 

keep confidential. Suominen et. al. (Suominen et al., 2006) discuss the ethical considerations 

when using text mining with nursing documentation. The principal concern is to keep 

confidentiality of patients while using text mining tools. 
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