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ABSTRACT 
 

Knowledge Discovery in Databases (KDD) is the nontrivial extraction of implicit, previously 

unknown and potentially useful information from data. Data preprocessing is a step of the KDD 

process that reduces the complexity of the data and offers better conditions to subsequent 

analysis. Rough sets theory, where sets are approximated using elementary sets, is another 

approach for developing methods for the KDD process.  

In this doctoral Thesis, we propose new algorithms based on Rough sets theory for three data 

preprocessing steps: Discretization, feature selection, and instance selection. In Discretization, 

continuous features are transformed into new categorical features. This is required for some 

KDD algorithms working  strictly with categorical features. In Feature selection, the new subset 

of features leads to a new dataset of  lower  dimension,  where it is easier to perform a KDD task. 

When a dataset is very large, an instance selection process is required to decrease the 

computational complexity of the KDD process.  In addition to that, we combine a partitioning 

clustering algorithm with the Rough sets approach obtaining comparable results to a hierarchical 

clustering algorithm used along with rough sets. 

The new methods proposed in this thesis have been tested on datasets taken from the Machine 

Learning Database Repository at the University of California at Irvine. 
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RESUMEN  
 

 

Descubrimiento del conocimiento en bases de datos (KDD por sus siglas en inglés)   trata de la 

extracción no trivial de conocimiento implícito y de información muy útil previamente 

desconocida, que se obtiene a partir  de los datos.  El preprocesamiento de datos es un paso 

dentro del proceso de KDD, que reduce la complejidad del conjunto de datos  y ofrece mejores 

condiciones para análisis posteriores. La teoría de “Rough sets”, en donde conjuntos son 

aproximados por conjuntos elementales. es otra manera de desarrollar los métodos para el 

proceso KDD.   

En esta tesis doctoral  se proponen nuevos algoritmos basados en teoría de  “Rough sets” para 

tres etapas del preprocesamiento de datos: discretización, selección de variables y selección de 

casos. En discretización, las variables continuas son transformadas en nuevas variables 

categóricas. Este proceso es necesario en muchas tareas de KDD, dado que algunos algoritmos 

están diseñados para trabajar sólo con datos de  tipo categórico. En selección de variables, las 

variables seleccionadas darán origen a un conjunto de datos de menor dimensión, en donde se 

ejecutarán las tareas de KDD más fácilmente. Cuando el tamaño del conjunto de datos es muy 

grande, se requiere un proceso de selección de instancias para reducir la complejidad 

computacional del proceso KDD. En esta tesis, se seleccionan los mejores casos de un conjunto 

de datos desde una perspectiva de la teoría de “Rough sets”. Adicionalmente, combinamos un 

algoritmo de conglomerados usando particionamiento con la teoría “Rough sets” y obtenemos 

resultados comparables a los obtenidos usando un conglomerado jerárquico junto con “Rough 

sets”.  Los nuevos métodos propuestos en esta tesis han sido probados  utilizando conjuntos de 

datos tomados del “Machine Learning Database Repository”  disponible en la Universidad de 

California en Irvine. 
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CHAPTER 1 

INTRODUCTION 

 
Rough sets theory was introduced  by Z. Pawlak  in 1982 [65] as a mathematical tool for data 

analysis. Since then it has been used to handle uncertain knowledge in Artificial Intelligence 

applications. Rough sets theory has many applications in the field of Knowledge Discovery 

in Databases (KDD) among them discretization [13, 15, 51, 76], feature selection [13, 17, 32], 

instance selection [14, 21,35, 54, 71], and clustering [49,50,83]. 

 

The vagueness and uncertainty of information can be seen as a property of sets imprecisely 

specified. Uncertainty can be attributed to set elements through the usage of the rough 

membership function, in a similar manner  as the fuzzy membership function.  

Fuzzy methods and Rough set methods are macroscopic, descriptive and numerical methods, 

but  Fuzzy methods are  deductive whereas Rough sets methods are inductive [ 60, 67]. 

 

Discretization is a data preprocessing task applied to datasets containing continuous features. 

This process is done   prior to the application of several KDD methods.  Discretization  is an 

interactive process, and it is implemented based on the partitioning of the values of the 

continuous attributes. The dimension of a dataset can be reduced by eliminating irrelevant 

(dispensable) features. Rough sets can be used to find subsets of relevant (indispensable) 

features [18, 63]. 

 

Other application of rough sets is instance (case) selection.  Equivalence relations can be 

found among several instances  of the dataset and  some of them  can be selected to form a  
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new subset to be  used in future analyses. Thus, instance selection involves extracting 

elementary blocks from the dataset based on an equivalence relation. 

 

In this thesis, we have conducted research on the application of rough sets theory in several 

Knowledge Discovery tasks. Thus, two feature selection  methods based on Rough sets are 

proposed. The first one uses only the class label information to create the indiscernibility 

relation. Therefore it can be considered  as a filter feature selection method. The second one 

is a hybrid method where a classifier needs to be used. We have developed an efficient 

discretization method using rough sets. An algorithm for instance selection, where a random 

sampling is performed on the positive region,  has also been constructed. Finally, we have 

implemented a clustering method using the discernibility matrix as a similarity matrix.   All 

the methods developed in this thesis have been applied to datasets coming from the Machine 

learning databases repository available at the University of California at Irvine (UCI). 

 

Bioinformatics is an interesting area where many knowledge discovery tasks can be applied, 

among them, supervised and unsupervised classification (clustering). All methods developed 

using Rough sets theory may be applied to analyze gene expression data coming  from 

microarray experiments[63]. These datasets have a very  large number of features. In this 

thesis, a gene expression microarray data was used to illustrate concepts of Rough sets theory. 

 

Fig 1.1, shows the steps of the KDD process. All the work done in this thesis, except  

clustering,   is related to the data preprocessing step. Clustering is a data mining task. 
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1.1. Classifiers  

A classifier is a decision rule constructed using the available data, called the training sample, 

and its goal is to assign classes to instances of a new dataset, called the test sample. The 

features (variables) of the dataset are used to design the classifier. Examples of classifiers 

are: linear discriminant analysis (LDA), k-nearest neighbors (KNN) classifiers, kernel 

density classifiers, decision trees, logistic regression classifiers, neural networks, support 

vector machine, etc.  

 

 

Figure 1.1. The KDD process. 

 

The proportion of future instances assigned to incorrect classes for the classifier is called the 

misclassification error rate. This error can be estimated using the training and test data sets. 

K- fold cross validation is the most common method used to estimate the misclassification 

error rate. A combination of multiple classifiers, called an ensemble, is sometimes used to 

improve the performance of a single classifier. Bagging and Boosting are examples of 

ensembles.   

Data 

preprocesing 

Data Mining 

 and evaluation 
Pattern Evaluation 

Data Target  
Data Preprocessed 

 data 

Patterns 
Knowledge 

Data preprocessing 
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A brief description of the classifiers to be used in this thesis is given below:  

The Linear discriminant analysis (LDA) classifier. It is a commonly used parametric 

classification method that assumes  multivariate normality for the features in each of the 

classes,   and equal covariance matrices of the features between the classes. This method 

maximizes the ratio of the between-class variance to the within-class variance in any 

particular dataset, thereby guaranteeing maximum separability. LDA tries to draw a decision 

region between the classes of the dataset using the rule: assign the instance x to the class j, 

which has the closest mean to x.  

The k-nearest neighbors (KNN) classifier. This is a non-linear and nonparametric classifier. 

The KNN classifier finds for each instance of the dataset, the k-nearest instances using a 

distance measure, and its classification is decided by majority vote, with ties broken at 

random. If there are ties for the k-th nearest neighbor, all candidates are included in the vote. 

 

1.2 Objectives of the thesis. 

In this research we have accomplished the following objectives: 

1.  Develop an efficient discretization method using Rough sets theory. 

2.  Find efficient feature selection algorithms based on Rough sets in a supervised 

classification context. 

3. Build a new algorithm for choosing the best instances of a dataset in order to carry out 

Knowledge Discovery in an efficient way. 

4. Implement a partitioning clustering algorithm based on Rough sets theory. 

 

The algorithms for discretization, feature selection, and case selection based on rough sets 

are used along with the LDA and KNN  classifiers to evaluate their effect on the 

misclassification error.   

Rough set analysis methodology in KDD tasks can be applied only to datasets containing 

features with nominal values. Therefore, data discretization is required for datasets 
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containing features with continuous values. We compare our proposed discretization methods 

based on Rough sets theory with other existing discretization techniques such as: Chi-Merge, 

Entropy, Equal width binning, and 1R. 
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1.3 Thesis structure  

The structure of this thesis is as follows: 

 

Chapter 1: It contains an introduction to the work done in our thesis. A brief description of 

the classifiers used in the thesis is given. Finally the thesis’ objectives are detailed.  

Chapter 2: This chapter describes some basic concepts related to Rough sets theory. 

Definitions involving Rough sets are detailed, and illustrated with examples. Some graphics 

are used to illustrate the concepts in a friendly way. Finally,  Rough sets concepts are applied 

to two real data sets, and the results are analyzed. 

Chapter 3: We describe how Rough sets theory can be used to select the cut points in the 

discretization process. Some KDD algorithms are designed only for non-continuous features, 

but there are many datasets containing different types of features: binary, nominal, ordinal, 

and continuous. Therefore, we are interested in the discretization process of continuous 

features. First, we use the Scott’s criterion to determine the upper bound for the number of 

intervals defined by the cut points, and then we find the optimal cut points using our 

proposed algorithm.  

Chapter 4: It contains a description of the feature selection problem. Filter and wrapper 

feature selection algorithms most commonly used are explained briefly. Two algorithms 

using Rough sets criteria are proposed and some results on real data sets are shown. Finally, 

the results are discussed and conclusions are given. 

Chapter 5:  The instance selection problem in the KDD process is described.  We use Rough 

sets criteria to carry out this task, and an algorithm for this purpose is implemented and 

applied to real datasets.  

Chapter 6:  It includes a description of the clustering problem. Rough sets theory is used to  

build a partitioning  clustering algorithm based on the robust PAM algorithm. The clusters 

formed are evaluated using some external measures. A comparison of these measures with 

those obtained from hierarchical clustering based on Rough sets is carried out. This chapter 

closes with a discussion of the   experimental results.  
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Chapter 7: This chapter contains ethical aspects related to KDD methods and Rough sets 

theory.  Some problems for the analysis and interpretation of the results are considered from 

an ethical  point of view. 

Chapter 8: This chapter presents conclusions of the findings obtained in this thesis.   

Chapter 9: Future work using the concepts of rough sets on KDD methods that may be 

investigated is detailed.  
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CHAPTER 2 

 

ROUGH SETS 

2.1 Introduction 

 Rough sets theory was proposed by Z. Pawlak (1982) [65]. Rough sets makes an 

approximation of sets using a collection of elementary sets. Methodology based on Rough set 

does not require external parameters to analyze data and to draw conclusions from them. It 

offers many opportunities for developing Knowledge Discovery methods using partition 

properties and the discernibility matrix.  

Rough sets theory provides a mathematical tool that can be used to find out all 

possible feature subsets [55, 56, 65, 66]. In the feature selection problem the principal idea is 

to recognize the dispensable and indispensable features, using the discernibility matrix [59, 

66, 93]. The purpose of using Rough sets is to find the Core, that is, the set of all 

indispensable features.  

 

2.2 Rough sets concepts  

In this section, we will define some concepts related to Rough sets theory.   

 

Definition 1. Let U be a non-empty set and let x, y, and z be elements of U.  Consider R such 

that xRy if and only if (x,y) is in R. R is an equivalence relation if it satisfies the following 

proporties: 

 

i) Reflexive Property: (x, x) is in R for all x in U.  

ii) Symmetric Property: if (x, y) is in R, then (y, x) is in R. 

iii) Transitive Property: if (x, y) and (y, z) are in R, then (x, z) is in R. 
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Definition 2. A partition P of U is a family of nonempty subsets of U such that each 

element of U is contained in exactly one element of P. 

i) U
n

i

iUU
1=

=  , 

ii) φ=I ji UU ,  for all ji ≠  

                                         

Fig 2.1. Example of a Partition of a universe set U.  

 

 

Definition 3. The Indiscernibility relation 

Rough sets theory  is based on the Indiscernibility relation. Let ),,,( DCAUT = be a decision 

system data, where U is a non-empty finite set called the universe, A is a set of features, C 

and D are subsets of A, named the conditional and decisional attributes subsets respectively. 

The elements of U are called objects, cases, instances or observations. Attributes are 

interpreted as features, variables or characteristics conditions. Given a feature a, such that:  

aVUa →:  for Aa ∈ , aV  is called the value set of a . 

Let Aa ∈ , AP ⊆ , the indiscernibility relation  IND(P), is defined as follows: 

 

                     :),{()( UUyxPIND ×∈=  for all  ,Pa ∈  )}()( yaxa =   

 

 
U1 

U2 

U3 U4 

U5 

Un 

… 

 U 
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In simple words, two objects are indiscernible if we can not discern between them, because 

they do not differ enough. 

The indiscernibility relation  defines a partition in U. Let  U/IND(P)  denote a family of all 

equivalence classes of the relation IND(P), called elementary sets. Two other equivalence 

classes U/IND(C) and U/IND(D), called conditional and decisional classes respectively, can 

also be defined. 

The decisional attribute D determines the decisional classes 

},...,,{)(/ )(21 DrXXXDINDU =  of the universe U, where })(:{ kxDUxX k =∈=  for 

)(1 Drk ≤≤  is called the k-th decisional class of decision system data T. 

 The equivalence classes of the discernibility relation, which are the minimal blocks of 

the information system, can be used to approximate these concepts, then a set X could be 

approximate using upper and lower approximation..  

 

Definition 4. Lower approximation of a subset 

Let CR ⊆  and UX ⊆ , the R-lower approximation set of X, is the set of all elements of U  

which can be with certainty classified as elements of X.   

 

                              }:/{ XYRUYXR ⊆∈∪=  

According to this definition, we can see that R-Lower approximation is a subset of X,  

thus  XXR ⊆ . 

 
Definition 5. Upper approximation of a subset 

The R-upper approximation set of X is the set of all element of U, that can possibly belong to 

the subset of interest X. 

}:/{ φ≠∩∈∪= XYRUYXR  

Note that X is a subset of the R-upper approximation set, thus XRX ⊆ . 
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Definition 6. Boundary Region.   

It is the collection of elementary sets defined by:  

 XRXRXBN −=)(  

These sets are included in R-Upper but not in R-Lower approximations. 

 

Definition 7. A subset defined through its lower and upper approximations is called a Rough 

set. That is, when the boundary region is a non-empty set  ( XRXR ≠ ). 

 

Definition 8. A subset is called Crisp when its boundary region is empty ( XRXR = ).  

 

Definition 9. Positive region of a subset 

It is the set of all objects from the universe U which can be classified with certainty to classes 

of U/D employing attributes from C. 

XCDPOS
DUX

C
/

)(
∈
∪=  

where XC denotes the lower approximation of the set X with respect to C. 

The positive region of  the  subset X belonging to the partition U/D  is also called the lower 

approximation of the set X. The positive region of a decision attribute with respect to a 

subset C represents approximately the quality of C.  

The union of the positive and the boundary regions constitutes the upper approximation. 

The upper approximation contains all data that can possibly be classified as belonging to the 

set X (see Fig. 2.2). 

 

Definition 10. Negative region of a subset 

The negative region consists of  those  elementary sets that have no predictive power for a  

subset X given a concept  R. They consist of all classes that have no overlap with the concept. 

Thus is, 

XRUXNEG
R

−=  
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Figure 2.2, illustrates the lower and upper approximations and the boundary region 

corresponding to the set X.  

 

 

 

Figure 2.2. Representation of the data partitioning for a subset X. 

 

Definition 11.  The Discernibility  Matrix 

Let U ={x1, x2, x3, … xn} be the universe on a decision table. The Discernibility matrix is 

defined by: )}),()(())()((:{ DdxdxdxaxaCam jijiij ∈≠∧≠∈=  for nji ,...,3,2,1, =  

where, ijm  is the set of all attributes that classify objects xi and xj into different decision 

classes in U / D partition.  
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Definition 12.  Dispensable and Indispensable Features 

Every dataset contains conditional and decision features. Some of these features are 

indispensable which are very important in the analysis [31, 93]. The problem of feature 

selection is searching for  indispensable features and eliminating the dispensable features.  

 

Let Cc ∈ , C is the set of  conditional features. A feature c is dispensable in the information 

dataset T if )(}}{{ DPOS cC− = )(DPOSC ; otherwise feature c is indispensable in T and should 

be considered in the final best subset of feature. The main purpose in the feature selection 

process is to retain all indispensable features that cause the decision system data T to be 

consistent [93]. Thus, if c is an indispensable feature, deleting it from T will cause T to be 

inconsistent. In the other hand, if a feature is dispensable, it could be eliminated from the 

dataset and in this way the dimensionality of the dataset will be reduced [55]. 

 

Definition 13. Reduct  

A system ),,,( DCAUT =  is independent if all c in C are indispensable. A set of features 

CR ⊆  is called the reduct of C if ),,,(' DRAUT =  is independent and                       

)()( DPOSDPOS CR = .  Furthermore, there is not  RT ⊂  such that    

                                               )()( DPOSDPOS CT =  

A Reduct is a minimal set of features that preserves the indiscernibility relation produced by 

a partition of C. There could be several subsets of attributes like R. Similar or indiscernible 

objects may be represented several times on an information table, some of the attributes may 

be superfluous or irrelevant, and they could be removed without loss of classification 

performance.  

Table 2.1 shows  that features a1 and a2  simultaneously classify well the instances into the 

classes of D, therefore {a1 ,a2} is a   Reduct of  },,,{ 4321 aaaaC = .  
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                           Table 2.1. Example of reduct features. 

U D a1 a2 a3 A4 

1 1 3 1 1 2 

2 1 3 1 1 2 

3 1 3 1 1 2 

4 2 2 3 1 1 

5 2 2 3 1 1 

6 2 2 1 2 2 

7 2 1 2 2 3 

8 3 1 1 2 2 

                      

 

Table 2.2 shows features a1 and a3 jointly do not classify well, since an instance with values 

a1=1 and a3=2 may belong to either class 2 or class 3. Therefore,  {a1, a3}  is not a Reduct of 

},,,{ 4321 aaaaC = . 

                       Table 2.2. Example of  features that are not in Reduct. 

U D a1 a2 a3 a4 

1 1 3 1 1 2 

2 1 3 1 1 2 

3 1 3 1 1 2 

4 2 2 3 1 1 

5 2 2 3 1 1 

6 2 2 1 2 2 

7 2 1 2 2 3 

8 3 1 1 2 2 
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Definition 14. The Core 

The set of all the features indispensable in C is denoted by CORE(C).  The Core is the set of 

all single element entries of the discernibility matrix, that is, 

                           }{:{)( amCaCCORE ij =∈=  for some  }, ji . 

We have               

                             )()( CREDCCORE I=  

where )(CRED is the set of all reducts of C. Thus, the Core is  the intersection of all reducts 

of an information system. The Core does not consider the dispensable features and it can be 

expanded using Reducts. The feature subset obtained is good enough  to make information 

induction.  

Table 2.3 shows that instances 6 and 8 are ambiguous upon removal of a1. Hence a1 should 

be  part of the Core. 

 

                    Table 2.3. Example of  a feature that belong to the Core 

U D a1 a2 a3 a4 

1 1 3 1 1 2 

2 1 3 1 1 2 

3 1 3 1 1 2 

4 2 2 3 1 1 

5 2 2 3 1 1 

6 2 2 1 2 2 

7 2 1 2 2 3 

8 3 1 1 2 2 

                     

                    

Table 2.4 shows that there are no ambiguous observations upon removal of a2, and hence a2 

is not part of the Core.  
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Table 2.4. Example of a feature that does not belong to the Core 

U D a1 a2 a3 a4 

1 1 3 1 1 2 

2 1 3 1 1 2 

3 1 3 1 1 2 

4 2 2 3 1 1 

5 2 2 3 1 1 

6 2 2 1 2 2 

7 2 1 2 2 3 

8 3 1 1 2 2 

                     

 

Example of  a Core: Consider the dataset given in table 2.5, where },...,,{ 721 xxxU = is the 

universe set, },,,{ 4321 aaaaC =  is the conditional features set, and }2,1,0{=D  is the decision 

features set. 

 

Table 2.5.   The Dataset 

 
1a  2a  3a  4a  D 

1x  1 0 2 1 1 

2x  1 0 2 0 1 

3x  1 2 0 0 2 

4x  1 2 2 1 0 

5x  2 1 0 0 2 

6x  2 1 1 0 2 

7x  2 1 2 1 1 
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The corresponding Discernibility matrix is as follows: 

Table 2.6.  The discernibility matrix corresponding to the dataset in table 2.5. 

 
1x  2x  3x  4x  5x  6x  

2x  -      

3x  { 2a , 3a , 4a } { 2a , 3a }     

4x  { 2a } { 2a , 4a } { 3a , 4a }    

5x  { 1a , 2a , 3a , 4a } { 1a , 2a , 3a } - { 1a , 2a , 3a , 4a }   

6x  { 1a , 2a , 3a , 4a } { 1a , 2a , 3a } - { 1a , 2a , 3a , 4a } -  

7x  - - { 1a , 2a , 3a , 4a } { 1a , 2a } { 3a , 4a } { 3a , 4a } 

 

Then, Core(C) = { 2a }. The partition produced by Core is  

U/{ 2a } = {{ 1x , 2x },{ 5x , 6x , 7x },{ 3x , 4x }}, 

and the partition produced by the decision feature d is  

U/{d}={{ 4x },{ 1x , 2x , 7x },{ 3x , 5x , 6x }} 

 

Definition 15.  The Dependency coefficient 

Let  ),,,( DCAUT =  be a decision table. The Dependency Coefficient between the 

conditional attribute C, and  the decision attribute D  is given by 

 

)(

)),((
),(

Ucard

DCPOScard
DC =γ  

 

where, card indicates cardinality of a set. The dependency coefficient varies between 0 and 1, 

since it expresses the proportion of the objects correctly classified with respect to the total, 

considering the conditional features set.  If γ=1, D depend totally on C, if 0<γ<1, the D 

depends partially on C, and if  γ=0, then D does not depend on C. A decisional attribute 
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depends on the set of conditional features if all values of decisional feature D are uniquely 

determined by values of conditional attributes. i.e. there exists a dependency between values 

of decisional and conditional features. An algorithm to calculate de Dependency coefficient 

is given below 

 

 
i. Create the partition  of the  Dataset  D without considering the class feature. 
 
ii.  Set Positive equal to zero, where Positive represents the cardinality of the Positive region. 
 
iii. Search for Elementary sets that only belong to a unique class. 
iv. For i=1 to the number of elementary sets 
 
    If card(class(elementarySet[i] )) =1 then  
 
          P = Card(elementarySet[i]) 
 
          Positive = positive + P 
   
iv. Finally calculate dependency as follows: 
 

                                     
)(

)(

datacard

Positivecard
Dependency =  

Figure 2.3 Algorithm to calculate the dependency. 

In the worst case the  order of  the algorithm is O(n2×p), where n is the number of instances 

and p is the number of attributes. Since the creation of the partition is of order O(n2p) and the 

computation of the positive   is of order O(n) in the worst case.  

Definition 16. Accuracy of  the approximation 

The accuracy of the approximation to the set X from the elementary subsets is measured as 

the ratio of the lower and the upper approximation size. The ratio is equal to 1, if no 

boundary region exists, which indicates a perfect classification. In this case, deterministic 

rules for the data classification can be generated.      
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)(

)(
)(

XUpper

XLower
X =α  

Thus, a set X  with accuracy equal to 1 is crisp. otherwise X is rough. 

 

                                

                               Fig 2.4 : Rough Set illustration considering three classes. 

 

Definition 17. Dependency relation matrix 

Given the information table, we can calculate the Dependency Matrix for each couple of 

feature ia  and ja  according to the class feature. 

 

 

 

)( j

Y

a aPos c

i
 represents the positive region of attribute ja relative to attribute  ia  within the 

class value cy  [63]. 
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2.3  Rule discovery based on Rough sets theory 

 Rule discovery is an important problem since data relationships in the form "if A 

then B"  do not necessarily reflect real rules of the application domain, and other problems 

could arise. Therefore, there is a need to eliminate incorrect rules. 

 Mitra[58] proposed some criteria to evaluate the created rules considering the 

correct classification percentage provided by the rules on a test set. The percentage of 

examples from a test set for which no rules are fired is used as a measurement of the 

uncovered region.  

 The construction of a rule discovery algorithm with estimated error rates of 

classification could be developed by the Rough sets theory [67, 80]. 

 

Example 1 . Given the dataset in Table 2.7 , then some decision rules that can be obtained 

appears in the table aside.  

Table 2.7.  Rules example 

a1 a2 a3 a4 D 

0 0 0 1 0 

0 0 1 3 0 

0 1 0 2 0 

0 1 1 0 1 

1 1 0 2 2 

 

 

2.4  Relationship between Fuzzy sets and Rough sets 

Fuzzy sets introduced by Zadeh in 1965 and Rough sets introduced by Pawlak in 1982 are 

methods that can be viewed as representations of uncertainty regarding set membership. 

Fuzzy sets use the membership function to give a degree of membership. A fuzzy set on a 

classical set X is defined as follows: 

 Rules 

If(a2=0)=>(D=0) 

If(a1=0)&(a4=2)=>(D=0) 

If(a4=0)=>(D=1) 

If(a1=1)=>(D=2) 
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                                  }|))(,{(
~

XxxxA A ∈= µ  

 
)(xAµ  denotes the fuzzy membership function. A subset A is a fuzzy set  when its 

membership in X is not crisp, but it is subject to gradation; formally this is expressed in the 

interval [0,1] by the fuzzy membership function. The membership function )(xAµ quantifies 

the grade of membership of the elements x to the fundamental set X. An element mapping to 

the value 0 means that the member is not  included in the given set, 1 describes a fully 

included member. Values strictly between 0 and 1 characterize the fuzzy members. 

 
 

                                 
                        
                  Figure 2.5. Example of a  fuzzy membership function 
 
Sometimes, a more general definition is used, where the membership function takes on 

values in an arbitrary fixed algebra or structure L. This generalization was first considered by 

Joseph Goguen (1967). 

 

The fuzzy set B, where B={(3,0.3), (4,0.7), (5,1), (6,0.4)} would be enumerated as B={0.3/3, 

0.7/4, 1/5, 0.4/6} using standard fuzzy notation. Note that any value with a membership 

grade of zero does not appear in the expression of the set. The standard notation for finding 

the membership grade of the fuzzy set B at 6 is 4.0)6( =Bµ . 

 
In Rough sets the equivalence classes generate the lower and upper approximations 

for a subset  X. Rough sets theory does not work with crisp sets. A Crisp set has a clear cut 
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point, hence does not reflect uncertainty about membership. For this reason, Crisp sets are 

used to formally characterize a concept. Rough sets are used to approximate sets. The rough 

membership function quantifies the degree or relative overlap between the set X and the 

equivalence class to which the current argument belongs to.  

 

2.5 Exploring results with Rough sets theory 

In this section, we apply the concepts described before to two datasets. The first one is 

coming from Bioinformatics and it contains gene expression data  obtained from microarray 

experiment.  The second one is a medical dataset which is very well known in the  Machine 

Learning community. 

 

Example 1. The Colon dataset  

This well known dataset contains 2000 features (genes) and 62 instances classified in two 

classes: Normal (40 instances) and Tumor (22 instances).  Before applying Rough sets theory 

the dataset is pre-processed. First, feature selection (gene selection) is performed using the 

Recursive Feature elimination method, which is available in the  RFE library of R. After that, 

two discretization methods are applied:  Entropy and Chi-Merge using the dprep library of R 

[2]. Data analysis using Rough  sets theory is applied to the processed Colon dataset to 

calculate  the lower approximation, upper approximation,  and boundary regions. 

 

Table 2.8. Number of partitions generated for the Colon dataset according to the number of 

top genes considered.  

Number of top Genes  Number of partitions 

50 61 

30 51 

20 36 

10 19 

5 15 
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The top five  genes are 792, 1221, 1924, 1893 and 1060. After gene selection, only  the Chi-

Merge discretization  method is used. Finally, the  RSES [8] program is applied on the 

discretized data to obtain a partition with 15 subsets which are shown in Table 2.9.  

 

Table 2.9.  The 15-subset partition of the Colon dataset and its respective representative 

instance 

 a1 a2 a3 a4 a5 Y 

1 2 1 1 1 1 1 

2 1 1 2 1 1 1 

3 1 2 2 1 1 1 

4 2 1 2 1 1 1 

5 2 2 2 1 1 1 

6 1 1 1 1 2 1 

7 1 1 1 1 1 1 

8 1 2 1 1 2 1 

9 1 2 1 1 2 2 

10 1 2 1 1 1 2 

11 1 2 2 1 2 2 

12 1 1 1 1 1 2 

13 2 2 1 1 2 2 

14 1 1 1 1 2 2 

15 2 1 1 1 2 2 

 

Different  colors are used to indicate that there exists  relationships among the rows.  

Table 2.10 shows the instances in each subset of the partition. The representative instances of 

each set of the partition appear  in the last row of each cell, as a 5-uple of values for each 

gene,  for example (2 1 1 1 1). 
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In constructing the partition sets only the  unique cases are considered and the class label 1 is 

not taken in account. Twelve subsets of the partition (see Table 2.11) are obtained. Note that 

some of these contain inconsistent data which can be removed. 

 

Table 2.10.  Members of each of the fifteen partition sets with its respective class label. 

class 1 

1 

2 

6 

8 

16 

21 

22 

2 1 1 1 1 

Class  1 

3 

4 

9 

10 

12 

 

 

1 1 2 1 1 

class 1 

5 

 

 

 

 

 

 

1 2 2 1 1 

class  1 

7 

11 

17 

19 

 

 

 

2 1 2 1 1 

class 1 

13 

 

 

 

 

 

 

2 2 2 1 1 

class 1 

14 

 

 

 

 

 

 

1 1 1 1 2 

class 1 

15 

18 

 

 

 

 

 

1 1 1 1 1 

class 1 

20 

 

 

 

 

 

 

1 2 1 1 2 

class 2 

23      33 

34       36 

38       39 

40       41 

44       46 

47       50 

52       53 

54       55 

58       59 

62 

1 2 1 1 2 

class 2 

24 

57 

 

 

 

 

 

 

 

 

1 2 1 1 1 

class 2 

25 

43 

 

 

 

 

 

 

 

 

1 2 2 1 2 

class 2 

26 

27 

29 

30 

31 

32 

42 

45 

48 

49 

1 1 1 1 1 

class 2 

28 

35 

51 

 

 

 

 

 

 

 

2 2 1 1 2 

class 2 

37 

56 

61 

 

 

 

 

 

 

 

1 1 1 1 2 

class 2 

60 

 

 

 

 

 

 

 

 

 

2 1 1 1 2 

 

 

Rough sets analysis for the Colon dataset  produces: 

Lower(C1) = {1,  2, 3, 4, 5,  6, 7, 8, 9, 10, 11, 12, 13,  16, 17, 19,  21, 22  } 

Upper(C1)= {1,  2, 3, 4, 5,  6, 7, 8, 9, 10, 11, 12, 13,  16, 17, 19,  21, 22, 14 , 15, 18,  20, 23, 

26, 27, 29, 30,  31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49,  50, 52, 53, 54, 

55, 56,  58, 59, 61, 62 } 
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Boundary(C1)={14 , 15, 18,  20, 23, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 

44, 45, 46, 47,  48, 49,  50, 52, 53, 54, 55, 56,  58, 59, 61, 62 } 

 

Table 2.11. Partition sets without considering class label. 

class c2 

1    1 

2    1 

6    1 

8    1 

16   1 

21   1 

22   1 

 

 

 

 

 

2 1 1 1 1 

class c2 

3    1 

4    1 

9    1 

10    1 

12    1 

 

 

 

 

 

 

 

1 1 2 1 1 

class c2 

5    1 

 

 

 

 

 

 

 

 

 

 

 

1 2 2 1 1 

class c2 

7     1 

11    1 

17    1 

19    1 

 

 

 

 

 

 

 

 

2 1 2 1 1 

class c2 

13    1 

 

 

 

 

 

 

 

 

 

 

 

2 2 2 1 1 

class c2 

14    1 

37    2 

56    2 

61    2 

 

 

 

 

 

 

 

 

1 1 1 1 2 

class c2 

15    1 

18    1 

26    2 

27    2 

29    2 

30    2 

31    2 

32    2 

42    2 

45    2 

48    2 

49    2 

1 1 1 1 1 

class c2 

20   1      23   2 

33   2      34   2 

36   2      38   2 

39   2      40   2 

41   2      44   2 

46   2      47   2 

50   2      52   2 

53   2      54   2 

55   2      58   2 

59   2      62   2 

 

 

1 2 1 1 2 

classs c2 

24  2 

57  2 

 

1 2 1 1 1 

class c2 

25  2 

43  2 

 

1 2 2 1 2 

class c2 

28  2 

35  2 

51  2 

2 2 1 1 2 

classs c2 

60  2 

 

 

2 1 1 1 2 

    

 

Lower(C2) ={ 24, 25, 28, 35, 43, 51, 57, 60 } 

Upper(C2) ={ 24, 25, 28, 35, 43, 51, 57, 60, 14 , 15, 18,  20, 23, 26, 27, 29, 30, 31, 32, 33, 34, 

36, 37, 38,  39, 40, 41, 42, 44, 45, 46, 47, 48, 49,  50, 52, 53, 54, 55, 56,  58, 59, 61, 62 } 

 

Dependency degree including  inconsistent instances 

 

γ = (18+8)/62 = 0.4194 
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Dependency degree without inconsistent instances 

 

                             γ = (18+8+10+19)/62 = 0.8871 

γ  is the proportion of objects of data which can be correctly classified with the knowledge 

given by rough sets analysis. 

 

Example 2.  Diabetes dataset  

 

The Diabetes dataset has 768 instances and 8 attributes. Applying  the RSES program[8] to 

the discretized data  gives 28 reduct sets, and produces 21481 rules in the Rule set, many of 

these with only one match. Therefore, it is very convenient to perform a KDD process using 

Rough sets theory.   

 

Discretization using Chi-Merge 

The proportion of positive region is 0.997 

Reduct = {pregnant, glucose, diagnostic, triceps, mass, pdf, age} 

Some of  the  4994 rules are: 

(pregnant=2)&(triceps=2)&(age=1)=>(Class=1[56])  

(mass=2)=>(class=1[48]) 

(pregnant=2)&(glucose=2)&(triceps=2)=>(class=1[40]) 

 

Size of  rule 1 2 3 4 5 6 

Rules  32 722 2355 1632 250 3 

 

Discretization using Entropy 

The proportion of positive region is 0.32 

Reduct={ pregnant, glucose, insulin, mass, pdf, age} 
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Some of the 105 rules 

(insulin=1)&(mass=2)&(pdf=1)&(age=2)=>(class=1 [60], 2 [58]) 

(pregnant=1)&(insulin=1)&(mass=2)&(age=2)=>(class=1[48],2[48]) 

(pregnant=1)&(glucose=1)&(mass=1)=>(class=1[73]) 

 

size of rule 3 4 5 

Rules 19 76 10 

 

The  Chi-Merge dicretization yielded a Positive Region of .997 whereas Entropy based 

discretization method  gave a  Positive Region of .32. According to this, Chi- Merge seems to 

be a better discretization method than the one based on entropy. However, a larger   number 

of rules is obtained  using Chi-Merge, 499, whereas Entropy gives only 105. This is similar 

to the overfitting problem in a linear statistical model.   
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CHAPTER 3 

DISCRETIZATION 

3.1 Introduction 

Discretization is the process for transforming continuous features into qualitative 

features. Firstly, continuous feature values are divided  into subintervals. Then each interval 

is mapped to a discrete symbol (categorical, nominal or symbolic). These discrete symbols 

are used as new values of the original features.  

Rough sets theory is based on decision tables. According to this, we need to discretize 

continuous features of a dataset before applying data mining methods based on  Rough sets. 

There are plenty of discretization methods [13, 16, 53]. Two of the most  commonly used are 

one based on the entropy measure and another one based on the Chi-square statistics. There 

are also other simple methods based on equal width intervals or equal number of instances in 

each interval. Discretization methods using the class label are referred as supervised 

discretization methods [16, 53].  

A real value c, within the range of a continuous feature, that partitions the  interval [a, 

b]  into two subintervals [a, c] and  (c, b], is called a cut point.  A continuous feature with 

many cut points can make the learning process longer, while a very low number of cut points 

may affect the predictive accuracy negatively [53]. After the discretization process, the data 

complexity decreases, since the number of values of continuous feature is reduced. Hence, 

the learning process speeds up by discarding some unnecessary information [76]. A given 

number k could be considered as an upper bound for the number of cut points. In practice, k 

is set to be much less than the number of instances, assuming there is no repetition of 

continuous value for a feature [53]. 
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The number of decision rules is affected by the number of values  of the attributes. If 

many attributes have many values, the number of decision rules increases. Therefore,  the 

number of cut points has to be evaluated carefully in the discretization process [16].  

There are numerous discretization methods available in the literature. They consist of 

the following steps:  

 i) Sort the continuous values of the feature to be discretized. 

 ii) Split or merge intervals of continuous value according to some criterion,  and 

 iii) Stop the discretization if some optimization criterion is optimized.  The Minimun 

Description length (MDLP) is one of the stopping criteria most commonly used in 

discretization methods,  

 

Dougherty et al. [16] classify discretization methods in three dimensions: Supervised versus 

unsupervised, global versus local and static versus dynamic.  

a) Local discretization. 

Local methods use only a subset of instances for the discretization process. It is related to 

dynamic discretization. A single attribute may be discretized into different intervals. But 

local techniques may result in the discovery of more useful cut points. 

b) Global discretization 

Global methods use the whole space of instances for the discretization process. Global 

techniques are more efficient, because only one discretization is used throughout the entire 

data mining process[16]. However, the significance of each feature is not equal for 

preserving the information of the original data. Also redundancy appears in global 

discretization [76].  

Obviously global discretization  is more complex than local discretization. Local  

discretization methods are restricted to single continuous features, while global methods  are 

used when several continuous  features need to  be converted into qualitative features 

simultaneously. 
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c) Dynamic discretization. 

Some classification algorithms have built-in mechanisms to discretize continuous attributes 

(for instance, decision trees: CART, C4.5). The continuous features are discretized during the 

classification process. Thus, these methods take into account the interdependencies between 

features. 

d) Static discretization. 

 The continuous features are discretized prior to the classification task. That is, the features 

are discretized independently of each other. There is not a clear advantage of static 

discretization  over dynamic discretization[16]. 

e) Supervised  discretization 

Supervised methods are only applicable when the data is divided into classes. These methods 

use the class information when selecting discretization cut points. Supervised methods  can 

be further characterized as error-based, entropy-based or statistics-based. Error-based 

methods apply a learner to the transformed data and select the intervals that minimize a error 

measure on the training data. In contrast, entropy-based and statistics-based methods assess, 

respectively, the class entropy or some other statistic regarding the relationship between the 

intervals and the class.  

Many discretization methods, such as equal-width-intervals and equal-frequency-intervals 

methods, do not use the class information during the discretization. These methods are called 

unsupervised methods.   

Shi and Fu [76] proposed a global discretization algorithm based on rough sets.  It 

modifies the criterion in selecting the best cut points of the entropy discretization, and makes 

it a global discretization method by introducing an inconsistency checking based on Rough 

sets theory instead of information gain. This preserves the behavior of the original data and 

overcomes the drawback of local discretization method.  Then, the reduction of cut points is 

performed, which will not change the consistency level and lead to small size learning model.  

Using three evaluation criteria; the total number of intervals，the number of inconsistencies, 

and predictive accuracy, simulation results showed that the proposed global algorithm is 
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superior to the entropy-based discretization method.  Tay and Shen [81] proposed a 

discretization method using the Chi-square statistic along with an inconsistency measure 

based on Rough sets. Experimental results carried out on 11 datasets showed that this method 

does not improve the performance of the Entropy-based discretization over decision tree 

classifiers, but it does improve the performance of  RoughSOM, a clustering algorithm that 

combines the features of  Self organizing maps (SOM) clustering with features of Rough sets 

theory [80].  

According to Shi and Fu [76] there are three important evaluation criteria for a 

discretization method:  

i) The total number of intervals, since a smaller number of cut points gives better 

discretization results. 

ii) The number of inconsistencies caused by discretization should not be much higher than 

the number of inconsistencies of the original data before the discretization. 

iii) The predictive accuracy. The discretization process must not have a major effect in the 

misclassification error rate. 

A good discretization method is obviously one with high performance on each of these  

criteria. 

In this thesis, a discretization method based on Rough sets theory for finding the 

optimal cut points is introduced. We use the dependency measure based on Rough sets to 

evaluate the cut points proposed in each iteration. Considering that some conditional features 

are continuous and others are discrete, we only need to apply the Discretization process to 

continuous conditional features before continuing with further steps of the KDD process. The 

discretization algorithm proposed here uses the class information to find the optimal cut 

points.  

In the next section, we describe the discretization methods used in this thesis. 
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3.2 Discretization methods used in this thesis. 

3.2.1 Equal width intervals 

In this discretization method, the range of the continuous feature is divided into k equal sized 

bins, where k is a user supplied parameter. Each bin must include at least a threshold number 

of instances.  

The main advantage of this method is its simplicity, but it is vulnerable to the presence of 

outliers, since these may affect the range. This discretization process ignores the class 

information. 

If a and b are the lowest and highest values of the continuous attribute, the width of intervals 

will be  

W = (b-a) / k 

The interval boundaries (cut points) are at  

a+W, a+2W, … , a + (k-1)W 

 

There are three ways to determine the k value: 

i) Sturges’ Formula:  

k=log2(n+1) 

where n is the number of observations. 

 

ii) Friedman-Diaconis’ Formula: 

W=2*IQR*n
-1/3 , 

where IQR=Q3-Q1 is the interquartile range. Then, k=(b-a)/W 

 

iii) Scott’s Formula: 

W=3.5 s n-1/3, 

 

where s is the standard deviation. 
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Equal frequency intervals is a related method that divide the range of the continuous feature 

in k-bins  having approximately the same number of instances. 

 

 

3.2.2 One R (1R).  

One R was developed by Holte in 1993. It is a supervised discretization method using 

binning. After sorting the data, the range of the continuous attribute is divided into a number 

of disjoint intervals and the boundaries of those intervals are adjusted based on the class 

labels associated with the values of the feature. Each interval should contain a given 

minimum of instances (6 by default) with the exception of the last one. The adjustment of an 

interval boundary continues until the next value belongs to a different class to the majority 

class in the adjacent interval.  

 

3.2.3 Entropy   

Entropy-based discretization, was proposed by Fayyad and Irani in 1993. It uses the class 

information present in the data. The entropy (or the information content) is calculated on the 

basis of the class label. Thus, this is a supervised discretization method that uses the class 

information entropy of candidate partitions to select the bin boundaries. Intuitively, it finds 

the best split so that the bins are as pure as possible, i.e. the majority of the values in a bin 

correspond to having the same class label. Formally, it is characterized by finding the split 

with the maximal information gain.  

Let S be a set of instances, a feature A, and a  partition boundary T, the class information  

entropy of the partition induced by T, denoted E(A,T;S) is  
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where, ∑−=
k kk ppSEnt )log()( , with pk denoting the proportion of instances belonging to the 

k-th class. Also, |S| denotes cardinality of the set S. For a given feature A, the boundary 

minT which minimizes the entropy function over all possible partition boundaries is selected 

as a binary discretization boundary. Then, this method can be applied recursively to both 

partitions induced by minT until some stopping condition is achieved. In this way, multiple 

intervals for the feature A are created. 

 

Recursive partitioning within a set of values S stops if and only if 

N

STA

N

N
STAGain

);,()1(log
);,( 2 ∆+

−
<  

where, N is the number of instances in the set S, and ∆ is defined as 

 

)]()()([)23(log);,( 22112 SEntkSEntkSkEntSTA k −−−−=∆  

where,  k is the number of class labels represented in the set S, and ik is the number of class 

labels represented in  iS . This is called the Minimum Description Length Principle (MDLP). 

In order to illustrate the method, let us suppose that we have the following (attribute-value, 

class) pairs. Let S denote the 9 pairs given by: S = (0,Y), (4,Y), (12,Y), (16,N), (16,N), 

(18,Y), (24,N), (26,N), (28,N). 

Let p1 = 4/9 be the fraction of pairs with class = Y, and p2 = 5/9 be the fraction of pairs with 

class = N. 

The Entropy (or the information content) for S is defined as: 

Ent(S) = - p1*log2(p1) – p2*log2(p2) . 

 

In this case Entropy(S)=.991076. 

If the entropy is small, then the set is relatively pure. The smallest possible value is 0. 

If the entropy is large, then the set is mixed. The largest possible value is 1, which is obtained 

when p1=p2=.5.  
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The cut points T are chosen from the midpoints of the attributes values. Thus, the first 

cut point must be chosen from the set, {2, 8, 14, 16, 17, 21, 25, 27}.  

For instance if T=14 

S1= (0,Y), (4,Y), (12,Y)    and     S2= (16,N), (16,N), (18,Y), (24,N), (26,N), (28,N) 

E(S,T)=(3/9)*E(S1)+(6/9)*E(S2)=3/9*0+(6/9)* 0.6500224 

E(S,T)=.4333 

Information gain of the split, Gain(S,T) = Entropy(S) - E(S,T).  

Gain=.9910-.4333=.5577 

 

Similarly, for T=21 one obtains 

    Information Gain=.9910-.6121=.2789. Therefore T=14 is a better partition. 

 

3.2.4 Chi-Merge 

The Chi-Merge is a supervised discretization method introduced by Kerber in 1992. The 

basic idea is to merge neighboring intervals if the class information is independent of the 

interval.  Two adjacent intervals should not have similar relative class frequencies, otherwise 

should be merged. 

The algorithm is as follows: 

Input: the original data  

i. Sort the data for the given feature  in ascending order. 

ii. Construct initial intervals so that every value of the feature is in a separate  

interval. 

iii. Compute 2χ  for each pair of adjacent intervals. 2χ  is given by 

 

( )
∑∑

= =

−
=

2

1 1

2

2

i

k

j ij

ijij

E

EA
χ  

 

where:  



 
 
 

 
 

 36 

                    k: the number of the classes.  

                   ijA : number of instances in the i-th interval, j-th class. 

                  NCRE
jiij
/=    Expected frequency of examples in i-th interval, j-th class,. 

                   iR : number of instances in i-th interval = ∑ ijA , j= 1,2,…k. 

                   jC ; number of instances in the j-th class = ∑ ijA , i= 1,2. 

                   N : Total number of instances. 

 
If Eij=0 then set Eij to an small value, for instance 0.1 

 

iv. Merge the pair of adjacent intervals with the lowest χ2 value 

v. Repeat steps iii and iv until no 2χ  of any two adjacent intervals is less than a 

threshold value corresponding to a  2χ  with 1 degree of freedom and a 

significance level α. 

 
The significance level  α has been set to 0.10. Choosing a smaller value of α will generate 

fewer cut points.    

 

The Chi2 algorithm introduced by Liu and Setiono [56] is a modification to the Chi-

Merge method. It automates the discretization process by introducing an inconsistency rate as 

the stopping criterion and it automatically selects the significance value. Furthermore, Chi2 

performs feature selection through discretization. However, the Chi2 algorithm does not 

consider the inaccuracy inherent in Chi-Merge merging criterion. The user-defined 

inconsistency rate also brings about inaccuracy to the discretization process. To overcome 

these two drawbacks, Tay and Shen (2002) proposed a modified Chi2 by using an 

inconsistency based on rough sets theory. 
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3.3 A Discretization method based on Rough sets theory  

The main purpose in the discretization process is to  transform  data containing continuous 

attributes into a more simple data containing attributes with a limited number of values. This 

is done by considering cut points. After the transformation, the new dataset has to maintain 

the discriminating power of a classifier. There are several manners to obtain the cut points in 

a discretization algorithm. One of them is  Equal width intervals. This method takes some cut 

points and gives a value in each interval.  Rough sets theory can be applied to compute a 

dependency measure considering the partitioning generated by these cut points and the 

decisional feature in order to obtain a  better set of cut points. We propose an algorithm to do 

so using the Scott’s formula to obtain an upper bound  for the number of cut points.   Since 

the algorithm depend only of the computation of the dependency measure, then in the worst 

case the  order of  the algorithm is O(n2p), where n is the number of instances and p is the 

number of attributes. The algorithm is given below. 

 
Input: The original dataset with n instances and f features  

For each continuous feature iv (i=1,…,p) 

For j in 2:mi  (mi is nclass.scott( iv )) 

         Calculate the partition considering j equal intervals  

        Evaluate each partition using an association  measure based on Rough sets 

n

dvPoscard
v i

ij

)),((
)( =γ  

   Stopping criteria: select the optimal number of partition pi 
                               )(maxarg

iji
vp γ=   

           End For 

Divide the range of  iv  considering  pi intervals. 

End For 

Output: A new data matrix with discrete values 

 

Fig 3.1. Discretization algorithm based on Rough sets. 
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3.4 Results and Discussion 

Our  discretization algorithm based on rough sets theory is applied to eight datasets  coming 

from the Machine Learning Database Repository available at the University of California at 

Irvine.  A brief description of these datasets is given in the appendix A of the thesis. Some of 

these datasets have only continuous features and others have both continuous and discrete 

feature. The algorithm is applied only to the continuous features. 

Table 3.1: Comparison of the number of cut points per feature using five discretization 

methods. 

Dataset 
Rough 
Method 

Equal width 
Bound Scott 

Entropy 
Method 1R method Chi-Merge 

Iris 6 4 4 4 7 9 6 5  3 3 3 3  3 3 3 3 7 5 4 4  

Glass 
9 14 2 10 12 
15 10 10 7 

13 14 6 11 13 
18 13 11 9 3 2 2 3 1 4 4 2 1 6 9 8 3 9 6 4  6 8 15  7  7  9  8  8  9 5 2  

Diabetes 
5 13 16 8 19 

21 16 6 
14 17 17 17 20 

23 19 14 2 4 1 1 3 2 2 2  
8 6 6 10 14 16 8 

15 5 14 4 9 41 45 80 9  

Heartc* 
(1,4,5,8,10) 8 6 17 6 10  11 12 17 11 11 2 1 1 2 2 5 8 9 2 4 6 6 32 18 8 

Ionosphere 

7 10 2 2 8 2 
6 5 2 8 2 9 2 
2 2 2 2 2 2 2 
2 2 2 2 2 2 2 

2 2 2 2 2 

9 10 8 9 9 8 8 9 
8 9 7 9 7 9 7 9 
7 8 7 8 7 8 7 8 
8 8 7 8 8 8 8 9 

4 5 4 6 3 5 5 4 5 
5 6 4 5 5 6 3 6 3 
5 5 5 3 5 3 3 3 5 

3 5 3 5 5 

3 5 5 5 6 5 5 5 5 
5 7 5 7 6 6 5 7 5 
7 5 7 5 5 5 2 3 6 

6 6 5 5 5 

17 50 23 31 23 24 40 
33 24 32 39 45 35 44 
42 51 41 33 58 34 30 
35 34 28 47 38 37 32 

42 26 51   

Crx * 
(2,3,6,8,14, 
15) 

2 13 2 2 17 
35 

14 14 8 21 30 
48 2 2 3 2 2 2 12 11 15 10 14 9 10 6 6 4 11 7  

Vehicle 

10 2 2 14 23 
20 9 9 3 13 
15 13 9 18 2 

2 2 2  

16 12 13 19 32 
32 13 13 13 14 
17 13 14 28 13 

13 14 11 
5 4 4 3 4 4 5 5 5 
5 4 7 4 3 2 2 5 2 

18 26 16 20 30 
18  20 19 15 21 
24 20 27 28 29 

33 22 22  
6 5 15 11 6 4 9 10 6 6 

13 9 4 5 3 3 5 7 

German* 
(2,5,13) 6 13 2 17 19 15 2 2 1 9 6 5 10  27  2 

 

*In the datasets: Heartc, Crx, and German, discretization has been applied only to the 

features appearing between parentheses because these are continuous. 

The Dependency measure used in the algorithm reflects the relation between each 

conditional feature and the decisional feature. A comparison between the number of intervals 

generated for the continuous features in each dataset applying five different discretization 
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methods, i.e., Rough sets, Equal width intervals,  Entropy method, 1R method, and Chi-

Merge, is shown in the Table 3.1.  We wrote an R function for the first method, the second 

method comes with R, and the last three are available in the Dprep library of R [2].  

In general, the number of cut points generated by the rough set discretization method 

is smaller than the ChiMerge and the Scott’s method, slightly higher than the 1R method, but 

is larger than the Entropy discretization.  

In order to prove the efficiency of the discretization process, we calculate the 

misclassification error of  the LDA classifier applied to the discretized data. The 

misclassification error was estimated by 10-fold cross-validation. The experimentation was 

carried out considering  the Entropy method, the 1R method, the Chi-Merge method, and  the 

Rough  set algorithm. 

Table 3.2 shows the misclassification error rate using the LDA classifier and the discretized 

data using all the methods showed in table 3.1 except by the equal width intervals method.  

 

Table 3.2:  Comparison of the Misclassification Error rate for the LDA classifier using 

discretized  features and without  performing discretization  

Dataset Rough 
Method 

Entropy 
Method 
 1R method ChiMerge 

Without 
discretization 

Iris 0.0833 0.040 0.0333 0.0333 0.0200 

Glass 0.4200 0.3009(5,9) 0.2560 0.3228 0.3803 

Diabetes 0.2305 0.2083(3,4) 0.2385 0.2282 0.2273 

Heartc 0.1616 0.1649(4,5) 0.1481 0.1515 0.1515 

Ionosphere 0.1336 0.1364 0.1373 0.1558 0.1421 

Crx 0.1347 0.1347 0.1356 0.1349 0.1349 

Vehicle 0.3070 0.302 0.3332 0.3990 0.2199 

German 0.2432 0.2351(13) 0.2337 0.2414 0.2422 

 MEAN 0.2142 0.1903 0.1895 0.2084 0.1898 

 

 In four datasets:  Glass, Diabetes, Heartc, and German, the Entropy-based method  

discretized some features only to one value. These features can not be considered in the LDA  

classifer. Actually, these features are irrelevant since they do not present variation, and they 
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are shown in Table 3.2, within parentheses. Therefore, the entropy-based method has this 

advantage with respect to other methods since features without variability must be eliminated 

from the model, reducing in this way the dimensionality of the data. 

Table 3.3 shows misclassification error rate using the KNN classifier and the discretized data 

using all the methods shown in table 3.1 except by the equal width intervals method. Here, 

all the features have been used in the construction of the classifier.  

 

Table 3.3:  Comparison of the Misclassification Error rate for the KNN classifier using 

discretized  features and without  performing discretization  

Dataset 
Rough 
Method 

Entropy 
Method 1R method ChiMerge 

Without 
discretization 

Iris 0.1140 0.053 0.0400 0.0460 0.0340 

Glass 0.5331 0.4434 0.2808 0.4261 0.4733 

Diabetes 0.2520 0.2227 0.2856 0.2908 0.2851 

Heartc 0.2265 0.1898 0.2063 0.2582 0.3397 

Ionosfera 0.1264 0.1678 0.1962 0.2196 0.1552 

Crx 0.1998 0.1770 0.2404 0.2577 0.3068 

Vehicle 0.2685 0.2807 0.3393 0.3065 0.3478 

German 0.2529 0.2727 0.2588 0.2994 0.3465 

 MEAN 0.2466 0.2252 0.2309 0.2630 0.2860 

 

3.5 Conclusions 

Discretization is an important step in the KDD process, since many algorithms have been 

developed only for  features representing categorical data.  

From our experimental results we arrive to the following conclusions: 

i) Our proposed discretization algorithm based on a  Rough sets criteria yields on 

average similar number of cut points than the 1R, but greater than the entropy 

discretization, and smaller than the Equal width and ChiMerge. 

ii) According to the misclassification error rate using the LDA classifier on the 

discretized data, our algorithm gives similar results than Chi-Merge, but it is not  

much better than  either Entropy  or 1R discretization. Also, the LDA classifier 

tends to give higher misclassification error rates using the discretized data instead 
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of the original data.  Our Rough sets discretization methods performs poorly on 

the Glass dataset, perhaps affected  by the large number of classes. Glass has six 

classes.  

iii) According to the misclassification error rate using the KNN classifier on the 

discretized data, our algorithm gives better results than the Chi-Merge method but 

is outperformed by  both the Entropy and the  1R discretization. Also, the KNN 

classifier tends to give lower misclassification error rates using the discretized 

data instead of the original data. 
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CHAPTER 4 

FEATURE SELECTION 

4.1 Introduction  

The dimension reduction of a dataset can be done in two different manners; through feature 

selection considering a subset of the original feature or by feature extraction transforming the 

original features to extract a smaller amount of new features. Figure 4.1 shows the taxonomy 

of dimensionality reduction methods. 

Dimension reduction is needed when the dataset has a large number of features.  

Classification and regression algorithms could present problems in their general behavior if 

redundant and irrelevant features are considered. This is a main reason for many investigators 

to search for different methods to detect these features. In reducing the number of features it 

is expected that the ones that are redundant and irrelevant will be deleted. 

  

 

 

 

 

 

 

 

 

 

 

Fig 4.1. Feature Reduction Approach 
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Lesh et al. [46] adapted data mining techniques to act as a preprocessor to construct a 

set of feature to be used for classification purposes.  

Similarity relations can be used to evaluate a subset of features [73, 77]. Thus, Rough 

sets theory offers a new alternative to select the subset of dispensable features. Furthermore, 

an evaluation function for feature selection based on Rough sets theory has  been proved to 

be monotonic [75]. 

Our principal purpose is to find the minimal attribute subset with respect to class 

attribute D. Intuitively, the feature selection problem could be solved enumerating all the 

candidate subsets and apply the evaluation measure to them. This is called exhaustive search, 

and it is almost infeasible to be done. The number of possible subsets is N2 , so the time 

complexity of searching all of them is )2( NO . Heuristic methods for searching avoid the 

brute-force search, but at the same time take the risk of losing optimal subsets. 

The problem of feature selection consists of the search d features from a given set of  

m (d<m) features,  which will provide a similar o better performance for a classifier based on 

a smaller number of features. In others words, feature selection methods determine an 

appropriate feature subset such that the classification error is optimal [26, 39]. The chosen 

features permit that pattern vectors belonging to different categories occupy compact and 

disjoint regions in an m-dimensional feature space. Figure 4.2  shows the steps of the feature 

selection problem.  

There are two main reasons to keep the dimensionality of the feature space as small 

as possible: cost minimization and classification accuracy [15]. Cost minimization is 

achieved  because after feature selection the classifier’s computation will be faster and use 

less amount of memory [27]. A careful choice of the features is needed since a bad reduction 

may lead to a loss in the discrimination power and thereby a decrease in the accuracy of the 

resulting classifier.  

The feature selection methods depend on the way that the subset is generated and on 

the evaluation function used to evaluate the subset under examination [27, 33]. There are 

three types of procedures for feature subset generation: Complete, heuristic and random [43, 
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68].  The evaluation function may be a consistency measure, a distance measure, an 

information gain measure or the misclassification error. 

 

 

 

Fig 4.2. Feature Selection Problem 

 

Let J be a feature evaluation function. Assume that a higher value of J indicates a 

better feature subset. The function J has the monotonic property if given two features subsets 

X1 and X2, if 21 XX ⊂ , then J(X1)<J(X2`). Thus, the performance of a feature subset should 

improve whenever a feature is added to it. Many evaluation functions do not satisfy this 

monotonic property, one example is the error rate.  

Depending on the generation procedure and the evaluation function [26], the feature 

selection methods could be divided in two types: filter methods and wrapper methods.  A 

brief description of both methods is given in the next section. 
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4.2 Filter Methods 

 
Filter methods do not require the use of a classifier to select the best subset of 

features. Instead these methods use general characteristics of the data to evaluate features. 

Among the most important filter methods are: the RELIEF [40], Las Vegas Filter (LVF) [42] 

and FINCO, a procedure introduced by Acuña [1]. In the first and the third a relevance 

weight is given to each feature in the dataset. This weight is changed iteratively according to 

a feature relevancy’s feature. In the LVF method a relevancy is given to a subset of features. 

Choosing randomly a large number of subsets one expects to obtain a subset with the highest 

relevancy.  All these methods are computationally cheap and preserve only the necessary 

information to perform Knowledge Discovery techniques. 

 

4.3 Wrapper methods 

 
Wrapper methods use the misclassification error rate of a given classifier as the 

evaluation function [40]. In this thesis, two classifiers will be used, linear discriminant 

analysis (LDA), and  the k-nearest neighbor (KNN) classifier,  which were described in 

section 1.1. There are three main approaches to wrapper methods: sequential forward 

selection (SFS), Sequential Backward selection (SBS), and the sequential floating forward 

selection (SFFS).  A brief description of them follows: 

Sequential forward selection (SFS). This method selects the best feature and then 

adds the next best feature, such that in combination with the previously selected features 

maximizes the criterion function. Once that a feature is selected, it cannot be discarded in  a 

later step. It is computationally attractive since in order to select a subset of size two, it 

examines only (m - 1) possible subsets, where m denotes the number of features. 

Sequential Backward Selection (SBS). The principal idea is to see if the classifier 

can maintain its accuracy by removing one feature at a time until there is only one feature or 

until accuracy deteriorates to an intolerable level. This method considers initially all the set 

of variables and then discards the worst feature based on the loss of classification accuracy. 
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Once that a feature is deleted, it can not be taken into account  at a later step. A particular 

case of SBS is  Recursive Feature Elimination (RFE) introduced by Guyon and Elisseff 

[26]. It uses as underlying classifiers the  Support Vector machine (SVM) classifier. At each 

stage the feature with the smallest  squared coefficient in the SVM model is deleted.  RFE 

can be generalized by eliminating more than one feature at each stage.  

Sequential Forward Floating Search (SFFS). This method is a generalization of the 

plus-l and away-r method. First, the feature subset is enlarged by l features using forward 

selection and then  r features are deleted from the new subset using backward selection. In 

SFFS, the values of l and r are determined automatically and updated dynamically. This 

method provides a close to optimal subset with an affordable computational cost [70]. 

 

4.4 Feature selection method based on Rough set theory 

Rough sets have been used as a feature selection methods by many researchers among 

them Jensen and Schen [37, 38],  Zhong et al [93],   Wang [86] and Hu et al. [33]. The Rough 

set approach to feature selection consists in selecting a subset of features which can predict 

the classes as well as the original set of features. The optimal criterion for Rough set feature 

selection is to find shortest or minimal reducts while obtaining high quality classifiers based 

on the selected features. Other criterion can be the number of rules generated by the reducts. 

There are many rough rough sets algorithms for feature selection. The most basic solution for 

finding minimal reducts is to generate all possible reducts and choose any with minimal 

cardinality, which can be done by constructing a kind of discernability function from the 

dataset and simplifying. It has been shown that the problem of minimal reduct generation is 

NP-hard and the problem of generation of all reducts is exponential. Therefore heuristic 

approaches have to be considered[93].  

Hu et al. [33] consider a ranking of the features based on the indiscernability matrix.  

Thus, a weight w(a) is assigned to every attribute a. The weight is initialized to zero, and 

every time one feature appears in an entry of the matrix its relevance increases. The shorter 

the entry of the matrix is, the more relevant the features in such entry might be.  If an entry 
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contains only one feature, then such feature must be considered in the core set. Unfortunately, 

this algorithm has a high complexity since it needs to compute the Discernability matrix. For 

large datasets, the authors used sampling to reduce the computational burden required on the 

computation of the Discernibility matrix. Theirs experimental study include 25 medium size 

datasets and 9 large datasets. Five of  these data sets are considered in this thesis. 

 

Deogun, et al.[15]  developed four feature selection algorithms in the context of 

Rough sets methodology, but instead of using the positive region as significance of the 

attribute set, their algorithm uses upper approximation. The algorithms  uses sequential 

backward feature elimination to reduce the search space.  The authors performed an 

experimental study using thirteen  datasets. Three of them; Iris, Glass and Breastw, are 

considered in the experiments of this thesis. 

Rough sets attribute reduction (RSAR) technique has been applied in supervised  and 

unsupervised classification  [75]. QuickReduct  is   the most well known algorithm for 

feature selection using Rough sets. Its pseudo-code algorithm is shown in Figure 4.3. This is 

an incremental procedure, where in each step a feature is added to the Reduct, in such way 

that dependency measure increases. The procedure stops when the dependency measure of 

the set of features being considered is equal to the dependency measure using all the 

conditional features. However, it has been proved that this method does not always generate 

a minimal reduct since the dependency measure  is not optimal. It does result in a close-to-

minimal reduct, though, which is still useful in greatly reducing dataset dimensionality. 

Adittionally to not being a non-optimal heuristic, the algorithm also does not take in account 

the information lost in the discretization procedure [36]. 
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QuickReduct (C, D) 

Input: C, the set of all feature attributes; D, the set of class attributes. 

 {}←R  

  do 

    RT ←  

    for each )( RCa −∈  

           If ),()},{( DTDaR γγ >∪  

               }{aRT ∪←  

             TR ←  

           Until ),(),( DCDR γγ =  

return R  

Output: R, the attribute reduct, CR ⊆  

Fig 4.3. The Quick Reduct algorithm. 

 

Duntsch and Gediga [17] consider first binary transformation for the information 

system and then apply rough sets theory to extract relevant features. This method is 

considered a data filtering. 

Stepaniuk[77] applied  a wrapper method considering a decision rule discovery 

(classifier) based on rough sets theory.  The procedure was applied on a medical dataset 

related to Diabetes Mellitus containing 12 conditional attributes on 107 patients. 

Zhong  ate al. [93] proposed an algorithm which combine Rough set theory with 

greedy heuristics for feature selection. They applied the algorithm to nine datasets, one of the 

breast cancer is considered in this thesis.    

In this thesis, Rough sets theory is applied to find an optimal subset of features as 

suggested in [55, 77].  We have two proposals. In our first proposal, we find the best features 

by ranking them according to its dependency measure γ . Attributes with largest dependency 

coefficient are selected as members of the best feature subset, which is a sub-optimal subset 

of features. On the other hand, using the positive measure, we could relate simultaneously 
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various conditional attributes with the decisional attribute. Following a forward sequential 

selection method, similarly to the QuickReduct, we could obtain a subset of features with a 

high positive measure in each step.  

 In the second method, we introduce an hybrid method by applying the Sequential 

Forward feature selection algorithm on the ranked features according  to the dependency  

measure based in Rough sets theory. Two classifiers are used the LDA and the KNN 

classifier. 

 

4.5. Feature selection by ranking according to the dependency measure. 

 

A basic filter algorithm to perform feature selection based on rough sets is shown in 

Figure 4.4. This algorithm calculates the dependency between every conditional feature 

considering the decisional feature. After ranking the features by their dependency measure 

only the features with higher dependency values are included in the final subset of best 

features. The order of the algorithm is O(n2
p), ), where n is the number of instances and p is 

the number of attributes. A plot can help to distinguish the most relevant features (see Figure 

4.6 for the Diabetes dataset and Figure 4.7 for the Glass dataset). 

 

Input: Dataset containing C conditional features and a decisional features D.  

Initialize the best subset of features B as the empty set  

For  i  in 1:number of conditional features 

Apply some evaluation measure based on dependency of Rough  sets. 

End for 

b)  Order the features according to dependency measure  

c)  Select only the feature with high dependency measure. 

 
Output: A subset B of best features. 

 

Fig. 4.4. Algorithm for feature selection based on Rough sets. 
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4.6.  An hybrid feature selection method. 

 

This is a sequential forward feature selection method used along with a classifier. We 

start with the feature giving the highest positive measure. The misclassification error 

obtained with this feature is taken as a basis error. In each step, we include the next ranked 

feature that along with the previous one yields the lowest misclassification error for the given 

classifier. The omitted ranked features are not considered in the next steps. The procedure 

stops when either we exhaust the list of ranked features or when the misclassification error 

does not  decrease. The order of this algorithm is O(n2×p) + O(p×O(classifier)).  The 

algorithm is given in Figure 4.5. 

 

 

 

Input: A discretized dataset D with  T ranked conditional features and a 

decisional  feature  D, a classifier L. 

           Initialization: Let B=T1, the first feature in T.  

Let ME (B)=ME(T1)=misclassification error of the first feature in T.  

For i in 2:card(T) 

        a) Compute ME(BU{Ti}) the misclassification error of BU{Ti} . 

        b) If ME(BU{Ti}) < ME(B). Then B=BU{Ti},  

       and  ME(B)=ME(BU{Ti}). 

  Output: B, the best subset of features  

 

Fig 4.5. An hybrid feature selection algorithm. 
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4.7 Results and Discussion  

The next table contains the subset of features selected using a rough set criteria, after 

considering previously four different types of  discretization : Rough Set method,  1R method, 

Equal width interval, and Chi-Merge.   

 

Fig 4.6 Dependency for each feature on Diabetes dataset. 

 

Fig 4.7. Dependency for each feature on Glass dataset. 
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Table 4.1. Subsets of features selected using Rough sets criterion with four discretization 
methods, and features selected by two wrapper methods. 
 

Dataset 
Rough 
Method 1R method Equal width ChiMerge 

SFS - 
LDA 

SFS - 
KNN 

Glass 8 4 7 1 2 6 8 9 3 7 8 4 7 1 2 8 4 7  4 3 8 9 2 8 4 3 
Bupa 4  1 5  3  6  6 1 2 3   4 5 3 6 1 2 5 4 3 3 4 5 6  1 3 5 
Heartc 1  5  8 10  4  5 1 10   5  8  4 10 1 5  8  4 1 10   3 9 12 13 2 12 13 

Ionosphere 
3  1  5  7  8 
12  2 10  

3  1 19  7 
16  6 12  4 

14 28   
3  1  8  5  7 
12  2 10  

27  3 31  4  1  6 
21 25 19 13 11 
29 7 15 26 23 
22 8 9 2 12 5 

16  3 6 19 1 3 4 14 
Diabetes 6 2 7 5    6 8 7 6 2 7 7 6 5 4 8 2 6 7  2 6 7 

Vehicle 

8 12  7  9 
11  6 10  1  
5 13 14 8 7 12   

12  7  8  9 11  
6 14  

7 12 11  8  9 13  
3   

1 3 4 5 6 
8 10 11 
17 18 

2 5 6 8 9 
10 

 
The entropy-based discretization method was not included because very often yields a 

gross discretization. This means that a continuous variable is discretized into a categorical 

variable with few different values.  Sometimes, even a continuous variable  is discretized to 

one integer value. This means that this variable is not a relevant feature.  For instance, for 

these datasets: Bupa, Glass and Diabetes, the entropy discretization yields irrelevant features. 

 

The first four columns of  Table 4.2 contain the misclassification error rate for LDA 

considering only the selected features using the rough set criterion with four discretization 

methods, the fifth column contains the misclassification error using the well known SFS 

wrapper feature selection method and the last column contains the misclassification error for  

the classifier without performing  feature selection.  Table 4.3 is similar to table 4.2 but using 

the KNN classifier instead of the LDA. 
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Table 4.2 : Comparison of misclassification error rate for the LDA classifier  with feature 
selection after four discretization methods, wrapper feature selection,  and without feature 
selection  
 

Dataset 
Rough 
Method 1R method Equal width 

Chi-
Merge SFS No Feat Sel. 

Glass 0.4112 0.4588 0.3995 0.4327 0.3789 0.3808 
Bupa 0.3176 0.4475 0.3173 0.3286 0.3257 0.3182 
Heartc 0.2777        0.3097 0.2767 0.2804 0.1569 0.1663 

Ionosphere 0.1723 0.1658 0.1720 0.1586 0.1831 0.1433 

Diabetes 0.2294 0.3083 0.2300 0.3105 0.2295 0.2273 

Vehicle 0.2925 0.5855 0.4085 0.3858 0.2426 0.2202 

MEAN 0.2835 0.3793 0.3007 0.3161 0.2528 0.2427 
 
 
Table 4.3 : Comparison of misclassification error rate for the KNN classifier  with feature 
selection after four discretization methods, wrapper feature selection,  and without feature 
selection  

 

Dataset 
Rough 
Method 1R method Equal width 

Chi-
Merge SFS 

No Feat 
Sel. 

Glass 0.4963 0.4878 0.4859 0.5313 0.4827 0.4813 

Bupa 0.3521 0.4657 0.3579 0.3562 0.3455 0.3402 

Heartc 0.3569 0.4414 0.3558 0.3609 0.1831 0.3474 

Ionosphere 0.1301 0.1390 0.1324 0.1384 0.0806 0.1547 

Diabetes 0.2845        0.3380 0.2722 0.3208 0.2714 0.2859 

Vehicle 0.3823 0.4601 0.4111 0.4248 0.2971 0.3503 

MEAN 0.3337 0.3887 0.3359 0.3554 0.2767 0.3266 
 
 
Table 4.4 shows the features selected by the hybrid method using three discretization 

methods and the LDA classifier and Table 4.5 shows the features selected by the hybrid 

method using three discretization methods and the KNN classifier. The 1R discretization 

method was not considered in these tables due to its poor performance on the feature ranking 

procedure.  
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Table 4.4. Subsets of features selected using the hybrid method based on rough sets with  
three different discretization methods, and  features selected by the SFS  wrapper method 
along with the LDA classifier. 
 

Dataset 
Rough 
Method Equal width Chi-Merge SFS - LDA 

Glass 8 4 7 2 8 4 7 2 8 4 7  4 3 8 9 2 
Bupa 4 1 3 6  4 3  6 2 5 3 3 4 5 6  
Heartc 1   8 10  4  5  8  4 10  5  8  4  1 10 3 9 12 13 

Ionosphere         3           3 
 27  3 31  4  6 21 
25 19 13 11 16 3 6 19 

Diabetes 6 2 7       6 2 7 7 6 4 8 2 6 7  

Vehicle 
8 12  6 10  
1  5 13 14 

12  7  8  9 11  
6 14 7 12 11  9 13  3 

1 3 4 5 6 8 10 
11 17 18 

 
 
 
Table 4.5. Subsets of features selected using the hybrid method based on rough sets with  
three different discretization methods and  feature selected by the SFS  wrapper method 
along with the KNN classifier. 
 

Dataset 
Rough 
Method Equal width Chi-Merge SFS - KNN 

Glass 8 4 1 8 4 7 2 8 4 7 8 4 3 
Bupa 4 1 4 5 3 6 2        1 3 5 
Heartc        1 8 5 8 1 5  8  1 10    2 12 13 

Ionosphere     3 1 5 8 2   3  1  8  7 27  3  4  1 25 26 1 3 4 14 

 Diabetes        6 2      6   2  7           7  6  8 2 6 7 

Vehicle 
8 12  7  6  1  

5 14 
12  7  8  9 11  

6 14 7 12  8  9  3 2 5 6 8 9 10 
 
 
The first three columns of  Table 4.6 contain the misclassification error rate for LDA 

considering only the selected features using the hybrid method based on Rough sets  with 

three different discretization methods, the fourth column contains the misclassification error 

using the well known SFS wrapper feature selection method and the last column contains the 

misclassification error for  the LDA classifier without performing  feature selection.  Table 

4.7 is similar to table 4.6 but using the KNN classifier instead of the LDA. 
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Table 4.6. Misclassification error rate for the LDA classifier after feature selection using the 
hybrid method 
 

Dataset 
Rough 
Method 

Equal width    
intervals 

Chi-
Merge SFS 

Without 
Sel. 

Glass 0.3999 0.3869 0.3822 0.3920 0.3780 
Bupa 0.3553 0.3489 0.4188 0.3257 0.3182 
Heartc 0.2606 0.2757 0.2814 0.1569 0.1663 

Ionosphere 0.1715 0.1715 0.1418 0.1831 0.1433 
Diabetes 0.2287 0.2299 0.3053 0.2295 0.2273 

Vehicle 0.3069 0.4074 0.4260 0.2426 0.2202 

 MEAN 0.2872 0.3034 0.3259 0.2550 0.2422 
 
 
 
 
Table 4.7. Misclassification error rate for the KNN classifier after feature selection using the 
hybrid method 
 

 
Rough 
Method 

Equal width 
intervals 

Chi-
Merge SFS 

Without 
Sel. 

Glass 0.5242       0.4906 0.5219 0.4827 0.4808 

Bupa 0.4046       0.3388      0.4130 0.3371 0.3324 

Heartc 0.3107 0.3619     0.3552 0.1851       0.3575 

Ionosphere 0.1054 0.0757 0.0843 0.0780      0.1544 

Diabetes 0.2723 0.2692 0.3382      0.2752 0.2848 

Vehicle 0.3566 0.4133 0.3846 0.2978 0.3490 

MEAN 0.3290         0.3249 0.3495 0.2760 0.3265 
 
 
Comparing our results with those from the Deogun et al’s study [15], we have in common 

only the Glass datasets. Theirs algorithm selects two feature whereas our algorithms selects 

between two and six  features. However the accuracy of the classifiers used is much better 

considering  the selected features for our algorithms.  
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4.6 Conclusion 

 
Our experimental results show that feature selection using Rough sets theory is a good option 

for data preprocessing. Misclassification  error rates for two classifiers, LDA and KNN, 

constructed considering only the selected features by rough sets based  methods along with 

several discretization  methods gives the best  results when rough discretization is used. For 

the LDA classifier, the misclassification error using features selected with the hybrid  method 

are higher than using the selected features by the wrapper method and without performing 

feature selection. The same result holds when the KNN classifier is used. However, the 

misclassification error rate after feature selection is lower than when all the features are used. 
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CHAPTER 5 

 INSTANCE SELECTION 

5.1 Introduction 

An instance or case is a collection of values taken from an observation considering all 

the features (conditional and  decisional). It is also named a t-uple, sample or data point.  

Some of the instances in a dataset appear more than once or could be very similar to others, 

then these could be eliminated since they are redundant. The elimination of similar instances 

tackle down the redundancy problem. The instance selection problem reduces the training 

data by searching for the optimal instances and reaching high accuracy of  Knowledge 

Discovery  on the unseen data (see Fig. 5.1). Instance selection has the purpose of selecting 

high quality cases, eliminating noisy data, and  inconsistent data. This will produce a 

reduction of the storage requirement and  a speed-up of the computation of   posterior KDD 

tasks  [71]. 

 There are various strategies for drawing a representative subset of samples from a 

dataset. The size of a suitable subset is determined by taking into account the cost of 

computation, memory requirement, accuracy of the estimator, and other characteristics of the 

algorithm and dataset.  In general, a subset size is determined in such way  that the estimates 

for the entire data set do not differ by more than a stated error margin in more than δ of the 

samples (Kantardzic, 2003) [40]. It is considered that a KDD task can be executed efficiently 

using the chosen subset of the original data set.   

 Liu (2002) [54] considers the following reasons to carry out  instance selection: 

a) Enabling: every data mining algorithm is somehow limited by its capability in handling 

data in terms of sizes, types, and formats. When a data set is too large, it may not be possible 
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to run a data mining algorithm. A data mining task cannot be effectively carried out without 

data reduction.  

b) Focusing: the data includes almost everything in a domain. Instance selection is a natural 

and sensible way to focus on the relevant part of the data. 

c) Cleaning: most datasets present inconsistency and missing values that may affect the KDD 

process. Doing instance selection we can remove them. 

 

Figure 5.1. Case reduction in KDD. 

 

Yu et al. (2002) [91]  proposed  four instance selection algorithms to select training instances 

for memory-based collaborative filtering, a data mining used to make personalized 

recommendations. These algorithms reduce the time complexity, and the prediction 

performed over the reduced training set is more efficient than current methods [91].    

Cano et al. (2003) [9] classify  instance selection methods in four groups: a) methods based 

on Nearest Neighbors, b) methods based on ordered removal, c) methods based on  

evolutionary algorithms, and d) methods based on Random sampling [9].  

 Case  
reduction  
algorithm 

Large size 
data  

 Small Size 
data  

 Patterns  

Not easy or  
Intractable 
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Wilson and Martinez [87] propose three algorithms, called Integrated Decremental Instance-

Based Learning, where they select bad instances for exclusion rather than select good 

instances for inclusion. In an experimental study, Jankowski and  Grochowski [35] compare 

eighteen instance selection methods on six datasets. They conclude that using prototypes, that 

represent of subset of several instances, is the most effective instance selection algorithm. 

This is very similar to a clustering algorithm. 

Instead of using  simple random sampling, some property coming  from Rough sets 

theory could be applied to select a good subset of instances, which  can be used to posterior  

KDD tasks. This property  is related to the equivalence relation making elementary sets. The 

negative region concept of  Rough sets theory is a good criterion to determine the low quality 

cases and these can be eliminated in a first step.  

  In this thesis, the equivalence relation helps to obtain elementary subsets. Then, we 

select a representative sample, drawing randomly a 100p% instances from the positive region. 

The value of p is chosen to be 0.6, but it could be a higher value. 

    

5.2 Instance selection using Rough sets 

Each group of instances has an instance as a representative of elementary blocks. 

Then, extracting a subset of instances is related to finding out weights for each elementary 

sets produced by Rough sets theory.  The extraction of some interesting instances from the 

positive region could help to the posterior analysis of a large dataset, since it decreases its 

computational complexity. Thus, the computation time of executing some KDD tasks is also 

reduced since a smaller dataset is used instead of the original one. 

 Some instances in the dataset are inconsistent, because they might have all their 

feature values similar to other instances, but lie in a different class.  These instances must be 

considered very carefully. Elementary sets formed using the set C of conditional features 

help to identify the weight class where there should be inconsistent instances. 

Some criteria to eliminate instances are redundancy and incompleteness [54]. When 

we use the Rough sets theory, some of the instances are inconsistent with others. If each 
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elementary set contains similar observations considering every conditional feature, then some 

elementary set could contain observation from different decisional classes. These elementary 

sets are part of the Boundary Region. Then, the Negative region is a good criterion to find 

out  the low quality cases and they can be eliminated in a first step of the preprocessing 

process.  

Salamó and Golobardes (2001) [71] propose two algorithms based on Rough sets 

theory to reduce the data in case based reasoning (CBR) systems, where solutions to similar 

problems are stored as cases in a case memory. These methods are; Accuracy Rough sets 

Case Memory (AccurCM) and Class Rough sets Case Memory (ClassCM). Both techniques 

use the information of reducts and core to extract the relevant cases. Empirical results on 

twelve datasets show that both reduction techniques produce an improvement in the 

misclassification error rate compared with other instance selection methods. However, the 

percentage of reduction of instances is low. 

  Geng and Hamilton (2002) [20] propose the ESRS algorithm, based on extended 

similarity-based Rough sets theory, which selects a reasonable number of instances while 

maintaining good classification accuracy. Empirical results on nine datasets indicate that the 

misclassification error rates using the reduced dataset are better than the ones obtained with 

reduced datasets using other techniques. However the algorithm requires two user-specified 

parameters, the consistency and similarity thresholds. 

 

5.3  A new algorithm for instance selection using Rough Sets theory 

 

It is clear that a good sampling scheme will reduce the computational complexity of   

a data mining algorithm. Our proposed instance selection algorithm combines Rough sets 

theory with a random sampling   of instances as it is considered by Cano et al. [9]. 

First, we discard the inconsistent data that usually lie in the Boundary region. After that, we 

select a random sample of instances from the positive region.  
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. The order of the algorithm is O(n2×p), ), where n is the number of instances and p is the 

number of attributes. 

The algorithm is presented in Fig. 5.2. These instances are consistent and could be used in a 

future learning algorithm of KDD. 

 
Input: The original dataset and the percentage 100p% to be sampled from the positive region. 
The dataset may contain some continuous conditional feature. 
 

i. Discretize continuous features of the dataset. 
 
ii. Calculate the elementary sets (make partition according to conditional and     
    decisional features). 
 
iii. Calculate the positive region to eliminate the inconsistent cases. 
 
iv. Select 100p% instances from the positive region and save their labels in  
     a list L. 
 
v. Extract specific cases from the original dataset according to list L. 
 

Output: The set of cases to be selected.  
 
 

Figure 5.2. Algorithm for case selection using Rough sets. 

 

Sampling the dataset randomly can be improved by using a structured algorithm, Rough sets 

criteria applied for this purpose can be effective for avoiding  the inconsistent instances. 

After the case selection process, two classifiers, LDA and KNN are applied on the new 

dataset. The datasets used in this chapter are the ones used in previous chapters.  
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5.4 Results and Discussion 
 
 The experiments were carried out on 10 datasets. First, the dataset was discretized following 

two approaches: a) our proposed  Rough sets method, and b) Entropy method. Then, the case 

selection algorithm was applied.  

To prove the goodness of this algorithm we selected 70 percent of the data as training sample, 

and 30 perent as test sample. The misclassification error was calculated using the test sample; 

this process was repeated ten times. Finally, the average misclassification error on ten 

random samples (test samples) representing a  30% of the original sample was considered. 

The data were discretized using two methods; the rough discretization and entropy-based 

dsicretization. To evaluate the effect of the algorithm, the misclassification error before and 

after  instance selection considering the KNN classifier on the discretized data was computed. 

The results are presented in table 5.1. 

 

Table 5.1: Misclassification error rate for the KNN classifier before and after case selection. 

Rough Disc. Ent. Disc. 
 

Before After before After 

Iris 0.0333 0.0488 0.0377 0.0533 

Sonar 0.2419 0.3096 0.2129 0.3290 

Heartc 0.1505 0.1573 0.1662 0.1978 

Ionosphere 0.1542 0.1514 0.1638 0.1676 
Crx  0.3107 0.3364 0.3159 0.3333 
Breastw 0.0372 0.0362  0.0303  0.0490 
Diabetes 0.2782  0.2886 0.2726 0.2908 

Vehicle 0.3494 0.3762 0.3613 0.4221 

Glass 0.3781 0.4093 0.3656 0.5593 

MEAN 0.2148 0.2348  0.2140 0.2669 
 

When rough discretization is used there is not much change on the misclassification error rate after 

the instance selection process. The greater change occurs for the sonar dataset. However, when 

entropy based discretization is used , there is a significant change  on the misclassification 

error rate. In particular, for sonar, vehicle and glass datasets. 
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Table 5.2 is similar to Table 5.1, but using the LDA classifier. The behavior of this classifier 

after instance selection is more stable compared to the KNN classifier. Once again, 

performing instance selection after Rough discretization gives better results than doing so 

after entropy-based discretization. 

 

Table 5.2: Misclassification error rate for the LDA classifier before and after case selection. 

 

Dataset  
Rough 
Before 

Rough 
After 

Ent. 
Before 

    Ent.  
   After 

Iris 0.0266 0.0311 0.0311 0.0266 

Sonar 0.3193 0.3354 0.2645 0.3967 

Heartc 0.1506 0.1528 0.1820 0.2022 

Ionosphere 0.1657 0.1647 0.1580 0.1638 

Crx  0.1497 0.1517 0.1292 0.1312 

Diabetes 0.2295 0.2360 0.2321 0.2447 

Vehicle 0.2260 0.2347 0.2185 0.2351 
Glass 0.3781 0.4421 0.4156 0.4796 

MEAN 0.2056 0.2185 0.2038 0.2350 
 

Geng and Hamilton (2002) [20] carried out  an experimental study similar to ours, but they 

used decision trees and neural networks classifiers.  Four or our datasets; Iris, Breastw, Glass, 

and Diabetes, appear in Geng and Hamilton’s study.  Regarding the misclassification error, 

our results are comparable to theirs, except for Glass, where our result is not good.  With 

respect to the percentage of reduction of instances, we have pre-determined to select only a 

60% of the positive region. Therefore, the  data reduction process leave us with about  60% 

of the original data, whereas using the Geng and Hamilton’s methodology the new dataset is 

only 21% of the original data.  
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Six of the datasets used in this thesis: Iris, Breastw, Glass, Sonar, Ionosphere, and Vehicle 

appear also in the Salamó and Golabardes. Comparing our results with them, we get similar 

results regarding the percentages of instances selected. Theirs proposed technique called 

AccurCM selects about 54% of cases. With respect to the misclassification error, for Iris, and 

Vehicle, we get better results than them, but for Sonar and Glass our results are not good 

compared to them. 

The next two tables show the misclassification error before and after feature selection but 

performing first feature selection with the two algorithms described in Chapter 4. Only our 

proposed discretization method based on Rough sets is used. 

 

Table 5.3: Misclassification error rate after ranking feature selection for the KNN and LDA 

classifier before and after case selection considering Rough Set method discretization.  

 

Dataset 
KNN 
before 

KNN 
after 

LDA 
before 

LDA 
after 

Iris  0.0400 0.0400 0.0178 0.0311 

Heartc 0.3404 0.3516 0.2876 0.2808 

Bupa  0.3669 0.3689 0.2970 0.3708 

Ionosfera 0.1447 0.1676 0.1752 0.1771 
Diabetes 0.2834 0.2817 0.2304 0.2321 

Vehicle 0.3684 0.4008 0.2135 0.2269 

Glass 0.3406 0.4265 0.4125 0.4750 

MEAN 0.2699 0.2916 0.2366 0.2575 
 

For both classifiers the effect on the misclassification  error rate after instance selection 

performing first  feature selection based on ranking is quite similar.  
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Table 5.4. Misclassification error rate after the hybrid feature selection method for the KNN 

and LDA classifier before and after case selection considering Rough Set method 

discretization.  

 

 
KNN 
before 

KNN  
after 

LDA 
before 

LDA 
after 

Heartc 0.3213 0.3483 0.2505 0.2662 

Bupa  0.3970 0.4349 0.3417 0.3650 

Ionosfera 0.1295 0.1295 0.1676 0.1752 
Diabetes 0.2852 0.3600 0.2539 0.2574 

Vehicle 0.3683 0.4003 0.2308 0.2490 

Glass 0.3281 0.5625 0.3906 0.4968 

MEAN 0.3049 0.3726 0.2725 0.3016 
 

The KNN classifier seems to be more  affected than the LDA classifier after performing the 

hybrid  feature selection followed by  instance selection. 

 

 

5.5 Conclusions 
 

For the LDA classifier,  the  misclassification error rate after instance selection based on 

rough sets increases more for entropy discretization than for Rough sets discretization.  

Similarly, for the KNN classifier, the misclassification error rate after instance selection 

based on rough sets increases more for entropy discretization than for Rough sets 

discretization. 

The performance of the KNN classifier deteriorates more than the LDA classifier after 

instance selection based on rough sets.   

Performing first feature selection followed by instance selection deteriorates  the 

classifier accuracy.  In particular, when the hybrid  feature selection method is used. 
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CHAPTER 6 

UNSUPERVISED LEARNING BASED ON ROUGH  

SETS 

6.1 Introduction 

A clustering algorithm forms groups trying to minimize the distance of objects 

belonging to the same group while maximizing the distance of these objects to objects 

belonging to other groups. Thus, clustering, also known as unsupervised learning, can be 

considered as an optimization problem.  

There are two major types of clustering algorithms: Partitioning and hierarchical 

algorithms. The principal difference between them relies in the initial step. Hierarchical 

methods generate a succession of clusters. This structure is represented using trees. There are 

two approaches for hierarchical clustering algorithms: agglomerative and divisive. 

Agglomerative hierarchical algorithms begin considering each element as a cluster.  At  each 

step,  the number of clusters is reduced by combining them. These algorithms are considered 

bottom-up. Divisive hierarchical clustering methods begin by considering that all the objects 

of the dataset belong to only one cluster. In each step, clusters are divided into two new 

clusters, increasing in this way the number of clusters. These algorithms are considered top-

down. In this thesis, we have used a hierarchical agglomerative and a partitioning clustering 

algorithms. In particular, we have used the function  hclust of the R library stats to perform 

hierarchical agglomerative clustering. The function agnes from the library cluster also 

performs hierarchical clustering, and the Partitioning Around Medoids (PAM). 
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Partitioning methods assume beforehand a given number k of clusters. Then, each 

observation is assigned iteratively to each cluster until a stopping criterion (i.e. the sum of 

squares within the clusters) is satisfied. The most frequently used partitioning clustering 

algorithm are: K-means, Partitioning around medoids (PAM), Self organizing maps (SOM) 

and clustering based on mixture models.  In this thesis, we have use the PAM clustering 

algorithm. 

Unsupervised classification or clustering describes the subdivision of the universal set 

of all possible categories into a number of distinguishable categories. Clustering methods use 

a similarity measure [12].  

 

6.2 Rough sets based clustering algorithms 

Vinterbo and Ohm (1997) were the first authors to introduce a metric based on rough 

sets  in order to perform clustering [83]. Lingras (2002) combined Rough sets theory along 

with Genetic Algorithms to perform clustering in web mining [48]. A comparison of classical 

clustering algorithms with k-means based on rough sets appears in Lingras et al. [49]. An 

application to market research of a clustering  algorithm combining Kohonen networks with 

Rough sets is detailed in Lingras et al. [51]. More rough sets clustering methodologies and 

applications can be found in [52].  A rough set-based Hierarchical clustering algorithm for 

categorical data has been recently proposed by  Chen at al [10]. Their algorithm was applied 

to three datasets containing only discrete attributes. 

In generating the description of the main characteristics of each cluster, the lower 

approximation of a rough set contains objects that only belong to that cluster, and the upper 

approximation contains objects that may belong to more than one cluster [49,50,52]. 

In this thesis, an existent clustering algorithm is modified by applying it on 

representative of elementary sets obtained using Rough set theory. In the proposed algorithm, 

the clustering process is initialized by considering that the dataset is previously discretized. 

Then a partition { nEEE ,...,, 21 } of elementary sets from the discretized data formed 

according to conditional features is obtained. Then, a distance matrix is defined using  the 
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distances between every pair of representative  of the elementary sets obtained using Rough 

sets, finally a cluster algorithm is applying using this Distance matrix. 

6.3 Dissimilarity measures 

Dissimilarity Measures are used to find dissimilar pair of objects among X. Let i  and j  be 

two observations described by m  attributes. Then, the dissimilarity coefficient, d(i,j), is small 

when objects i and j are alike, otherwise, d(i,j) would be large. A dissimilarity measure needs 

to satisfy the following conditions: 

• 0),( ≥jid  

• 0),( =iid  

• ),(),( ijdjid =  

• ),(),(),( jkdkidjid +≤  

 

Most of the clustering algorithms use dissimilarity measures to join, or to separate, objects.  

Examples of dissimilarity measures: 

Euclidean Distance  

The Euclidean Distance between point ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  is given by:  

∑
=

−=
n
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ii yxyxd
1

2)(),(  

 

Manhattan Distance 

The Manhattan Distance between points ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  is given 

by :  

∑
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Chebychev distance 
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The Chebychev distance between points ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  is given 

by :  
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Minkowski Distance 

The Minkowski distance between points ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  is given 

by :  

pm

i

p

iip yxyxD

1

1

||),( 






 −= ∑
=

 

This distance includes the Manhattan distance when p=1, the Euclidean distance when p=2 

and the Chebyschev distance when p=∞. 

 

Canberra Distance 

The Canberra distance between points ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  is given by :  

∑
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When the ix  and  iy  are both zero, then the i-th term is considered as 0.  

 
Distance measure between instances containing only discrete atributes 

Let ∑
=

=
m
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jj babad
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),( bad  indicates the number of distinct components of the vectors a and  b. This is called the 

Hamming distance. Let x and y two vectors of the same dimension and with values on  

Ω={0,1,2,……..k-1}, then the Hamming  distance among them is defined as the the number 

of different entries between the two vectors.  For instance, if   x=(0,1,3,2,1,0,1) and 

y=(1,1,2,2,3,0,2) then DH(x,y)=4. For binary features, the Hamming distance is the same as 

the  Euclidean and Manhattan distances. 

Other more general measure is given by 

)(
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6.4 Similarity Measures 

Similarity measures are used to find similar pairs of object among X. Given two 

observations, i and j , two different rows of the data matrix. Let ),( jis  be a similarity 

coefficient. If objects i and j are alike, then s(i, j) becomes larger. Otherwise,  s(i, j) becomes 

smaller. For all objects i and j, a similarity measure needs to satisfy the following conditions: 

 

• 1),(0 ≤≤ jis  

• 1),( =iis  

• ),(),( ijsjis =  

The correlation coefficient is the most well known similarity measure between two instances 

containing only continuous attributes. 

There are plenty of similarity measures for instances containing only nominal attributes, such 

as the Jaccard-Tanimoto neasure, 

  

6.4.1 Dissimilarity matrix.  

Given an information data set (U,A,C,D), we can obtain a matrix containing the dissimilarity 

between the observations. This is called the Similarity Matrix.  
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Dissim(U, C,D) = nnji aaDis ×)],([  

 

This matrix contains the dissimilarity between two different rows from a matrix that 

contains representative objects from every element set. Since all elements in an elementary 

set from a partition are similar to each other, it is not necessary to calculate the distance 

between all the elements. That is, the clustering process groups  elementary sets, making the 

problem less complex than the original one. 

In this thesis, we use a distance matrix, containing the distances among the representative of 

the elementary sets, as a dissimilarity matrix for the PAM clustering algorithm.  

 

6.5 The  PAM (Partitioning Around Medoids ) algorithm 

  PAM is a partitioning clustering method introduced by Kauffman and Rousseeuw 

[41]. This algorithm is based on the finding of k representative objects called medoids. The 

best partition will be the one minimizing the average dissimilarity of objects to their closest 

representative object.   

The PAM algorithm is divided in two phases: Build and Swap. The first phase 

consists in choosing k representative objects, and the second phase is an attempt to improve 

the set of  representative objects that was selected in the first phase. 

 In this thesis, we combine the PAM Algorithm with a Rough set criteria to manage 

inconsistent data.  We are proposing to build the clusters using only the representative from 

each equivalence class. 

 

6.6  A Rough sets-based Clustering Algorithm 

The Rough Cluster algorithm (see Fig. 6.1) considers an information system as input. 

According to the set of conditional features, a partition process is done. Then, some 

observations are extracted as representative objects for each elementary set. Using these 

objects, a distance matrix is formed to carry out the PAM algorithm, making this process 
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computationally cheap.  We  have used the Manhattan and Hamming distances because  they 

are more suitable for discrete value attributes. The output of the algorithm is the cluster 

membership of all the objects. 

 

 
Input: An information system (U,A,C) 

 
i.   Consider only the  set of  conditional features C to make the partition { nEEE ,...,, 21 }.    

     Thus, the elementary sets are formed. 
 
ii.  Select an observation from every elementary set.    
 
iii. Form a matrix D according to some distance measure  D(i,j) is either the Manhattan 

distance from  i-th elementary set to j-th elementary set or  the  Hamming distance. 
 
iv. Carry out  the PAM  algorithm using the matrix D. 
 
v.  Finally the formed cluster are clustering of many elementary sets. 
 
vi. Each instance is assigned to a cluster where its representative belongs to. 
 
vii. An external evaluation criterion is used after the clustering process. 
 

Output: List of cluster membership. 
 
Figure 6.1 The Rough sets-based cluster algorithm 

 

Since the time  complexity of the partition is O(n2×p) in the worst case, and the PAM’s 

computation is O(p(n-p)2) , then  Rough sets-based cluster algorithm has complexity of order 

O(n2×p). 

  

6.7 External Criteria Measures. 

External validation measures are used  to compare a clustering structure C produced by a 

clustering algorithm, with a partition P of  the data set X drawn independently from the 



 
 
 

 
 

 73 

clustering structure C. These measures give the degree of agreement between a 

predetermined partition P and the proximity matrix (Distance matrix)  of X . 

In the sequel, we will define some parameters that appear in the cluster validation measures 

to be used in this thesis. 

a : the number of pairs of vectors in X that belong to the same cluster in C and to the same 

group in partition P. 

 b: is the number of pairs of vector in X that belong to the same cluster in C and to different 

groups in P.  

c: the number of pairs of vectors that belong to different clusters in C and to the same group 

in P and , 

d: the number of the pairs that belong to different clusters in C and to different groups in P. 

The  external validation measures most commonly used are the following: 

 

6.7.1 Rand Index 

This index measures the fraction of the total number of pairs that are either in the same 

cluster and in the same partition, or in different cluster and in different partitions. 

M

da
R

+=  

where: dcbaM +++= . 

The value of this index lies between 0 and 1. Values close to 1 indicate high agreement 

between  the generated  clusters and  the assumed partition. 

 

6.7.2 Jaccard Coeficient  

This measure calculates the proportion  of pairs that are in the same cluster and in the same 

partition with respect to those that are either in the same cluster or in the same partition.  

The Jaccard Coefficient is defined by: 

cba

a
J

++
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This index ranges between 0 and 1. High values indicate high agreement between the 

generated clusters and the assumed partition. 

 

 

 

6.7.3 Fowlkes and Mallow Index (FM) 

This index is the geometrical mean of two probabilities: the probability that two random 

objects are in the same cluster given they are in the same group, and the probability that two 

random objects are in the same group given that they are in the same cluster. 

The FM index is defined by: 
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Once again a index value close to 1 indicates a  high agreement between  generated clusters 

and the assumed partition. 

 

6.7.4 Hubert’s Statistic 

This index measures the correlation between the matrices, X and Y, of equal dimension, 

drawn independently of each other, where X(i,j) is equal to 1 if the pair of vector (xi, xj) 

belong to the same group in the partition C, and 0 otherwise. Y(i,j) is defined similarly but 

using the partition P instead of C. The statistic is defined by  

  

))())(()()((

))((ˆ
caMbaMcaba

cabaMa

+−+−++
++−=Γ  

This index lies between -1 and 1. Values near to 1 indicate high agreement between the 

generated  clusters  and the assumed partition. 

 

6.8 Results and Discussion 
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The data used to prove the Rough set approach to construct the cluster are the same that are 

those used in other chapters on this thesis. In order to apply the proposed clustering algorithm, 

we have not considered the column containing the classes. However, for cluster validation, 

the class column has been considered as the ideal cluster membership for each observation.  

The proposed algorithm considers only an observation of each elementary set to construct the 

clusters. The number of clusters that we have considered in our experiments is the same as 

the number of classes.  We have not attack the problem on finding the optimal number of 

classes. 

The main benefit of the proposed algorithm lies  in the reduction of computation time. But it 

is necessary to validate the cluster formed. For this purpose, the four external criteria 

described in the previous section were used. Table 6.1 shows the results for the external 

criteria to evaluate the clusters created using Rough PAM clustering algorithm using 

Manhattan distance. This table also shows a column containing the Discretization method 

previously applied, given that the datasets contain some continuous features. 

 
Table 6.1 External measures for Rough Cluster algorithm (PAM)  

Cluster PAM 

Dataset 
Discretization 
Method Rand Jaccard Fandm Hubert 

Iris Entr 0.9341 0.8180 0.8999 0.8508 

Iris Chi 0.05 0.9656 0.9007 0.9478 0.9221 

Iris Rough 0.8568 0.6481 0.7866 0.6791 

Sonar Entr  0.6999 0.5528 0.7126 0.4013 

Sonar Chi 0.15 0.5006 0.3497 0.5185 0.0011 

Sonar Rough 0.5243 0.3898 0.5626 0.0494 

Crx Rough 0.6114 0.4841 0.6556 0.2271 

Diabetes Ent 0.6106 0.4696 0.6391 0.2164 

Diabetes Rough 0.6057 0.4663 0.6360 0.2060 

Vehicle Ent 0.6797 0.2213 0.3625 0.1486 

Vehicle Rough 0.6466 0.2079 0.3452 0.1047 

German No discret 0.5520 0.4694 0.6403 0.0565 

 
Table 6.2 is similar to table 6.1 but using Hamming distance instead of Manhattan distance. 
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The Table 6.3 shows the different  clustering validation measures using hierarchical 

clustering algorithm (HCLUST). 

 

 

 

 

 
 

Table 6.2. External measures for Rough Cluster algorithm (PAM) Hamming distance 
Cluster PAM 

Dataset 
Discretization 
Method Rand Jaccard Fandm Hubert 

Iris Entr 0.9341 0.8180 0.8999 0.8508 

Iris Chi 0.05 0.9575 0.8787 0.9355 0.9038 

Iris Rough 0.8154 0.5818 0.7369 0.5969 

Sonar Entr  0.7000 0.5528 0.7126 0.4013 

Sonar Chi 0.15 0.8332 0.7146 0.8335 0.6664 

Sonar Rough 0.5006 0.3689 0.5406 0.0012 

Heartc Entr 0.7327 0.5879 0.7407 0.4660 

Crx Rough 0.7014 0.5429 0.7037 0.4029 

Diabetes Ent 0.5000 0.3685 0.5385 -0.0083 

Diabetes Rough 0.5482 0.4128 0.5843 0.0896 

Vehicle Ent 0.6990 0.2725 0.4289 0.2253 

Vehicle Rough 0.6628 0.2101 0.3476 0.1205 

German No discret 0.5207 0.3966 0.5686 0.0325 

 
Table 6.3 External measures for Rough Cluster algorithm (HCLUST)  

Cluster HCLUST 

Dataset 
Discretization 
Method Rand Jaccard Fandm Hubert 

Iris Entr 0.8623 0.6646 0.7991 0.6953 

Iris Chi 0.05 0.9575 0.8787 0.9355 0.9038 

Iris Rough 0.8415 0.6120 0.7593 0.6412 

Sonar Entr 0.6819 0.5423 0.7048 0.3678 

Sonar Chi 0.15 0.4993 0.4175 0.5988 -0.0015 

Sonar Rough 0.4993 0.4970 0.7032 -0.0062 

Crx Rough 0.5042 0.5025 0.7079 0.0082 

Diabetes Ent 0.5491 0.4412 0.6135 0.0794 

Diabetes Rough 0.5482 0.5440 0.7357 0.0374 
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Vehicle Ent  0.5903 0.2759 0.4547 0.1770 

Vehicle Rough 0.5024 0.2390 0.4179 0.0764 

German No discret 0.5836 0.5773 0.7569 0.0521 

 
 
 
 
 
 
 
 

6.9 Conclusions 

After applying the proposed clustering method and observing our experimental results we 

can conclude that: 

i) Constructing clusters considering only one observation from each elementary set 

reduces the computation running time of the PAM algorithm, since the clustering 

process is applied to a smaller number of observations. 

ii) The external cluster validation measures for the proposed algorithm on the 

datasets considered, yield good values (greater than .5), except sometimes for the 

Hubert measure, which seems to be a very strict measure.  

iii) Our experimental study suggest that there is not much difference in applying a 

Rough set- based  PAM algorithm and a Rough set-based Hierarchical clustering 

algorithm.  

iv) Use a Hamming distance along with the Rough set- based  PAM algorithm shows 

better results than Rough set- based  PAM algorithm with Manhattan distance. 
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CHAPTER 7 

 ETHICS 

Introduction  

Knowledge discovery is an important area of the data analysis, Rough sets is a 

mathematical tools that helps the development of several Knowledge discovery methods. 

Uncertain information systems can be analyzed using algorithm based on Rough sets.  Given 

the diversity of the applications of these methods in different areas such as Bio-engineering, 

business, financial, agriculture, chemistry and Biology, these methods could be used  in a 

wrong way and their results can be missleading.   

 

Ethics in science  

Ethics is a subject studied in the literature of philosophy specially the philosophy of 

information technologies, like Kant's categorical imperative. He presented his view on how 

and why something may be considered moral, and he stated the following quote “Act only 

according to that maxim by which you can at the same time will that it would become a 

universal law." [25]. When the world  is view or analyzed,  we know a priori that morality is 

universal and necessary then, applied science according to ethical rules is a moral thing. 

 

Ethics in the analysis of information process 

Data gathering is very important in the Knowledge discovery process; therefore, 

much professionalism is required during the handling of the data. Thus, one must try not to 

wrong handling data, because such practice could lead to inappropriate results.  
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Thus is, the researcher has responsibilities about their data analysis, interpretation of 

results, and publications [6]. Hence, it is necessary to be careful on the research process until 

the task is finished and published. 

 

Ethics in this thesis  

Rough set philosophy is founded on the assumption that every object of the universe 

set is associated with some information Knowledge. Many applications of rough sets in 

different areas has been carried in the last twenty years, some of them has been in medicine 

[7], economy, genetic, biology, artificial intelligence and many more. Comparisons with 

other methods gave good results, and research in this area has continued. 

In this work, many algorithms have been proposed according to each application. All 

the algorithms presented in this thesis have been tested on real data, Therefore, the results are 

interpretation of real problems coming from different fields.  These data sets are commonly 

used in data mining for this kind of tasks. 

 If data sets were simulated then we could create an ideal situation for Rough sets 

theory  but their interpretation would not be useful in the real world, in particular if the 

simulated data set is of lower dimension and has an small number of instance. However, 

simulation can be very useful to set up a worst case situation. 
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CHAPTER 8 
 

 CONCLUSIONS 
 
 

This thesis covers mostly data preprocessing steps of the KDD process. Algorithms to 

carry out  such tasks were done using mathematical  tools from Rough set theory.  These 

algorithms were applied to datasets that have been used extensively in the literature of 

data mining and Knowledge discovery. 

 

The following conclusions are obtained:  

i. Rough set is a good option to process the information for KDD methods 

ii. Discretization based on Rough sets theory compares well with other discretization 

methods.  The computational speed of the algorithm compares vey well with other 

discretization methods. 

iii. Feature Selection using Rough sets theory is a way to identify relevant features. Only 

features having a large dependency with the decisional attribute are considered 

relevant. 

iv. Case selection using Rough sets concepts shows good results. This is validated by the 

improvement on the performance of  some classifiers. 

v. Cluster methods using Rough set theory reduce the computational burden of the 

clustering algorithm because  the elementary sets as treated  as observations. 
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CHAPTER 9 

 

 FUTURE WORK 

 

• Other kind of classifiers such as decision trees and neural networks can be combined 

with the feature selection methods purposed on this thesis 

• Consider a more sophisticated sampling method instead of the random sampling used 

in the instance selection process. Also, we can study the effect, of choosing a given 

percentage of instances from the positive region, on the performance of a given 

classifier. 

• Use a database software such as SQL or Oracle to perform the algorithms purposed 

on this thesis. 

• Apply Rough sets methodology to multi-relational tables. 

• Make a more extensive comparison of the methods purposed on this thesis with other 

Rough sets methods already existing. 
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 APPENDIX A. DATA DESCRIPTION 

 

Table A: Data set Description 

 

Data set Instances Classes Features 

Iris 150 3 4 

Breast 683 2 9 

Sonar 208 2 60 

Glass 214 6 9 

Bupa 345 2 6 

Diabetes 768 2 8 

Heartc 297 2 13 

Ionosphere 351 2 32 

Crx 653 2 15 

Vehicle 846 4 18 

 

 

Iris. This is the Iris database, created by R.A. Fisher. It is perhaps the best known 

database to be found in the pattern recognition literature. The data set contains 3 classes 

of 50 instances each, where each class refers to a type of the iris flower.  

Breast. This Breast cancer databases was obtained from the university of Wisconsin 

Hospital, Madison. This data set contain 683 instances, 9 predictive features and two 

classes that represent the type of cancer (benign or malignant). 

Sonar. This dataset contains 60 predictor features each one in the range 0.0 to 1.0. Each 

one of the 208 instances represents the energy within a particular frequency band, 

integrated over a certain period of time. This data set has two classes (Mines and Rocks). 

Glass. This is a Glass  identification database. It has originally 214 instances, 9 predictive 

attributes and 6 classes. Three of the  features were eliminated in a cleaning step. 
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Bupa. It contains information on six attributes of  345 patients. Some of them have 

hepatitis and others are healthy. 

Diabetes. This is the Pima Indians Diabetes Database. It was created by the National 

Institute of Diabetes and Digestive and Kidney Diseases. The dataset contains 8 features 

(all numeric-values) and two classes that represent the diagnostic if whether the patient 

shows signs of diabetes according to World Health Organization criteria. All the 768 

patients are female. 

Heartc. This dataset contains 297 instances, 13 predictive features and two classes, 

representing  the absence or presence of heart disease. Only  features 1,4,5,8,10 are 

continuous. 

Ionosphere. This dataset comes from the classification of radar returns from the 

ionosphere. This dataset contains 351 instances,  34  predictive features and two classes. 

Crx.  It is also called the australian credit dataset. It consists of 653 instances and 14 

predictors.  There are two classes. 

Vehicle. It contains information about four types of vehicle. The images were acquired 

by a camera looking downwards at the model vehicle from a fixed angle of elevation.  

This dataset contains 846 instances, 18 predictive features and 4 classes. 
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APPENDIX B: DESCRIPTION OF R FUNCTIONS  

CREATED IN THIS THESIS 
 
 
1-numclass(S,data) 

Input: S, data 
S: is a list of instances 
data: is the whole dataset 
This function finds the number of classes to which belongs the instances   listed on S. 
Output:  number of classes. 
 
2-Depequals (x, xd) 

Input: x,xd 
x: is a value 
xd: is the column where the value  of x is contained 
This function finds x-value in xd-column and save a list of target 
Output: a list of target 
 

3-Dependencyxy(x,y) 

Input: x, y 
x and y are two vectors with the same dimension 
This function  calculates the dependency coefficient between x and y 
Output: dependency coefficient. 
This function is equivalent to dependency. It requires the functions numclass and dpequals. 
 
4-Discrough(data,varcon) 

Input: data, varcon 
data:  The dataset. 
varcon: vector of the continuous feature. 
This function discretizes continuous features.  For each continuous feature the number of 
intervals is upper bounded by the number given by the scott’s formula. 
It requires the function dependencyxy 
Output: Discretized data set. 
 

5-Dependency(data,col1,col2) 

Input: data, col1, col2 
data, the dataset 
col1 and col2 are two  columns of the dataset 
This function  calculates the dependency coefficient between col1 and col2 
Output: dependency coefficient. 
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6-RoughSelVar(datadisc) 

Input: datadisc 
datadisc: The discretized dataset. 
Output: List of features ordered according to its dependency measure. 
It requires the dependency function. 
 
7-Roughselvarf(topvar,data) 

Input: data, topvar 
data: data set. 
topvar: vector of top features selected by the ranking method 
This function performs the hybrid feature selection method. It considers the vector of top 
features according to the dependency coefficient and a  forward selection method based on 
the performance of a given classifier. 
Output:Feature selected. 
 

8-Positivelist(data) 

Input: data 
This function finds the list of the instances that lie in the positive region. 
Output: the positive list  
It requires the equals function 
 

9-RRoughSelCase(data) 

Input: data 
data: The dataset 
This function  performs  instance selection. First, the data is discretized using the rough sets 
discretization method.  
Output: A new dataset containing only  the selected instances. 
It requires the positivelist function. 
 

10-Equals(x,data). 

Input: x, data 
x: is a vector, that represent an instance of the dataset. 
data: is the whole dataset. 
This function  finds a list of the similar instances through the dataset. 
Output:List of similar instances. 
 

11-Positive(data) 

Input: data 
This function finds the positive coefficient of the data set 
Output: a rate of the number of elements and data cardinality. 
 
12-depnumclass(S,data) 
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Input:  S, data 
S: is a list of interest target 
data: is a new data formed by two column, the second column act bye the decision feature. 
This function calculates the number of values  of the decision column. 
Output: number of values. 
 
13-Errorselcase(data,vcon,repet) 

Input: data, vcon, repeat. 
data:  the dataset. 
vcon : vector of continuous features,  
repet: the number that the process was repeated.   
This function calculates two errors rate: before and after the instance selection process. 
The train dataset contains 70 percent of the data and the remaining 30 percent is considered 
as test dataset. A classifier like LDA or KNN is considered to obtain the error rate. 
This process is repeated many times according to the repet option and the average error rate 
is reported. 
Output: average error rate before and after instance selection process. 
 
 
14-RoughClust(t,data) 

Input: data, t 
data: data set. 
t: number of clusters  
This function carries out the cluster process using one representative for  each elementary set, 
a distance matrix is calculate to combine with the PAM  cluster process. 
Output: data with cluster assignment. 
 
15-RoughSilclust(t,data) 

Input: data, t. 
data: data set. 
t: number of clusters 
This function  considers the Hclust function to form the new clusters using a represent of 
each elementary sets. 
Output: the sillhouette measure 
 
 
 


