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ABSTRACT 
 
 
This work introduces a framework for a fast and algorithmically scalable multiscale 

representation and segmentation of hyperspectral imagery.  The framework is based on the 

scale-space representation generated by geometric partial differential equations (PDEs) and 

state of the art numerical methods such as semi-implicit discretization methods, 

preconditioned conjugated gradient, and multigrid solvers.  Multi-scale segmentation of 

hyperspectral imagery exploits the fact that different image structures exists only at different 

image scales or resolutions, enabling a better exploitation of the high spatial-spectral 

information content in hyperspectral imagery.  Higher level processes in hyperspectral 

imagery such as classification, registration, target detection, restoration, and change detection 
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can improve significatively; by working on the regions (objects) identified by the 

segmentation process, rather than with the image pixels, as it is traditionally done.   

 The main contribution of this work is the introduction of a framework, where 

vector-valued geometric scale-spaces are seamlessly integrated with an algorithm for 

multiscale segmentation of hyperspectral imagery, in a fast and scalable way that makes 

feasible an object-oriented approach for higher level processes in hyperspectral image 

processing.  
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RESUMEN 
 
 

Este trabajo presenta una base formal para la representación y segmentación multi-escala de 

imágenes hiper-espectrales en forma rápida y escalable algorítmicamente. El fundamento de 

este trabajo se basa en la representación de espacio de escala generada por ecuaciones 

diferenciales parciales geométricas y métodos numéricos modernos como la discretización 

semi-implícita, gradiente conjugado precondicionado, y métodos multi-malla.  La 

segmentación multi-escala de imágenes hiper-espectrales explota el hecho de que diferentes 

estructuras en la imagen existen únicamente a diferentes escalas o resoluciones de la imagen, 
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permitiendo una mejor explotación del alto contenido espacial y espectral en imágenes hiper-

espectrales.  Métodos de procesamiento de imágenes hiper-espectrales de mayor nivel tales 

como clasificación, registración, detección de objetos, restauración de imágenes, y detección 

de cambio pueden mejorar significativamente; trabajando con las regiones identificadas por 

la segmentación, en lugar de usar los píxeles de la imagen, como se hace tradicionalmente.     

 La principal contribución de este trabajo es la introducción de una base formal, 

donde el espacio de escala para imágenes vectoriales es integrado en forma natural con un 

algoritmo para la segmentación multi-escala de imágenes hiper-espectrales, con una 

complejidad computacional que es lineal en el tamaño de las imágenes.     
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1 INTRODUCTION 
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… From then on, the development of 
multi-dimensional spectroscopy went very 
fast, inside and outside of our research 
group.  
RICHARD R. ERNST  
 

Remote sensing imagery is increasingly being employed as a significant component in the 

evaluation and management of terrestrial and coastal ecosystems.  Advantages of this 

technology include both the qualitative benefits derived from a visual overview, and more 

importantly, the quantitative abilities for systematic assessment and monitoring the earth 

ecosystem revealing patterns and relationships unavailable when using traditional data-

gathering techniques.  From the different remote sensing technologies, hyperspectral imaging 

has the greatest potential to extract more plentiful and more accurate environmental 

information, given the enhanced discrimination capabilities of high spectral resolution 

imagery.  

 
Hyperspectral Remote Sensing provides high-resolution spectral measurements that 

enable the identification of physical composition and properties of objects and materials from 

airborne or space-borne platforms.  Figure 1.1 illustrates the hyperspectral image concept, 

where each pixel is a vector containing many samples of the spectral signature at that pixel 

and at each wavelength an image of the area under study is collected. 
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Figure 1.1 Hyperspectral image (taken from [Davis, 2000]). 

It has been recognized [Gorte, 1998; Baatz and Schäpe, 2000; Blaschke et al, 2000, 

2001] that the information required for critical analysis and understanding of remotely sensed 

imagery is usually not represented in terms of pixels, but in the spatial structures (objects) 

and their relationships at different image scales.  The process of extracting the structures at 

different image scales is called in image processing, multiscale image segmentation.  

Segmenting an image consists in partitioning the image into non-overlapping homogeneous 

regions that may correspond to the semantically meaningful structures.  Hence, multiscale 

segmentation is of prime importance in image analysis and understanding of remotely sensed 

imagery and particularly of hyperspectral imagery, given its higher amount of potential 

information.  
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Important higher level image processes in image processing such as classification, 

target detection, registration, change detection, and restoration that are traditionally 

performed on a pixel by pixel basis can benefit enormously from a previously segmented 

image, given the higher statistical and geometrical information content that can be drawn 

from the structures found. 

1.1 Problem Statement 
 
The task of a visual processing system is to extract meaningful information about the outside 

world, implicitly represented as a set of pixels values that are the result of measurements of 

an electromagnetic field from a physical scene.  However, the vision problem is ill-posed in 

the sense of Hadamard, since it has no unique solution [Lindeberg, 1991].  Different objects 

may produce the same pixel values under different illumination conditions; hence, two 

different scenes may produce similar images that become undistinguishable due to the noise 

introduced by the transmission and sensor systems.   

In particular image segmentation, i.e. the extraction of the different structures in the 

image using only the pixel values, is also an ill-posed problem.  The noise in the image, the 

presence of fuzzy boundaries among the different image structures, occlusions, illumination 

differences, shadows, and image defects such as optical and electronic blurring due to the 

sensor system and other variations in the intensity of the image, introduced by variations in 

the sensor altitude, roll, pitch, and yaw angles; makes possible that different segmentations 

be equally good, based on metrics that uses the segments found and the pixel values only.  

The segmentation problem can be casts into a graph partitioning problem, where the 

pixels in the image corresponds to nodes in the graph, the edges in the graph connect each 
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pixel with its nearest neighbors and, associated with the edges, there is a weight function that 

measures the degree of similarity between two neighboring pixels.  In this, setting, the 

segmentation problem can be expressed as the optimal cut of the graph into a number of 

disjoints subsets of pixels that maximize the similarity (homogeneity) within each segment 

and the dissimilarity across segments.  From the computational point of view, the 

segmentation problem is an NP-hard problem, since optimal graph-cut partitioning is NP-

hard [Shi and Malik, 2000]. 

Given the importance and computational complexity of the image segmentation task, 

over 1000 kinds of segmentation approaches have been developed in the past for grayscale 

and color images [Zhang, 2001].  Nevertheless, segmentation algorithms have been 

introduced relatively late for vector valued images such as multi and hyperspectral imagery 

given the high dimensionality of the data, the heterogeneity (spatial and spectral) of the 

image structures, and the difficulty of using model-based methods, such as the classic 

background-foreground model [Chen et al, 2003; Blaschke et al, 2000, 2001] used 

successfully for several grayscale and color segmentation algorithms.  In order to have an 

idea of the dimensionality of the data handled in hyperspectral imagery, let us consider a 

typical hyperspectral image such as the Cuprite image taken with the AVIRIS sensor over the 

Cuprite mining district, 2km north of Nevada (see Section 3.2), which consists of 2378 lines, 

640 columns and 224 bands, i.e. 640x2378x224 ~ 3x109 intensity values that must be 

discretized using at least 2 bytes (unsigned integer format) of resolution.  Hence, a typical 

hyperspectral image requires ~1Gb of memory and processing the image would require to 

perform several operations over each one of the ~109 variables in the image, plus storing the 
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additional variables required by the processing algorithm, which might be also of the same 

size as the original image.           

Hence, traditionally in remote sensing the task of segmentation had been done only 

with multispectral imagery and using a pool of heuristic recipes, since the dimensionality of 

the data damps the use of more sophisticated techniques, such as the geometric scale-space, 

governed by Partial Differential Equations (PDEs).  With the advances in computer 

technology and the use of state of the art numerical methods, the processing of hyperspectral 

imagery using a well-founded framework such as the scale-space is becoming more and more 

feasible, nowadays.  An important achievement of this work is the extension of state of the 

art numerical methods to solve fast and accurately the anisotropic diffusion PDE on high 

dimensional vector-valued spaces making feasible the use of formal scale-spaces to process 

hyperspectral imagery. 

1.2 Geometric Differential Equations 
 
Deterministic differential equations are all embedded in a geometric space, where the 

independent and dependent variables (including the solution) resides, i.e. the so called jet 

space (see [Sapiro, 2001]).  Famous examples of geometric differential equations are 

Newton’s laws, Maxwell equations and the general theory of relativity.  Newton’s laws, for 

instance, are embedded in a geometric Euclidean space, where the light always follows a 

straight line between two points in space that corresponds to the Euclidean distance.  On the 

other hand, the general theory of relativity is embedded in a Riemannian space, where the 

light travels along the shortest geodesic distance between two points, in the manifold 
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generated by the gravitational field, hence, the light might seem to bend in Euclidean space 

[Faber and Naber, 1986].   

In this work, we use geometric diffusion PDEs that correspond to conservation laws 

determining the transfer of mass or energy between different points on a fluid, where a 

gradient of concentration exists.  For simplicity, the diffusion PDE that we use in our work is 

embedded in a Euclidean space and hence, the flux follows the shortest path between two 

points in Euclidean space.  However, a Riemannian space could also be defined, where the 

diffusion process follows the geodesic lines defined by the manifold that contains the 

hyperspectral image, in feature space (see for instance [Bachmann et al, 2006]).  The lector 

interested in a formal presentation of geometric PDEs for image analysis is referred to the 

excellent book on geometric PDEs and image analysis made by [Sapiro, 2001] and the 

references therein on differential geometry.      

 We also use the term geometric PDEs to distinguish them from the stochastic PDEs 

(SPDEs), where the dependent and independent variables (including the solution) are 

modeled as random fields.  Stochastic PDEs have the advantage of modeling the presence of 

noise in the data, and the data itself with probabilistic distributions, and they present also 

some nice properties such as convergence to a non-trivial solution (see for instance [Unal et 

al, 2002], [Descombes and Zhizhina, 2003]).  However, SPDEs are difficult to solve for any 

numerical method in high dimensional spaces, as is the case of hyperspectral imagery.  The 

computational complexity of SPDEs increases exponentially with the dimension, for all 

optimal algorithms [Novach, 1988; Novach and Ritter, 1997].      
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1.3 Technical Approach 
 
We propose here to obtain a scale-space representation of hyperspectral imagery using 

vector-valued geometric partial differential equations (PDEs).  This representation 

regularizes the image by simplifying it, in away that only interesting features are preserved, 

while unimportant ones are removed [Tschumperlé and Deriche, 2005].  In particular, we 

show [Duarte et al 2006, 2007] (see Chapter 3) that the nonlinear diffusion PDE reduces 

noise and spectral-spatial intra-region variability in hyperspectral imagery, improving 

classification accuracy figures.   

The advantage of using geometric PDEs to generate scale-space representations of 

hyperspectral images is that they satisfy information-reducing, stability, and invariance 

properties that have been shown to be of fundamental importance in image processing 

[Alvarez et al, 1992].  Other approaches such as wavelet shrinkage [Donoho and Johnstone, 

1994] and morphology [Bosworth and Acton, 2003] to multiscale image representation have 

been proven to be equivalent to the continuous scale-space framework generated by PDEs 

[Sapiro, 2001]; but on implementation, many of the geometric properties of the continuous 

scale-space are missing in the discrete version, due to the propagation of numerical errors 

that introduce artifacts as the scale increases [Durand and Froment, 2003].  On the other 

hand, the well-founded numerical methods that exist for PDEs extend the properties of the 

continuous scale-space onto the discrete domain [Weickert, 96] making geometric PDEs a 

good choice to generate a discrete scale-space representation of hyperspectral imagery.  
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Given that the appropriate scale for a given application is in general unknown, the 

only reasonable approach is to obtain a hierarchical multi-resolution representation of the 

image at several scales [Lindeberg, 1991].  Hierarchical multiscale representation of images 

has another important advantage.  The computationally expensive graph-partitioning problem 

in the fine grid of the image can be brought to a coarse scale, where it can be solved with 

much lower computational cost, and then propagated back to the finest level.  In fact, it has 

been argued that solving the segmentation problem at a coarser scale produce better 

segmentation results than solving it in the finest scale, where only local information is used 

[Sharon et al, 2000, 2003].  On a hierarchical multiscale representation of the image, statistic 

and geometric information (shapes) can be gathered from the fine to the coarser levels, so 

that local and global information are both available to the segmentation process [Sharon et al, 

2000, 2003].  As we show in [Duarte et al, 2007] (see Chapter 4) a multiscale hierarchical 

segmentation of hyperspectral imagery can be obtained, within the scale-space framework. 

The main contribution of this work is the introduction of the geometric scale-space 

framework to represent and segment multispectral/hyperspectral imagery and the extension 

of state of the art numerical methods to make this framework computationally feasible.  In 

particular, our contributions are 

• The scale-space representation (see Section 2.1) of HSIs increases class 

separability, which has the potential of improving classification and segmentation 

accuracies.  Besides class separability, scale-space representation of HSIs has 
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also the potential of improving other image processes such as registration, target 

detection and image compression. 

• Asymptotically optimal algorithms.  The scale-space representation and scale-

based segmentation of HSIs have been damped in the past due to high 

computational complexity and the size of the data.  Here, we present algorithms 

that are algorithmically scalable, i.e. their time complexity is linear in the size of 

the images making the use of the scale-space representation of HIS not only 

viable but also very attractive computationally.      

1.4 Thesis Outline 
 
We first review scale-space theory in Chapter 2.  Chapter 3 presents a comparative study of 

semi-implicit discretization and preconditioned conjugated gradient (PCG) methods to solve 

the nonlinear diffusion PDE on hyperspectral imagery.  The solution of the nonlinear 

diffusion PDE smoothes undesirable variability in HSIs, which in turn improves class 

separability.  This scale space representation is obtained in the fine fixed grid of the image 

and hence, no multiscale representation of the images can be obtained.  Chapter 4 introduces 

multigrid methods that allow solving the nonlinear diffusion PDE, with good accuracy, and 

at the same time provide the necessary structure to segment hyperspectral imagery.  

Multigrid methods enable a multiscale representation of hyperspectral imagery that in turn 

facilitates image segmentation, with improved accuracy.  The ethical considerations of this 

work are presented in Chapter 5 and the Conclusions of this work and possible continuations 

are presented in Chapter 6. 
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___________________________________________________________________________ 

 

2 BACKGROUND 
___________________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 

The skeptic will say: “It may well be true 
that this system of equations is reasonable 
from a logical standpoint.  But this does 
not prove that it corresponds to nature.” 
You are right, dear skeptic.  Experience 
alone can decide on truth.  Pure logical 
thinking cannot yield us any knowledge of 
the empirical world: all knowledge of 
reality starts from experience and ends in 
it. 
ALBERT EINSTEIN  

  

2.1  The Scale-Space Concept 
 

                         
            (a)    (b)           (c) 

Figure 2.1 Scale-space concept.  

Objects in the world and details on an image only exist and make sense over a limited range 

of spatial scales or loosely speaking, image resolutions [Lindeberg, 1991].  Figure 2.1 shows 

the same scene, at three spatial resolutions.  The finest scale (higher resolution) corresponds 

to Figure 2.1.a, where the individual leaves and tree’s branches can be distinguished.  The 
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scale increases (resolution becomes coarser) from Figure 2.1.b to Figure 2.1.c, and on the 

coarser scale, only the basic shape of the tree can be noticed, but the internal details cannot 

longer be appreciated.  From this example, it is clear that the tree object exists only within a 

range of image scales.  At finer scales, say nanometers, an image could only display the 

tree’s molecules, while at the scale of kilometers, the individual trees cannot be 

distinguished, only the forest.  It is also evident that the range of useful scales for a given 

image is determined by the application itself.  A scientist interested in the number and shape 

of the leaves of a tree would require the resolution depicted on Figure 2.1.a or higher, while a 

scientist interested only in the number of trees or in the forest, would require the scale 

depicted on Figure 2.1.c. or another image at a lower spatial resolution.   

 Here, the concept of scale-space is being made equivalent to the image resolution, 

which can be expressed as the spatial dimensions that a pixel on the image represents in the 

physic world, or in terms of pixels of the image itself.  Now, we will define the scale-space 

concept formally. 

 Let us define a grayscale image as a bounded real function u(x): Rn→ R with u(x)∈R 

being the intensity at the point ( )Tnxxx L21=x  ∈ Rn, n∈Z+.  A multiscale image 

analysis is a family of transforms {Tt, t ≥ 0}, where t is the scale parameter, embedding the 

image u(x) into a family u(x, t) = (Tt u)(x) of gradually simplified versions satisfying 

architectural axioms, morphological requirements, and stability [Alvarez et al, 1993; 

Weickert, 1996].  These axioms and requirements ensure that the multiscale analysis does not 

introduce artifacts and it is invariant to affine transformations of the image (rescaling, 

rotation, translation, etc) [Weickert, 1996]. 
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 The architectural axioms are recursivity, causality, regularity and locality.  The 

recursivity axiom ensures that the scale t can be reached as a sequence of smaller scale steps,  

( ) .0,0,,
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The causality axiom ensures that the transformation depends on the image smoothed at 

previous scales but not on the image at higher scales, i.e. Tt u can be computed from Ts u, s ≤ 

t, but not from s > t.  The regularity axiom requires continuity of the transformation, i.e.  

Supremum {Tt (u+hv) - (Tt (u)+hv)} ≤ δht  for h, t ∈ [0, 1] and u, v ∈ C∞, 

where δ depends only on u and v and C∞ is the set of all functions that have derivatives of all 

orders.  The locality axiom establishes that T∆t u for ∆t small is determined by the behavior of 

u in the close neighborhood of u,  
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Notice that these axioms are also common requisites of realizable transforms in signal 

processing.   

 The stability condition is expressed in the maximum principle.  If u ≤ v then Tt(u) ≤  

Tt(v) for all t ≥ 0.  This condition ensures that the scale-space transformation does not create 

additional structures that are not present in the original image (artifacts).  Notice that the 

maximum principle, allows structures to disappear (e.g. under diffusion), since if u(x1) < 

u(x2), where x1 and x2 are two locations on both sides of a weak edge, the maximum 

principle does not prohibit that Tt(u(x1)) = Tt(u(x2)), but it does prohibit Tt(u(x1)) > Tt(u(x2)), 

which would mean an artifact by inversion of the intensity order.   
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  The morphological requirements establish that the scale-space transformation must 

be invariant to constant changes in the intensity of the image (gray level shift invariance), 

and affine invariance that includes as particular cases, scale change, rotation and translation 

of the image, 

( ) ( )
( )( ) ( )( ). :invariance Affine

 :invarianceshift  levelGray 

' AxAx uTuT

auTauT

tt

tt

=

+=+
 

where, a is a constant and A is an n×n  matrix.  These requirements ensure that the scale-

space analysis is invariant to illumination changes and affine transformations and it depends 

only on the underlying structures in the image.  

 The pioneering work of [Alvarez et al, 1993] consisted into proving that every scale-

space transformation satisfying the cited architectural axioms, invariance properties and 

maximum principle are governed by parabolic Partial Differential Equations (PDEs) of the 

form,    
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where, u0 is the original image,  f  is a continuous function, u(x, t) = Tt(u), and 
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Notice that even tough any formal scale space is governed by a PDE of the form given by 

Equation 2.1, not every PDE of this form will generate a valid scale space, as it will be seen 

in the next section.  Notice also that scale in the formal scale-space framework is the level of 
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image smoothing defined by the evolution of a PDE of the form given by Equation 2.1 that 

satisfies the formal axioms and requirements of the scale-space. 

 From now on and for simplicity of the notation, we will drop the explicit dependence 

on x and t of the intensity of the image, u, but it must be always assumed here that u is a 

function of both space x and scale t, also n = 2 since we are interested in 2D images only. 

2.2  Scale-Space Generated by Geometric PDEs 
 
A simple and well-known particular form of Equation is the heat diffusion equation, given by, 

( ) ,0, 0utuug
t

u
==∆=

∂
∂

 2.2 
 

where g is the diffusion coefficient, assumed to be constant.  The linear scale-space proposed 

by Lindeberg [1991] is generated by Equation 2.2.  This is also called Gaussian scale space, 

Gaussian blurring or isotropic smoothing, since the analytic solution of Equation 2.2 is given 

by the convolution of the original image, u0 with a Gaussian kernel, 

( ) ( ) ,2,0 0ugtGtu ∗=  2.3 
 

where, G is a zero mean Gaussian function with variance 2gt and * is the convolution 

operation.   

 Figure 2.2.a shows the same original image shown on Figure 2.1.a, while Figure 2.2.b 

and Figure 2.2.c show the same image after Gaussian blurring and sub-sampling by a factor 

of 4 and 16, respectively.  Notice that Figure 2.1.b and Figure 2.1.c present strong visible 

transitions between the pixels in the image that are due to the sub-sampling process.  On the 

other hand, Figure 2.2.b and Figure 2.2.c have the same spatial resolution than Figure 2.1.b 
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and Figure 2.1.c, but the transition of the intensity between pixels is very smooth.  However, 

from Figure 2.2, we can also notice the main disadvantage of Gaussian diffusion: not only 

the noise and the intra-object variability (details) are smoothed, but also the image edges are 

weakened and dislocated, as it goes from fine to coarser scales.   

           
                          (a)       (b)      (c) 

Figure 2.2 Gaussian Blurring. 

 Equation 2.2 in thermodynamics and other physical sciences corresponds to a 

conservation law that describes the evolution in time of the concentration of a physical 

quantity, which can be for instance mass or energy, with constant net mass or energy.  In 

general, the scale-space representation of an image can be viewed as the diffusion of the gray 

level intensity of the image trough time (scale).  The flux of intensity, Φ, is given by 

[Weickert, 1996], ,ug∇−=Φ  where the negative sign comes from the fact that the flux is 

trying to compensate the intensity gradient.  The conservation law stating that net mass or 

energy cannot be created or destroyed by the diffusion process is expressed as, 

( ),ug
t

u
∇•∇=Φ•−∇=

∂
∂
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where, ∇• is the divergence operator.  Equation 2.4 states that concentration (intensity) 

reduces trough time (scale) as the flux diverges from a point in the image.  If we assume that 

the intensity can flow in all directions (isotropically), without any restriction, the diffusion 

coefficient g is constant and Equation 2.4 reduces to Equation 2.2, since the divergence of the 

gradient is the Laplacian.  The analogy of scale-space as a diffusion process of the image 

intensity allows us to see why Gaussian blurring destroys the edges in the image.  Since the 

diffusion coefficient is constant (isotropic), the higher the image gradient the higher the flux 

of intensity, affecting principally the image edges characterized by a high gradient.  

 This important observation was made by [Perona and Malik, 1990], who proposed 

smoothing the images with a nonlinear diffusion coefficient that prevents diffusion on the 

image edges.  If the image is defined on x∈Ω⊂R2, being Ω = (0, a)×(0, b) the image domain, 

with boundary ∂Ω, and t ∈ [0, T ], the Perona-Malik PDE is given by [Weickert, 1996], 

( )[ ] ](
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∂
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where, is the 2-norm, n̂  is the unit normal vector to the boundary ∂Ω, and • is the dot 

product.  The boundary conditions given by the last condition on Equation 2.5 imply that 

there is no flux in or out the borders of the image.  From now on and for simplicity, we will 

write only the PDE without referring explicitly to the initial or boundary conditions, since 

they will be the same as in Equation 2.5, i.e. the initial condition of the PDE is the original 

image and the boundary conditions forbids flux entering or leaving the image. 
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 Perona and Malik (1990) also proposed diffusion coefficients of the form, 

( ) ( ) ,,
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where, α is a threshold parameter that allows diffusion in those image regions where the 

magnitude of the gradient is α<∇u  (within homogeneous regions) and performs backward 

diffusion, when  α≥∇u .  Backward diffusion means that on edges, with a gradient above 

the threshold, the flux goes from low intensity to high intensity (contrary to forward 

diffusion), which implies that edges may be enhanced rather than simply preserved.  One can 

see more clearly why this happens by restricting Equation 2.5 to the 1-D case, 
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Figure 2.3 shows the derivative of the flux vs. ∂u/∂x, where we had used the exponential 

diffusion coefficient given on Equation 2.6, with α = 0.5.  From this figure, it is clear that for 

∂u/∂x > 0.5 the rate of flux is negative and hence, the gradient increases (Equation 2.7).  The 

idea of smoothing the image within its homogeneous regions, while enhancing the edges 

seems like an ideal situation.  However, [Alvarez et al, 1992] showed that the backward 

diffusion process makes Equation 2.5 ill-posed.  In practice, the discretization of Equation 

2.5 introduces some regularization that depends on the discretization scheme itself and the 

only undesirable effects observed are the introduction of staircasing artifacts and the 

enhancing of impulsive noise with gradients above α [Weickert and Benhamouda, 1997]. 
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Figure 2.3 Rate of flux vs. image gradient. 

 The work of [Catté et al, 1992] provides a simple way of making Equation 2.5 well-

posed, irrespectively of the discretization scheme used, while satisfying all the axioms and 

properties that a scale-space should posses.  The regularized Perona-Malik nonlinear 

diffusion PDE is given by, 

( )[ ] ( ) ,,0, 2 uGuuug
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where, ( )2,0 σG is a zero mean Gaussian kernel with variance 2σ .  From the previous 

discussion (Equations 2.2 and 2.3, it can be noticed that uσ can be obtained by diffusing 

isotropically the image up to a scale 22σ , with a diffusion coefficient of one.  In practice, σ 

is chosen in such a way that impulsive noise with a high gradient be quickly eliminated 

without blurring too much the image edges.  Weickert proposed later a nonlinear diffusion 

coefficient for Equation 2.7 that produces segmentation-like results [Weickert, 1996], given 

by, 
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where, constant 3.31488 is the value that makes the flux ( ) uug ∇∇ σ  increasing for 

( )ασ ,0∈∇u  and decreasing for ( )∞∈∇ ,ασu .  As can be seen from Equations 2.6 and 2.9, 

0 < g ≤ 1 as should be expected from a diffusion coefficient. 

 The major advantage of the linear scale-space approach is that it does not require any 

prior knowledge on the image and that is why many researchers still use it today, working 

around its main disadvantage: blurring and dislocation of edges.  On the other hand, 

anisotropic diffusion generates a scale-space that smoothes noise and undesirable variability 

(small inhomogenities) within objects, while preserving image edges.  However, anisotropic 

diffusion requires the introduction of some prior knowledge represented by the parameters α 

and σ.  In practice, σ  and α are set based on the noise level and the strength of the 

semantically meaningful edges in the image, respectively, which requires the experience of 

the user with the particular set of images at hand.  The automatic selection of α  and σ is an 

open issue that had recently started to being addressed by the scientific community, see for 

instance [Black et al, 1998], [Mrázek et al, 2003], and [Voci et al, 2004].  In fact, α  and σ 

should also be adaptively selected within the image in such a way that weak edges on a given 

region might be preserved, while noise and other undesirable low level detail be smoothed 

out as much as possible. 

 On the other hand, and even tough Equation 2.8 works fine in practice, it has two 

main limitations; first, the noise present on strong edges is not eliminated, since diffusion is 
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reduced there.  Second, notice that the diffusion coefficient is nonlinear, but it is the same on 

all directions, hence, it is locally isotropic and diffusion will be the same in all the directions, 

on a given point in the image.  

 An extension of the regularized Perona-Malik PDE was proposed by several authors 

addressing these issues [Alvarez et al 1992, 1994], [Weickert, 1996].  Here, we take the 

general form of the Weickert nonlinear anisotropic diffusion PDE,  

( )[ ]uu
t

u
∇∇•∇=

∂
∂

σD , 2.10 
 

where D(∇uσ) is an 2×2 positive definite diffusion matrix that depends on ∇uσ .  Notice that 

D is the natural extension of the scalar nonlinear diffusion coefficient g to a diffusion tensor 

that can change the flux direction along the direction given by the eigenvectors of D.  Let ξξξξ 

and ηηηη be the eigenvectors of D and λξ, λη their corresponding eigenvalues.  If we define, 

( ) ,1,,0,, ηξ =∇==
∇
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= λλ σ
σ

σ ug
u

u
ξηξ  2.11 

 

then, smoothing along the orthogonal direction to ∇uσ, given by ηηηη will be maximal, while 

smoothing along the gradient direction, given by ξξξξ will be controlled by the nonlinear 

diffusion coefficient ( )σug ∇  and noise can be eliminated on pixels with high gradient.  

Notice that smoothing always perpendicular to the gradient direction avoids the destruction 

of edges in the image, while reducing noise. 

 Weickert also proposed another PDE that enhance flow-like structures such as 

fingerprints images, called coherence enhancing diffusion [Weickert, 1996], 
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( )[ ] ( ) ( ) ,,0, 2 TuuGJuJ
t

u
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∂
∂
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where Tuσ∇  is the transpose of σu∇ , the convolution with the zero mean Gaussian kernel 

( )2,0 ρG  is component wise with the elements of the tensor Tuu σσ∇∇ ; while, Jρ is called the 

structure tensor.  Since the eigenvectors of Tuu σσ∇∇  are ξξξξ, ηηηη (as defined on Equation 2.11, 

but the eigenvalues are now 
2

σu∇ and 0), Equation 2.12 governs a diffusion process that 

depends on the Gaussian averaged directions ξξξξ, ηηηη within a circular window of size ~3ρ, 

being ρ the standard deviation of the Gaussian kernel [Weickert, 1997].  This PDE considers 

not only the direction of the image gradient on a single point, but the average within a 

neighborhood defined by ρ, which allows it to enhance flow-like structures, with a cross-

section O(ρ), by defining appropriately the eigenvalues of D. 

 All the previous PDEs have a steady state solution which is a constant image, where 

all the semantically meaningful structures are lost.  Hence, in practice, the user must stop the 

diffusion process at a final scale t = T that satisfies the requirements of the problem at hand.  

Alternatively, it has been proposed [Nördstrom, 1990] to include a fidelity term on Equation 

2.8 that enforces a steady state solution of the PDE, close to the original image, 
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Notice that on Equation 2.13 the selection of a final scale T is changed for the selection of the 

parameter β, hence, Equation 2.13 does not avoids the need of selecting a final scale.  If for 
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instance, β→0, we have again Equation 2.8, and if β is large, the steady state of Equation 

2.13 would be too close to the original (noisy) image.   

   
   (a)      (b) 

   
        (c)      (d) 

Figure 2.4 a) Original image, smoothed with b) isotropic diffusion, c) nonlinear diffusion, d) nonlinear 

anisotropic diffusion (taken from [Weickert, 1996]). 

 Figure 2.4 compares the smoothing effect of isotropic diffusion (Equation 2.2), 

nonlinear diffusion (Equation 2.8), and nonlinear anisotropic diffusion (Equation 2.10).  As 

can be appreciated from these figures, linear isotropic diffusion (Figure 2.4.b) blurs the noise, 
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but also the edges of the original image (Figure 2.4.a).  Nonlinear diffusion (Figure 2.4.c) 

using the diffusion coefficient given on Equation 2.9 reduces the noise in the image and the 

smoothed image looks like it were already segmented.  However, one can see that some noise 

remains near the edges on Figure 2.4.c.  Figure 2.4.d shows the effect of anisotropic 

nonlinear diffusion, where noise is reduced the most, but also some features are lost (the 

shape of the mouth, for instance), while others were preserved better.   

 Figure 2.5 shows the enhancing effect over flow-like structures that coherence-

enhancing diffusion achieves (Equation 2.12).  

  
(a)                           (b) 

Figure 2.5 a) Original blurred fingerprint image, b) Enhanced with coherence-diffusion (taken from 

[Weickert, 1996]. 

There are other PDEs proposed for generating grayscale scale-spaces of the form 

indicated by Equation 2.1 [Weickert, 1996; Sapiro, 2001].  However, the equations discussed 

here are the most widely used, and more importantly, their corresponding discretization 

schemes have been also studied.   
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2.3 Image Regularization by Nonlinear Diffusion 
 
The regularizing effect of nonlinear diffusion can be appreciated on Figure 2.6.   

      
                              (a)                 (b) 

     
   (c)      (d) 

Figure 2.6 Regularization effect of nonlinear diffusion, a) original noisy image, b) intensity of the original 

image, c) smoothed image, d) intensity of the smoothed image. 

Figure 2.6.a shows the noisy spectral band at 419.62 nm, taken with AVIRIS, of the NW 

Indian Pines test site which consists of 145×145 pixels (see Chapter 3 for further details on 

this image).  Figure 2.6.b shows the surface formed by the grayscale intensity of the original 

image as a function of the spatial position (in pixels).  Figure 2.6.c shows the original noisy 
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spectral band of Indiana, after nonlinear diffusion (Equations 2.8 and 2.9 with α = 0.022), 

while Figure 2.6.d shows the surface formed by the intensity of the smoothed image versus 

the spatial position.   

 From Figure 2.6.b and Figure 2.6.d it becomes clear that the smoothing effect of the 

nonlinear diffusion equation can also be interpreted as the nonlinear minimization of the area 

of the intensity surface. 

 Regularizing an image can be viewed as the minimization of an energy functional.  

Let us consider the functional, 

( ) Ω∂+− ∫
Ω

x,ˆ
2

0 uguu λ . 2.14 
 

It is well-known [Aubert and Kornprobst, 2002; Scherzer and Weickert, 2000; Weickert, 

1997, 2002; Sapiro, 2001] that the Euler-Lagrange equations for the case when 

( ) ( )2,ˆ σugug ∇=∇ x  corresponds to the nonlinear diffusion equation (Equation 2.8) and the 

Euler-Lagrange equations for the case ( ) xx =,ˆ ug , called Tikhonov regularization, 

corresponds to Gaussian blurring (Equation 2.2).  Sapiro and others [Black et al, 1998; 

Hamza and Krim, 2001] have also shown that anisotropic diffusion can be seen as a robust 

estimation procedure that estimates a piecewise smooth image, from the original noisy image.  

Hence, anisotropic diffusion can be viewed as regularizing an image in such a way that 

important edges are preserved, while undesirable variations are removed. 
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2.4 Discretization and Stability of the Nonlinear Diffusion 

PDE 
 
Solving any of the diffusion equations presented in the previous section requires the 

discretization of the corresponding PDEs.  At first glance this seems a trivial task; however, 

not every discretization of a PDE generating a continuous scale-space produces an equivalent 

discrete scale-space, with similar properties as the continuous PDE.  Weickert proved the 

requirements that a discretization of a well-posed continuous scale-space should posses to 

generate an equivalent discrete scale-space, with similar properties [Weickert, 1996, 1998].   

The explicit discretization of a diffusion process can be stated, in general, as 

( )
( ) ,]1,0[,

,0
1

0

Z⊂−∈=

=
+ Kkkkk uuAu

uu

σ

 2.15 
 

where, u(0) is the original image ordered as a vector column N×1, and N is the number of 

pixels in the image.  The scale has been discretized in K steps, such that t = k∆t, and 

( ) tKT ∆−= 1 is the final scale, ( )kuA is an N×N matrix accounting for the diffusion 

coefficients among all the pixels in the image.  Equation 2.15 is called an explicit 

discretization of Equation 2.8, because the image at the next scale step, uk+1, can be obtained 

explicitly from the previous scale step uk.   

 Equation 2.15 generates a discrete scale-space if matrix ( ) [ ] [ ]1,0,, −∈= Njia ij

kuA , 

satisfies the following requirements [Weickert 1996, Weickert and Brox, 1998], 

[ ]1,0, −∈∀ Nji , 
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• Symmetry, .jiij aa =  

• Unit row sum, ∑
−

=

=
1

0

.1
N

j

ija  

• Non-negativity, .0≥ija    

• Positive diagonal, .0>iia  

• Continuity, ( )kuA  is Lipschitz continuous, i.e. the first derivative of ( )kijij ua  is 

bounded (see for instance Equations 2.6, 2.9).   

• Irreducibility.  A symmetric N×N matrix can also be viewed in terms of its associated 

undirected graph, with N vertices and aij indicates the weight of an edge between 

vertices i and j.  A matrix is irreducible if for each vertex of the associated graph there 

is a path rll ,,0 L with jlil r == ,0 , such that 0
1, >

+pp lla , rp <≤0 , i.e. the graph is 

fully connected.   

These requirements ensure that the discrete scale-space governed by Equation 2.15 is well-

posed (see Weickert, 1996), satisfies the maximum principle (see Section 2.1), conserves the 

mean gray value, increases entropy, satisfies consistency with Equation 2.8, and converges to 

a constant steady state.   

The explicit semi-discrete version of Equation 2.8, where only the scale is discretized 

with a simple forward scheme [Strikwerda, 2004] is given by,   

( )[ ] ( )[ ] .1
1






 ∇∇•∇∆+≈→∇∇•∇≈

∆
− +

+
kkkkkk

kk

uugtuuuug
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uu
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It is common to consider ∆x = ∆y =1, hence, the spatial discretization of Equation 2.16 leads 

to the scale-space discretization of Equation 2.8, which can be stated in matrix form as (see 

Weickert, 1998 and Sections 3.2 and 3.3 for further details), 

( )
( )( ) [ ] ,1,0,

,0
1

0

Z⊂−∈+=

=
+ Kkkkk uuGIu

uu

σµ
 2.17 

 

where, µ = ∆t is the scale-step, I is the N×N identity matrix and ( ) [ ] ijk g=σuG  is the N×N 

matrix that accounts for the diffusion coefficients and the spatial discretization of the right 

hand side of Equation 2.16, 










Ν∈−

=

=

∑
Ν∈

else

jg

ijg

g iij

k

ik

ij

i

,0

,

,

, 

where, Νi is the set of close neighbors to pixel i
th. 

 If we compare Equations 2.15 and 2.17, it is easy to see that A=I+µG.  Hence, 

ijij ga µ= for i ≠ j and ∑
≠

−=
ij

ijii ga µ1 , which satisfies the unit row sum requirement.  The 

remaining conditions are easy to verify if the diffusion coefficient is defined such that g is 

Lipschitz continuous, symmetric, and non-negative.  Hence, 0>= ijij ga µ , and jiij aa =  since 

jiij gg = .  The irreducibility comes from the fact that the discretization scheme always 

connects each pixel with at least four of its nearest neighbors; hence, there is always a path 

between each pair of pixels and since g > 0, the path cannot contain g = 0.  
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However, the condition aii > 0 requires that 01 >− ∑
≠ij

ijgµ , hence, 

.
1

∑
≠

<

ij

ijg
µ  2.18 

 

Since the diffusion coefficient must be 10 ≤< ijg  (see for instance, Equation 2.9) and if we 

consider only four neighbors, the condition given on Equation 2.18 is always satisfied if µ < 

¼.  Notice that if the spatial discretization scheme uses more than four neighbors, Equation 

2.18 becomes even more restrictive, for instance if the discretization scheme uses eight 

neighbors, then 
8

1
<µ .   

 Equation 2.18 specifies that explicit discretization schemes of the form given by 

Equation 2.17 cannot have scale-steps larger than ¼.  This limitation implies that reaching 

large scale values requires a large number of iterations, which becomes computationally 

prohibitive for large data sets, as is the case of hyperspectral imagery.   

 Alternatively, Equation 2.8 can be discretized in scale as, 

( )[ ]( ) kkkk uuugtu ≈∇∇•∇∆− ++ 11
σ . 2.19 

 

Notice that on Equation 2.19 the gradient uses the image at the next iteration step, 1+ku , 

which is unknown, while the diffusion coefficient uses the gradient of the current image, ku , 

which is known at the start of each iteration.  The discretization scheme of equation 2.19 is 

semi-implicit, since it does not provide explicitly the image at the next scale 1+ku .  If the 

diffusion coefficient also uses the unknown image 1+ku , then the scheme would be 



 
 
 
 

 30 

completely implicit, but it also would be very hard to solve, since Equation 2.19 becomes 

nonlinear.  The advantage of using implicit schemes is that they are very accurate and stable 

numerically, given that they use as less as possible the (noisy) current value of the image. 

Semi-implicit schemes constitute a trade-off between explicit schemes, which are 

very simple but limited to small scale steps, and implicit schemes which are very accurate 

and stable at all iteration steps, but hard to solve [Strickwerda, 2004].  The scale-space 

discretization of Equation 2.19 in matrix form is given by, 

( )
( )( ) [ ] .1,0,

,0
1

0

Z⊂−∈=−

=
+ Kkkkk uuuGI

uu

σµ
 2.20 

 

If we compare Equations 2.15 and 2.20, we notice that matrix A = (I-µG)-1, which means 

that in order to establish that Equation 2.20 generates a discrete scale-space satisfying the 

conditions presented earlier, one have to check first that matrix I-µG is invertible.  If we call 

B = I-µG = [b]ij, then bij = -µgij for i ≠ j and ∑
≠

+=
ji

ijii gb µ1 , hence, B is strictly diagonally 

dominant.  A well known result from linear algebra is that strictly diagonal dominant 

matrices are invertible, see e.g. [Horn and Johnson, 2006].  Additionally [Weickert, 1998], A 

= B
-1 satisfies all the necessary requirements to create a discrete scale-space, in particular 

0>iia  irrespectively of the value of µ, which means that the semi-implicit scheme is 

numerically stable [Strickwerda, 2004] at all iteration steps.   

However, the semi-implicit scheme requires solving a linear system (Equation 2.20) 

at each scale-step and the numerical stability of the semi-implicit schemes does not ensure 

the accuracy of the computed solution.  In fact, the accuracy of the computed solution 
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degrades as the step size increases, because the diffusion coefficients are taken as the same as 

the diffusion coefficients of the previous scale, i.e. they are considered as frozen, within each 

scale step.  Hence, a trade-off between the need of using large scale steps to minimize the 

number of steps to reach a given scale and the need of preserving the accuracy of the 

computed solution, limits in practice the size of the scale-step that can be used with semi-

implicit schemes.   

We believe that poor efficiency of the explicit discretization scheme has been the 

main cause why the formal scale-space has not be used actively to process hyperspectral 

images.  This is the motivation for Chapter 3, where we perform a comparative study of 

different approximated semi-implicit schemes and the preconditioned conjugated gradient, 

extended to hyperspectral imagery, in order to explore the feasibility and computational 

advantages of this approach over traditional explicit schemes. 

2.5 Extension to Vector-Valued Images 
 
A hyperspectral image is a especial case of multi-spectral images, where we have hundreds 

of bands, instead of just tents of bands as in typical multi-spectral images, providing much 

more spectral information about the physical nature of the underlying scene.  A hyperspectral 

image is of course also a vector-valued image, but a difference of color and multispectral 

images, the higher information content in the spectral domain increases the possibilities for 

scale-space representations that reduce progressively the amount of information, preserving 

as much as possible the semantically meaningful spectral and spatial information at each 

scale. 

The first problem one face trying to extend the scale-space representation of scalar 
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(grayscale) to vector-valued images is that PDEs governing the scale-space representation of 

grayscale images rely entirely on the magnitude of the gradient to detect edges on the image.  

However, the extension of edges in grayscale images to edges in vector-valued images is not 

straightforward and it is still an open issue.   

Early approaches to detecting edges on vector-valued images attempted to combine 

heuristically the gradient of each spectral band, obtained independently from the other bands 

[Sapiro, 2001].  A well-founded (but certainly, not the only) way to look at gradients on 

vector-valued images is based on classical Riemannian geometry and was proposed first by 

[Di Zenzo, 1986].  The idea is to consider the square of the infinitesimal Euclidean distance 

between two vectors as a measure of edge strength.  Let u(x):R2→ R
M be a vector-valued 

image with M spectral bands.  The infinitesimal vectorial distance is given by, 
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where, x1 = x, x2 = y.  The squared 2-norm of this vector is given by, 
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The previous expression can be written in matrix form as,  

[ ] .
12

1

1

2

21 12

1 211

2

1
21

2
xxu duud

dx

dx

x

u

x

u

x

u

x

u

x

u

x

u

dxdxd
m

i

TT

m

k

k
m

k

kk

m

k

kk
m

k

k









∇∇=






































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂










∂
∂

= ∑
∑∑

∑∑

=

==

==  2.21 
 

 The extremes of 
2

ud are along the direction given by the eigenvectors of the tensor 

∑
=

∇∇
m
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Tuu
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, defined by the angles θ+ (maximum change), θ- (minimum change), while the 
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values of the extremes are given by the corresponding eigenvalues +λ (maximum), 

and −λ (minimum) [Sapiro, 2001].  Hence, the edge strength can be defined as a function of 

the extreme values ( )−+ λλ ,f , for instance,  

( ) .,
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u
f λλλλ  2.22 

 

Notice that Equation 2.22 reduces naturally to u∇ 2 for a grayscale image (M = 1).  In fact, 

and as we show on Chapter 3, this similarity metric reduces to the Euclidean distance 

between vectors.  There exists many other possibilities for ( )−+ λλ ,f as 

( ) ( )( )−+−+ ++= λλλλ 11,f , which lies within the Beltrami flow framework proposed by 

[Kimmel et al, 2000].  Hence, the extension of the magnitude of the gradient to vector valued 

images is not unique and it seems more reasonable to speak of similarity metrics between 

two spectral vectors.   

Weickert proposed extensions of Equations 2.8, 2.10, and 2.12 to vector valued 

images [Weickert, 1996, 2002], given by, 
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respectively, where each band ui(x): R
2→ R, i = 1, .., M is a grayscale image.  A more 

general anisotropic nonlinear diffusion PDE for vector-valued images, which smoothes the 

image along θ-, i.e. the direction of lowest vectorial change was proposed by [Sapiro and 

Ringach, 1996].   

( )( ) Mi
u

fg
t

u ii ,,1,,
2

2

L=
∂
∂

=
∂
∂

−
−+ θ

λλ . 2.26 
 

Notice that Equation 2.26 can be made equivalent to Equation 2.24, by selecting the 

eigenvalues of the structure tensor as ( )( )−+ λλ ,fg  and zero, such that no diffusion can occur 

along the direction or greater variability θ+, while diffusion is allowed along the orthogonal 

direction given by θ- .  Equations 2.23 to 2.25 are only discrete in the spectral domain; 

discretization of the scale and spatial domains is needed to solve these PDEs.  Details on the 

discretization of Equation 2.23 are given on Chapter 3. 

Another scale-space framework, called direction diffusion, was proposed for vector-

valued images [B. Tang et al, 2000; Sapiro, 2001], based on non-flat manifolds. Basically, 

the idea is to map the vector valued image u(x, t) in R2×R→ R
M  to û(x, t) in  R2×R→ S

M-1, 

where SM-1 is the unit ball in RM, i.e. we are considering the direction only, not the 

magnitude of the vectors.  Hence, vector valued diffusion becomes direction diffusion, which 

generates a scale-space with some nice properties, such as discontinuities on the image 

(edges) are allowed and direction diffusion is not affected by illumination differences on the 

scene.  Further work is required in this area to couple optimally, both magnitude and 

direction to obtain a scale-space framework for vector-valued images that use all available 

information in vector-valued images and not just the magnitude or the direction separately. 
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Notice that on Equations 2.23 to 2.25, the diffusion coefficient or the diffusion tensor 

is the same for all channels, which prevents that for instance, discontinuities can be created at 

different image locations, on each channel [Weickert, 1996; Weickert and Brox, 2002; 

Sapiro, 2001]. 

2.6 Multiscale Segmentation 
 
The information required for critical image analysis and understanding is usually not 

represented in terms of pixels, but in the spatial structures, i.e., the homogeneous regions 

(objects) and their spatial relationships at different image scales [Gorte, 1998; Baatz and 

Schäpe, 2000; Blaschke et al, 2000, 2001].  Scale-space theory aims to obtain this structure 

within a formal theory that enables multi-resolution image analysis and multiscale 

segmentation.  Nevertheless, the scale-space theory and the derived multiscale segmentation 

have been introduced relatively late for multispectral and hyperspectral imagery, in part due 

to the high dimensionality of the data and heterogeneity (spatial and spectral) of remote 

sensed images.      

In the past few years, several multiscale object-oriented approaches have been 

proposed for segmenting multispectral imagery, such as the Fractal Net Evolution Approach 

(FNEA), the linear scale-space of Lindeberg, and Multiscale Object Specific Analysis 

(MOSA), see [Hay et al, 2003] for a review and comparison of these methods.  The object-

oriented approach consists in generating a multiscale representation of the image based on 

similarity metrics and hierarchical clustering, but without using a formal definition of scale.  

More recently, Bayesian hierarchical clustering using fuzzy trees has been introduced 

in [van de Vlag and Stein, 2007] to segment multispectral images.  Adaptive hierarchical 
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clustering and Support Vector Machines (SVMs) are used in [Bruzzone and Carlin, 2006] for 

supervised classification of high spatial resolution images.  Multiscale representations using 

wavelet shrinkage [Othman and Qian, 2006] and morphology [Plaza et al, 2007] have been 

recently extended to hyperspectral imagery.  Wavelet shrinkage and morphology have been 

proven to be equivalent to the continuous scale-space framework generated by PDEs [Sapiro, 

2001].  However, on implementation many of the geometric properties of the continuous 

scale-space are missing in the discrete version, by propagation of numerical errors that 

introduce artifacts as the scale increases [Durand and Froment, 2003; Bosworth and Acton, 

2003] and some nice properties of the formal scale-space as defined on Section 2.2 are lost.  

Many other algorithms have been also proposed in the past for high spatial resolution 

multispectral imagery, based on level sets [Keaton and Brokish, 2002], histograms 

[Silverman et al, 2004], combination of the spectral and spatial information [Paclík et al, 

2003] to name just a few.  

In this work, we improve and extend to hyperspectral imagery, the fast segmentation 

algorithm for grayscale images proposed by [Sharon, et al, 2000], inspired by Algebraic 

Multigrid methods (see Chapter 4) and normalized cuts, which is a segmentation algorithm 

proposed by [Cox et al, 1996] and improved later by [Shi and Malik, 2000].  Recently, an 

extension of Sharon’s segmentation algorithm has been proposed for multispectral imagery 

[Galli and De Candia, 2005].  Nevertheless, Sharon’s segmentation algorithm is based on 

hierarchical clustering, rather than on the scale-space representation of the image using 

parabolic (geometric) PDEs.  We propose here to integrate the well-founded geometric scale-
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space representation of an image using PDEs with a modified version of Sharon’s 

segmentation algorithm that fits perfectly well within this framework. 

We integrate in Chapter 4 the well-founded scale-space representation of an image 

using geometric PDEs, with a modified version of [Sharon et al, 2000] segmentation 

algorithm that fits seamlessly within the scale-space framework. 

2.7 Scale Space Representation of Hyperspectral Imagery 
 
The scale space representation of multispectral imagery has been based in the past in 

hierarchical clustering and the linear scale-space [Hay et al, 2003; Navulur, 2007]. Less 

aware is the remote sensing community of the use of geometric PDEs for the generation of 

geometric scale-spaces that have well-grounded mathematical and numerical foundations.  

 Lennon [Lennon et al, 2002] used an explicit discretization of the un-regularized 

version of the Perona-Malik equation (Equation 2.5) extended to vector-valued images, to 

smooth multispectral imagery.  They also show that classification accuracy increases after 

nonlinear smoothing.  In Chapter 3, we extend several well-known semi-implicit methods 

that enable the extraction of a fast scale-space representation of hyperspectral imagery; based 

on the semi-implicit discretization of Equation 2.23, see also [Duarte et al, 2006, 2007]. 

2.8 Concluding Remarks 

We have introduced in this chapter a formal framework for scale-space image smoothing of 

grayscale and vectorial images using geometric parabolic PDEs.  The scale-space concept is 

the basis of the object oriented paradigm [Navulur, 2007], however, within this paradigm the 

scale corresponds to image resolution making this approach heuristic.  The formal scale-
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space framework presented here provides a well-founded base for the object-oriented 

paradigm in multi and hyperspectral imagery.   

 The purpose of the next chapter is to make the formal scale-space framework 

computationally attractive to process hyperspectral imagery, exploring different numerical 

methods to solve a slightly modified version of Equation 2.23.        
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___________________________________________________________________________ 

 

3 Comparative Study of Semi-Implicit Schemes for 

Nonlinear Diffusion in Hyperspectral Imagery 
___________________________________________________________________________ 
 
 
 
 
 
 
 
 

I have tried to avoid long numerical 
computations, thereby following 
Riemann’s postulate that proofs should be 
given through ideas and not voluminous 
computations.  
DAVID HILBERT  

 
 
 

In this chapter, we show that semi-implicit discretization schemes (see Section 2.4) have 

better performance (in terms of accuracy and CPU time) than traditional explicit schemes to 

solve the nonlinear diffusion PDE on hyperspectral imagery.  We also show that nonlinear 

diffusion can be used to reduce the spatial and spectral variability in hyperspectral imagery, 

improving classification accuracy.   

From the different extensions to vector-valued images presented on Section 2.5, we 

choose the nonlinear diffusion PDE (Equation 2.23) given that is the simplest and most well-

known PDE in the literature.  It also provides segmentation-like results that facilitate the 

work of our next objective (Chapter 4), which is segmenting hyperspectral images.  We use 

here a simple variant proposed by [Perona and Malik, 1990] for scalar images that introduce 

some anisotropy in the equation, hence, our PDE can be considered anisotropic.  In addition, 

some of the anisotropic diffusion PDEs proposed in the literature [Catte et al, 1992; Weickert, 
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1996] tend to round sharp corners in such a way that, for instance, an object with rectangular 

shape might be transformed into a rounded rectangle, while in nonlinear diffusion all the 

edges are preserved.  We did not consider the introduction of a fidelity term (Equation 2.13), 

since it is our belief that penalizing the difference with the original image is not appropriated 

in general, because it would penalizes the smoothing effect over very noisy images.   

3.1 Extension of the Perona-Malik Equation to Vector-

Valued Images 
 
Let us represent now a hyperspectral image with M bands and N pixels, in matrix form as, 
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where, each row ui corresponds to the sampled spectrum on the i
th pixel, 1≤i≤N, and the 

image pixels had been indexed either by rows (row major column format) or by columns 

(column major format) in such way that matrix U has N rows corresponding to the number of 

pixels in the image.  Hence, U is an N×M matrix.   

Now, we will explain in detail the extension of the regularized Perona-Malik equation 

to vector-valued images.  We modify a bit Equation 2.23 as, 
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where, we had extended the scalar diffusion coefficient proposed by Weickert (Equation 2.9) 

to vector-valued images.  Notice that by dividing by M on Equation 3.2, we are trying to 

make the diffusion coefficient independent of the number of bands in the image.   
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For a 2D vector valued image, we can decompose Equation 3.2 as, 
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which can be rewritten as, 
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where for simplicity, we had dropped the division by M, which will be implicitly assumed 

from now on.  As Perona and Malik argue [Perona and Malik, 1990], this change avoids 

computing the gradient of the image (as in Equation 3.2), which is more expensive than 

computing the derivative (Equation 3.4) and it introduces some anisotropy to the equation.  

Indeed, Equation 3.4 can be rewritten as, 
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which is a particular case of the anisotropic diffusion Equation 2.24, with D being a diagonal 

matrix.  In particular, we can see that Equation 3.4 has two diffusion components, one along 

the x-axis (first term on the RHS of Equation3.4) and other along the y-axis (second term on 

the RHS of Equation3.4), this allows that the diffusion process vary according to each 

component independently and hence, diffusion is not isotropic as in 2.23, but also is not as 

anisotropic as Equation 2.24.   

 Since the objective of the diffusion coefficient in Equations 3.2 to 3.4 is to prevent 

diffusion across the boundary between two different regions, the argument θ is not 

necessarily the image gradient as defined in section 2.5.  The diffusion coefficient can be 

made dependant on any distance measure θ that allows detecting the boundary between two 

regions.  Hence, in general, the diffusion coefficient is given by, 
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where, σθ u∇=  for a grayscale image, or it can be as defined on Equations 3.2 and 3.4, 

for vector-valued images and α has the same meaning as in Equation 2.9.  However, θ could 

also be a similarity metric that exploits better the higher information content of hyperspectral 

images, such as the metrics proposed by [Sweet, 2003; Bachman et al, 2005; Castrodad et al, 

2007]. 

In the remainder of this chapter, we will explain in detail the explicit and semi-

implicit discretization schemes used to discretize Equation 3.4 and the experiments made to 
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compare the different discretization schemes in terms of its numerical performance and in 

terms of their effect on the classification of hyperspectral imagery. 

3.2 Discretization Scheme for the Vector-Valued Nonlinear 

Diffusion Equation 
 

As in [Perona and Malik, 1990], we use a forward-time (scale), central-space 

discretization scheme that is first order accurate in scale and second order accurate in space 

[Strikwerda, 2004] using only the four nearest neighbors.  Figure 3.1 shows the finite 

difference stencil used to discretize Equation 3.4, where the dark circles indicate the pixel 

(center) and its four nearest neighbors, while the white dashed circles represent intermediate 

values that are constructions used in the discretization scheme, but do not correspond to real 

pixels in the image.   

   
Figure 3.1 Finite Difference Grid of the Discretization Scheme. 

Also, we are assuming that the pixels on the image are indexed by rows, where Ny is 

the number of rows and Nx the number of columns of the image, hence, the left and right 

neighbors have indices i - 1 and i + 1, respectively, while the up and down neighbors are one 
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row before, i.e. i - Nx, and one row after, i.e. i + Nx.  The intermediate values have non-

integer indices that are used only to indicate that they are halfway between real pixels in the 

image. 

Having into account the stencil shown on Figure 3.1, and that i = 0,…, N-1, k = 0, …, 

K-1, let us discretize Equation 3.4 in two steps. First, using a forward-time, central-space 

discretization scheme [Strikwerda, 2004], 
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Second, using central-space discretization again for the remaining spatial derivatives, 
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As it was defined on the previous chapter, the boundary conditions require that there is no 

flux outgoing or incoming trough the image boundary ∂Ω, hence on implementation, the flux 

terms g(.)(∆u) on Equation 3.7 with calls to indices outside the boundary of the image are 

made zero.   

Now, solving for 1+k
iu  on Equation 3.7, 
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where, µ = ∆t, ∆x = ∆y = 1, and  
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Notice that on Equation 3.9, the argument of the diffusion coefficient (θ ) corresponds to the 

Euclidean distance between vector-valued pixels along the x and y axis. 

Reorganizing Equation 3.9 a bit more, 
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Equation 3.10 corresponds to the explicit discretization of Equation 3.4, which in matrix-

vector form can be summarized as,  

( ) 1,,0,1 −=+=+ Kkkkk
LUGIU µ , 3.11 

 

where I and G are N×N matrices, being I the identity matrix, and matrix G accounts for the 

diffusion coefficients on each pixel.   From Equation 3.10, it is easy to see that kGI µ+ is a 

matrix with only five diagonals, and hence, there is no need to store kGI µ+ , only the 

diffusion coefficients (Equation 3.9).   

From Equation 3.10, it is easy to derive the semi-implicit scheme.  Let us consider 

now that the discrete differences on the RHS of Equation 3.8 are taken at the next scale k + 1, 

i.e.  

( ) ( ) ( ) ( )[ ]11
,

11
,

1
1

1
,

11
1,

1 +
−

+++
+

+
−

+++
+

+ −−−+−−−+= k

Ni

k

i

k

Si

k

i

k

Ni

k

Ni

k

i

k

i

k

Wi

k

i

k

i

k

Ei

k

i

k

i yy
gggg uuuuuuuuuu µ . 3.12 

 

 

Reorganizing Equation 3.12, 
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In matrix-vector format,  

( ) 1,,0,1 −==− + Kkkkk
LUUGI µ . 3.14 

 

which corresponds to the semi-implicit discretization of Equation . 

 The semi-implicit scheme indicated on Equation 3.14 requires solving a linear system 

of equations at each scale-step, k.  Given that matrix kGI µ−  have only five non-zero 

diagonals, some approximations to the exact solution of Equation 3.14 have been proposed in 

the past for scalar images.  Alternatively, Equation 3.14 can be solved using the 

Preconditioned Conjugated Gradient (PCG) method, which is a fast iterative method that can 

obtain very accurate solutions, when kGI µ− is positive definite (see Section 3.2.2). 

3.2.1 Approximations with Semi-implicit Schemes 

Let us decompose the matrix of diffusion coefficients G into its components along the x and 

y axis, i.e. G = Gx + Gy, where Gx contains only the gE and gW diffusion coefficients and Gy 

contains only gN and gS (see Equation 3.10).  Hence, Equation 3.14 can also be expressed as, 

( ) kkk

y

k

x UUGGI =−− +1µµ . 3.15 
 

The simplest semi-implicit approximation to Equation 3.15 is given by the Alternating 

Direction Method, Locally One Dimensional or ADI-LOD [Strikwerda, 2004; Barash et al, 

2003],  
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( )( ) k
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x GGIGIGI µµµµ −−≈−− . 

 Hence, an approximated solution to Equation 3.14 can be found by solving first a 

system which considers diffusion only along one direction and then diffusion along the other 

direction (i.e. locally one-dimensional), 
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Given that k

xGI µ−  and k

yGI µ−  are tri-diagonal matrices, the two systems indicated on 

Equation 3.16 can be solved in linear time complexity, O(NM), using the Thomas algorithm 

[Weickert et al, 1998], which can be extended to vector valued images in a straightforward 

way (see Appendix A). 

 Another approximation is given by the Douglas-Rachford ADI method [Strikwerda, 

2004], which can be extended to vector-valued images as (see Appendix B1 for more details), 
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where, the vector-valued Thomas algorithm (Appendix A) can be used again to solve these 

two equations in linear time complexity (see Section 3.1.3). 

 Finally, another approximation to Equation 3.14 is given by the Peaceman-Rachford 

method [Strikwerda, 2004; Barash et al, 2003], extended here to vector-valued images as 

(see Appendix B1 for more details), 
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where, the Thomas algorithm can also be employed to solve both tri-diagonal systems. 

 The previous ADI methods have the disadvantage of being dependant on the order of 

axis (x or y) chosen to factorize matrix kGI µ− , hence, they are not rotationally invariant 

[Barash et al, 2003] and require solving two linear systems in sequence.  A different 

approach is used by the Additive Operator Splitting (AOS) proposed by [Weickert et al, 

1998], which has the advantage of being rotationally invariant and it consists of two 

decoupled systems that can be solved in parallel.  The AOS applied to vector-valued images 

(see Appendix B1) is given by, 
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Each of the two systems on Equation 3.19 can be solved efficiently using the Thomas 

algorithm. 

3.2.2 Preconditioned Conjugated Gradient Method 
 

The conjugated gradient (CG) method is an efficient iterative method to solve sparse 

systems of linear equations whose matrix is symmetric positive definite [Strikwerda, 2004].  

On Appendix B2, we show that matrix GIA µ−= on Equation 3.14 is positive definite and 

hence, the CG method will solve Equation 3.14 efficiently.  In this section, we will drop the 

dependence of G and A on the scale step k, to avoid confusion with the steps of the PCG 



 
 
 
 

 49 

algorithm. 

Since A is a matrix of size N×N, the CG method will always converge to the exact 

solution of Equation 3.14 in N iterations [Saad, 2003].  However, for large datasets, as is the 

case of Hyperspectral imagery (see Section 1.1) N can be very large, and in practice, the CG 

must be stopped when the initial error is reduced below a given tolerance.  The reduction of 

the initial error in the CG method depends on the condition number κ of matrix A, as 

[Schewchuk, 1994; Saad, 2003],  
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where ei is the error, at the ith iteration.  From Equation 3.20, one can see that the number of 

iterations required to reach a given tolerance increase as the condition number of the matrix 

increases.  As shown on Appendix B2, the condition number of matrix A increases 

proportionally to µ and the threshold parameter α (see Equation 3.6).  In practice, for large 

data sets as is the case of hyperspectral imagery, we want to use large values of µ and hence, 

the matrix’s condition number must be improved by pre-conditioning.  The basic idea of 

preconditioning is to replace the system Auk+1 = uk by [Strikwerda, 2004], 

kk uCAuC 111 −+− = , 3.21 
 

where, matrix C is called the preconditioner of A and AC 1−  is a matrix with better condition 

number than A, such that the conjugated gradient method converges faster.  In general, Ck 

should approximate A such that C-1
A≈I, and the product C-1

u must be easily computed, for 
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any vector u.  Since A is the same for all image bands on a hyperspectral image, the 

extension of PCG to hyperspectral images is given by, 

kk UCAUC 111 −+− = . 3.22 
 

The problem of preconditioning is to improve convergence enough to make up for the cost of 

computing C-1
U, on each iteration of the CG method.   

Solving Equation 3.22 independently for each band on a hyperspectral image with the 

CG method is too expensive, since convergence would vary from one band to the next.  In 

order to speed up the process and use better the capabilities of Matlab, we propose here to 

update all image bands, simultaneously.  More precisely, let us consider the general linear 

system AX = B, where X and B are dense matrices of size N×M.  In our case, B = Uk the 

smoothed hyperspectral image at scale k, and X = Uk+1 the smoothed hyperspectral image at 

scale k+1.  Hence, X and B have the form, 
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where xi, bi are spectral vectors of length M and A is a positive definite matrix, which in our 

case is sparse, containing only five diagonals.  The residual R = B – AX has the same 

structure as X and B and also the auxiliary matrices P and Q used in the CG algorithm, see 

[Strikwerda, 2004; Barret et al, 1994].  However, we can look R (also P and Q) in terms of 

the residual of the different grayscale images that make up the hyperspectral image, i.e. 

[ ],21 MrrrR L=  
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where, rj is the residual on the j
th band. 

The extension of the PCG algorithm to vector-valued images is given on Equation 3.23, 

where n indicates the iteration step within the CG algorithm.  We call this algorithm here as 

PCG-vectorial.  Notice that scalars α, β  on the standard PCG algorithm are changed here to 

vectors of size M, since we are updating M images simultaneously. 
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 Another difference is how we compute the error in order to stop the algorithm.  The 

error in Matlab’s PCG routine 1  (pcg.m) is computed as nAxb − , i.e. the current true 

residual (which is different from the estimated residual rn).  The straightforward extension of 

this residual term to vector-valued images would be nAXBR −= , which is expensive to 

compute and left us with the problem of how to compute the error.  Hence, we decided to 

stop the algorithm using the mean value of the image, as indicated on Equation 3.23, which is 

computationally cheaper.  Section 3.3.2 shows the speedup achieved by the vectorization of 

the code, while the accuracy remains as good as running the PCG band by band.    

The simplest preconditioner for A = I - µG is based on the Symmetric Successive 

Over-Relaxation method (SSOR) method, which has an explicit formula for the 

preconditioner C [Strikwerda, 2004], 

( )
( )( ) 20,

2

1
<<−−

−
= ωωω

ωω
TLILIC , 3.24 

 

where, A = I – L – LT, and hence, L is the lower triangular part of µG, LT the upper 

triangular part, and ω ∈ (0,2) is a parameter that must be settled manually.  Hence, RCZ 1−=  

on Equation 3.23 can be obtained as,  

( )
( )( ) RZLILI =−−

−
Tωω

ωω 2

1
. 3.25 

 

Since, I – ωL is lower triangular and I – ωLT is upper triangular, the linear system indicated 

on Equation 3.25 can be solved in linear time using simple forward and backward 

substitution as,  

                                                 
1 The pcg.m routine in Matlab was created by Penny Anderson, 1996, working at Mathworks. 
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Another, preconditioner commonly used in practice is the incomplete Cholesky 

factorization that approximates A as CLLA =≈ T~~ , being L
~
 a lower triangular matrix.  In 

our work, we use the incomplete Cholesky factorization with “0” drop tolerance as indicated 

in [Saad, 2003], which means that L
~
 has the same sparsity pattern as the lower triangular 

part of A.  Since, the numerical factorization of A might be as expensive as one iteration of 

the CG method [Barret et al, 1994], we use instead the analytical factorization proposed by 

[Saad, 2003] (see Appendix B).  Hence, RCZ 1−=  on Equation 3.23 is computed by forward 

and backward substitution as, 
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ADI-LOD can also provides another preconditioner, since it approximates matrix A, 

as  

( )( ) AGIGIC ≈−−= yx µµ . 

Hence, RCZ 1−=  can be computed using the ADI-LOD approximation as preconditioner, 
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Similarly, AOS also can be used as preconditioner, since, 
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( ) ( )[ ] 1111 22
2

1 −−−− ≈−+−= AGIGIC yx µµ  

Hence, RCZ 1−=  on Equation 3.23 can be computed as, 
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The Peaceman-Rachford and Douglas-Rachford ADI schemes are more expensive 

computationally and more sensitive to the scale step than ADI-LOD and AOS, hence, they 

are not used here as preconditioners.   

 Additionally, ADI and AOS schemes, used as preconditioners, require the inclusion 

of a reduction factor ρ [Castillo and Saad, 1998], in order to avoid instability on the 

conjugated gradient method at high scale steps.  If we want to find RCZ 1−= , then 
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 The CG method can be accelerated by choosing an initialization close to the actual 

solution.  Given the good performance and low computational cost of ADI-LOD (see Section 

3.2.1), we use it to initialize the best PCG method we found (PCG using Cholesky 

factorization), and we call it here PCG-ADI-LOD (see Section 3.2.1). 

3.2.3 Time and Disk Space Complexity 
 
Let us analyze now, the time complexity and disk space requirements of the methods 
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presented on previous section.  Since the number of scale-steps is given by K = T/µ, with T 

the final scale (see Section 2.4), then the total time complexity is K times the time complexity 

of a single scale-step.  Given the large values that the semi-implicit schemes allows to use for 

the scale-step, µ, while preserving good accuracy of the computed solution (see Section 3.3), 

2-5 scale-steps are enough to smooth common hyperspectral images.  Since, in practice 

K<<M<<N  then K can be considered O(1) and the time complexity of the algorithms 

presented in previous section is dominated by the time complexity at each scale-step. 

The computation of the diffusion coefficients is a common step on all the algorithms 

presented in previous section.  The diffusion coefficients in Equation 3.9 can be found in 

O(M) time, since they only require to compute the 2-norm of the difference between two 

spectral vectors.  Also, the disk space requirements of all the algorithms discussed on 

previous section are ~2NM, since the hyperspectral image kU  is of size NM as well as the 

Gaussian smoothed image k

σU .  Notice that on each scale step kU  and k

σU  are overwritten, 

hence, no extra disk space storage is needed. 

Let us analyze the time complexity of the explicit scheme.  From Equation 3.10, it is 

clear that, after computing the diffusion coefficients, the explicit scheme performs a linear 

combination of spectral vectors, which takes O(M) time.   Given that the computations 

involved on Equation 3.10 are repeated over each one of the N pixels in the image, the time 

complexity of the explicit scheme is O(NM), i.e. linear in the size of the image.   

The disk requirements of the explicit scheme are just ∼2MN, since in addition to kU  

and k

σU , the largest temporal variables needed are the diffusion coefficients, which require 
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only O(N) disk space.  Hence, the disk space requirements by the explicit scheme are O(N) + 

2NM ∼2NM, since M >> 1, as is the case of hyperspectral imagery.   

On the other hand, the approximated AOS and ADI semi-implicit schemes are based 

on the Thomas algorithm, which is run only two times on each method (see Equations 3.16 to 

3.19).  Since the vector-valued Thomas algorithm runs in O(NM) time (see Appendix A), the 

time complexity of all these methods is O(NM), given that the remaining operations are sums 

of two dense matrices of size N×M (Equation 3.17), which requires O(NM) time, or the 

multiplication of a dense matrix of size N×M for a tri-diagonal matrix (Equations 3.17 and 

3.18), which is also O(NM).  The disk space requirements for the AOS and ADI methods are 

the same as the explicit method, i.e. ∼2NM, since all the temporal variables required in the 

Thomas algorithm are O(N). 

As can be seen from Equation 3.23, the operations in the PCG algorithm are dot 

products between vectors of size M, which requires O(M) time, dense matrices of size N×M 

multiplying vectors of size M, which requires O(NM) time, a sparse matrix (five diagonals of 

size O(N)) multiplying a dense matrix of size N×M, which requires O(NM) time, since each 

element of the product is obtained in O(1) time.  Finally, the computation of Z on Equation 

3.23 is also O(NM), since it consists of solving first a lower triangular, tri-diagonal system of 

size NM by forward substitution and then an upper triangular, tri-diagonal system of size NM 

by backward substitution (see Equations 3.25 to 3.31).  Hence, on each iteration, the PCG 

algorithm takes O(NM) time. 

However, the number of iterations of the PCG method needed to reach a given error 

tolerance is a variable that depends on the scale-step µ and the condition number of the 
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matrix A.  Hence, in general the time complexity of the PCG algorithm would be O(ηNM), 

where η is the number of steps necessary to reach a predefined error level.  In our 

experiments, we found that the maximum number of iterations, which provides good 

accuracy and competitive running times (relative to ADI and AOS methods) is 30, hence η  = 

O(1) and the PCG algorithm runs in O(NM) time, however, η changes according to the value 

of µ, since the condition number increases with µ (see Appendix B2).   

Finally, let us consider the disk space requirements for the vector-valued PCG 

algorithm.  There are five variables on Equation 3.23 (including kU ) of the same size as the 

image, i.e. requiring each one NM disk space.  The other temporal variables require only 

O(N) disk space and since M >> 1, they can be ignored here.  However, notice that variable Z 

on Equation 3.23 can be replaced by Q without affecting the algorithm; hence, the PCG 

method requires ∼4NM disk space, given that the space required by k

σU  is liberated after 

computing the diffusion coefficients and it is not required by the PCG algorithm.   

Table 3.1 summarizes the analysis of the asymptotic time and disk complexity of all 

the discretization schemes and PCG methods considered here.  In Section 3.2, we analyze the 

speed up achieved with the semi-implicit schemes and PCG methods, which provide us a 

better comparison between these methods, since in the asymptotic analysis, the constants 

involved are hidden. 
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Table 3.1 Summary of Time and Disk Space complexity 

Time Disk Space

Explicit O (NM ) ~2NM

AOS O (NM ) ~2NM

ADI O (NN ) ~2NM

PCG O (ηNM ) ~4NM

Complexity
Method

 

3.3 Experiments 
 

In this section, we show that semi-implicit discretization schemes have better performance, in 

terms of accuracy of the computed solution and CPU time, than traditional explicit schemes 

to solve the nonlinear diffusion PDE on hyperspectral imagery.  We also show that nonlinear 

diffusion can also be used to reduce the spatial and spectral variability in hyperspectral 

imagery, improving classification accuracy [Duarte et al, 2006, 2007].  The performance of 

the vector-valued anisotropic diffusion PDE is studied using four hyperspectral images.  The 

first is a synthetic image that allows us to measure the reduction in the spatial and spectral 

variability and visualize artifacts or the destruction of edges easily.  The synthetic and real 

hyperspectral images are used here for the evaluation of the performance of the implemented 

methods in terms of speedup and accuracy of the computed solution.  The real hyperspectral 

images are also used here to evaluate the effect of nonlinear diffusion on image classification 

and its relationship with the accuracy of the computed solution to the PDE. 

The explicit and semi-implicit methods indicated in the previous section were all 

implemented in Matlab 7.0.  The classification of the hyperspectral images was performed 
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with Multispec2, freeware software developed by D. A. Landgrebe from Purdue University.  

Also, all the real images were mapped to the [0 1] range, using 
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The final scale (K on Equation 3.14) is chosen here as a convenient integer value that 

facilitates the comparison between the different schemes.  The gradient thresholds (α on 

Equation 3.6 used here for each hyperspectral image, where all found simply by scanning 

within the range [0.01 0.025] at intervals of 0.001 or larger, and choosing the value of α that 

produced the best classification accuracies, while the semantically meaningful edges in the 

image are preserved.  This range corresponds to the larger range of variability that we had 

found for this parameter in all the hyperspectral images we had work with.  On the other 

hand, we must select a standard deviation of the smoothing Gaussian kernel G(0,σ2) 

(Equation 2.8) such that σ ≤ 1/3, in order to preserve the locality of the diffusion process and 

given that 99.7% of the Gaussian area is within ± 3σ, that is, ±1 pixel from the center, which 

corresponds to the stencil used for the discretization of the nonlinear diffusion equation, i.e. a 

3×3 grid (Figure 3.1).  As Weickert [1998] suggested, the regularization of the image can be 

done efficiently using isotropic diffusion, on each step with µ  = σ 2/2.   

 

 

 

                                                 
2 http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/ 
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By trial and error, we found that σ = 1/5 is the value that best preserves the edges on 

all images used so far and at the same time eliminates impulsive noise.  Also, for the PCG 

algorithm we set the maximum number of iterations to 30 given that the maximum number of 

iterations found in practice, were all lower than 20.  We also fixed the error tolerance of the 

CG algorithm to 10-3 (Equation 3.23), which provide us with the best trade off between 

accuracy and speed such that the PCG methods could compete with the approximated semi-

implicit schemes at large scale-steps.  The four hyperspectral images used in our experiments 

are, 

1. The NW Indian Pines image (Figure 3.2.a) taken with the AVIRIS3 (Airborne 

Visible/Infrared Imaging Spectrometer) sensor, flown by NASA/Ames on June 12, 

1992, over an area 6 miles west of West Lafayette, Indiana.   

  
     (a)           (b) 

Figure 3.2 a) Indian Pines (RGB shown corresponds to bands 47, 24, and 14), b) Ground truth
2
. 

This image contains 145x145 pixels and 220 spectral bands in the 400-2500 nm range, 

for which ground truth exists2 (Figure 3.2.b).  We disregard bands 1-3, 58, 77, 103-
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110, 148-166, and 218-220, from the original image either because they correspond to 

absorption bands, they were too noisy or present strong illumination differences due 

to the sensor.  Hence, the processed image has 145×145 pixels and 185 spectral bands 

in the 410-2430 nm range. 

2. A synthetic hyperspectral test image (Figure 3.3) made from spectral signatures 

extracted from the Indian Pines image to fill simple geometric figures: triangle, 

ellipse, donut, and a common background.  This image has 150×150 pixels and the 

same number of bands as the Indian Pines image.  The pixels belonging to each 

geometric figure and background were selected at random and with uniform 

probability, from the pixels belonging to four different crops in the Indiana Pines 

image: the Corn-min field (triangle), the Soybeans-notill field (donut), the Soybeans-

min field (ellipse), and the Hay-windrowed field (the background).   

 

The spectral variability within each region of the synthetic image can be appreciated 

by superimposing the spectral signatures of each pixel within each region, as 

indicated on Figure 3.3. 

                                                                                                                                                       
3 http://aviris.jpl.nasa.gov/ 
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Figure 3.3 Synthetic Hyperspectral image, showing also the spectral variability within each region. (RGB 

shown corresponds to bands 47, 24, and 14) 

3. The Cuprite image (Figure 3.4.a) taken over the cuprite’s mining district, 2 km 

north of Cuprite, Nevada, with the AVIRIS (Airborne Visible/Infrared Imaging 

Spectrometer) sensor, flown by NASA/Ames4 on June 19, 1997.  This image contains 

five scenes for a total of 640×2378 pixels and 224 bands in the 370-2500 nm range.  

We selected a portion of the fourth scene, in the Cuprite image, of size 500×500 

pixels that corresponds to a section of the mineral map from the Cuprite mining 

district, reported by the US Geological Survey (USGS) spectroscopy laboratory in 

1995, using the expert system algorithm Tetracorder [Clark et al, 2003] and 

signatures of 60 sampled fields in the region.  We use the USGS images as ground 

                                                 
4 http://aviris.jpl.nasa.gov/html/aviris.freedata.html 
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truth5 (Fig. 3.6).  We selected from this image 50 bands: 172-221 that correspond to 

the 2000-2480 nm vibrational absorption region used by the USGS to map minerals 

in the Cuprite region. 

  
      (a)            (b) 

Figure 3.4 a) RGB composite of Cuprite image using bands 183, 193, and 207 and b) RGB composite of  

  the noisy False Leaves image using bands 90, 68, and 29. 

4. The False Leaves indoor image (Figure 3.4.b) of size 640x640 pixels and 120 

bands in the 402-908 nm range, collected by the Surface Optics Company6 using the 

SOC-700 hyperspectral imager.  We selected a portion of this image of size 540×575 

pixels that contains all the objects present in the original image.  Additionally, and 

given that this spectrometer has a high spectral resolution, we selected only 30 bands 

of the original image, by taking one of each four consecutive bands.  Since, this 

image has a high Signal to Noise Ratio (SNR) and none of the atmospheric effects 

that affect remote sensed images, such as those taken with the AVIRIS sensor; we 

                                                 
5 http://speclab.cr.usgs.gov/PAPERS/tetracorder  
6 http://surfaceoptics.com 
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add white Gaussian noise with zero mean and σ = 1, of amplitude 10% relative to the 

maximum amplitude in the image. 

 
Figure 3.5 Ground truth Cuprite image 

 

3.3.1 Performance in terms of the accuracy of the computed solution 
 
The performance of all the algorithms implemented here is evaluated in terms of the accuracy 

of the computed solution and in terms of the speedup achieved with respect to the explicit 

scheme running at his highest stable scale step, i.e. µ = ¼.  The accuracy of the computed 

solution is evaluated as the square error relative to a reference image that has been smoothed 

with the semi-implicit Crank Nicholson scheme (Equation 3.18), at different scale steps.  The 

Crank Nicholson scheme is second-order accurate, both in scale and space [Strikwerda, 2004] 

and we ensure high accuracy of the computed solution by using a very small scale-step (µr = 
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0.025).  Hence, we generate four reference images, one for each one of the hyperspectral 

images described in the previous section.    

We found that α = 0.015 is the highest threshold value that produces the best 

classification accuracies for the Cuprite and False leaves images, without damaging the 

semantically meaningful edges, while α = 0.012 was the best value found the NW Indiana 

Pines image, and α = 0.022 for the synthetic image.  Notice, from Figure 3.3, that the 

synthetic hyperspectral image has the largest spatial variability, requiring thus a large α 

threshold.  This is due the fact that the synthetic image was constructed by selecting at 

random pixels from different regions in the NW Indian Pines image.  Hence, this image does 

not have the spatial correlation that appears on natural images and it constitutes by itself a 

good test for our algorithms, since we had to select a large α value to eliminate this 

variability but at the time the semantically meaningful edges were preserved (see Figure 3.6).    

The number of scale-steps was chosen as the number of steps required by the explicit 

scheme to smooth the four hyperspectral images and produce the best classification 

accuracies.  Once defined the number of steps of the explicit scheme, the number of steps of 

the semi-implicit schemes are chosen simply as integer multiples of the largest stable scale 

step of the explicit scheme, i.e. µ0 = ¼.  We found necessary to run 100 scale-steps of the 

explicit scheme for the synthetic and False Leaves images, while 50 scale-steps were enough 

for the NW Indian Pines and Cuprite images.  Hence, the final scale for the synthetic and 

False Leaves images is 100*µ0 = 25 and the final scale for the NW Indian Pines and Cuprite 

images is 50*µ0 = 25.  We can reach these scales faster using the semi-implicit schemes at 
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larger scale-steps, hence, we select the scale steps for the semi-implicit schemes as µ /µ0 = 5, 

10, 20 and 50 for the synthetic and False Leaves images and µ /µ0  = 5, 10, 25 and 50 for the 

NW Indian Pines and Cuprite images.   

 In order to generate the reference images used to evaluate the accuracy of the other 

methods, we need to run the Crank Nicholson scheme at a much lower scale step, µr = 0.025, 

so that we need 25/µr = 1000 iterations of the Crank Nicholson scheme for the synthetic and 

False Leaves images and 12.5/µr = 500 iterations for the NW Indian Pines and Cuprite 

images.   

The best values for ω in the PCG-SSOR scheme were found, simply by sweeping ω 

in the 0.01 to 2.0 range at steps of at least 0.01.  The values of ω found by this mean were 0.5, 

0.4, 0.3, 0.15, and 0.05 for µ = µ0, 5µ0, 10µ0, 20µ0 and 50µ0, respectively, and they also 

correspond to the best values for the synthetic and real hyperspectral images used here.  

These results indicate that the SSOR preconditioner loses its effectiveness as µ increases, 

since the preconditioner tends to the identity matrix, when  ω → 0 (Equation 3.26), which 

means that it cannot do better than the CG alone.  

Finally, AOS and ADI-LOD schemes used as preconditioners did worse than the CG 

method [Duarte et al, 2007], which means that it worsened the condition number of matrix A 

and hence, it is not shown in our results here.  We believe that the matrices used as 

approximations of the semi-implicit scheme (see Section 3.2.1) are good approximations to 

solve the semi-implicit scheme directly, but the error introduced by the approximation results 

in a strong bias in the CG search and hence, damps the search for an orthogonal basis in CG.  
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In fact, we could notice that using AOS or ADI as preconditioners, the error does not reduce 

and it may in fact increase, from iteration to iteration.  

 

 
Figure 3.6 Smoothed Synthetic image, showing also the reduction in the spectral variability within each 

region in the image (RGB shown corresponds to bands 47, 24, and 14). 

Figure 3.6 shows the smoothed synthetic hyperspectral image, where it is evident the 

strong reduction on the spatial and spectral variability within each image region, after 

nonlinear diffusion, while preserving the semantically meaningful edges.  Table 3.2 indicates 

the reduction on the variance within each image region in the smoothed hyperspectral image.   

Table 3.2 Reduction the spectral/spatial variability in the smoothed synthetic hyperspectral image 

Variance reduction

Original image Smoothed image (%)

Hay-widrowed 2.42E-04 7.81E-07 99.68

Soybeans-min 8.92E-05 5.70E-07 99.36

Corn-min 8.92E-05 4.45E-07 99.50

Soybeans-notill 3.23E-04 3.85E-06 98.81

Mean variance
Spectrum

 



 
 
 
 

 68 

  
         (a)        (b) 

Figure 3.7 Training samples (RGB shown uses bands 47, 24, and 14) on a) Original and b)Smoothed 

Synthetic Hyperspectral image. 

  
(a)               (b) 

Figure 3.8 SAM Classification a) Original and b) Smoothed synthetic Hyperspectral image. 

Figure 3.7 shows the training samples used on both, the original and smoothed 

synthetic images.  The classification results are shown on Figure 3.8 using and all image 

bands and correlation SAM [Landgrebe, 2003].  It can be seen that the smoothed image was 

classified with 100% of accuracy, meanwhile the original noisy image presented 

misclassification errors on all the clases, except in the background.  
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Figures 3.9 to 3.12 show the speedup relative to the explicit scheme for each semi-

implicit method used here and for each hyperspectral image, as a function of the relative 

scale step µ/µ0.  The speedup is computed simply as, 

schemeimplicit -semi  timeCPU

schemeexplicit   timeCPU
=S . 
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Figure 3.9 Speed-up of the different semi-implicit schemes and PCG methods for the synthetic 

hyperspectral image. 



 
 
 
 

 70 

 

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

Relative Step Size (µ/µ0)

S
p
e
e
d
u
p

AOS ADI-LOD Douglas-Rachford

Peaceman-Rachford CG PCG-AOS

PCG-SSOR PCG-Cholesky PCG-ADI-Cholesky
 

Figure 3.10 S Speed-up of the different semi-implicit schemes and PCG methods for the NW Indian Pines 

image. 
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Figure 3.11 Speed-up of the different semi-implicit schemes and PCG methods for the Cuprite image. 



 
 
 
 

 71 

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

Relative Step Size (µ/µ0)

S
p
e
e
d
u
p

AOS ADI-LOD Douglas-Rachford

Peaceman-Rachford CG PCG-AOS

PCG-SSOR PCG-Cholesky PCG-ADI-Cholesky
 

Figure 3.12 Speed-up of the different semi-implicit schemes and PCG methods for the False Leaves 

image. 

From previous figures, we see the same pattern for all images, where the highest 

speedups are achieved by ADI and AOS, followed closely by Douglas-Rachford and 

Peaceman-Rachford methods.  From these figures, it is clear that the PCG-methods used, 

only improve the running time of the CG by a factor of two to four times, which is not 

enough to make them competitive.  Finding a good preconditioner is still an art (Saad, 2003) 

and these results only show that the classical preconditioners used here were all inadequate.  

Further work must be done in this area to find good preconditioners, since as Figures 3.13 to 

3.16 show, the PCG methods preserve better the accuracy of the computed solution at large 

scale-steps.  
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Figures 3.13 to 3.16 show the percentage of the square error for each one of the 

numerical methods implemented here and for each hyperspectral image.   The square error is 

computed here as, 
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where, û corresponds to the reference hyperspectral image (smoothed with the Crank 

Nicholson scheme) and u to the image computed using the explicit, semi-implicit or PCG 

methods indicated on Figures 3.9 to 3.12. 
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Figure 3.13 Square error of the computed solution for the synthetic hyperspectral image. 
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Figure 3.14 Square error of the computed solution for the NW Indian Pines image. 
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Figure 3.15 Square error of the computed solution for the Cuprite image. 
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Figure 3.16 Square error of the computed solution for the False Leaves image. 

From Figures 3.13 to 3.16 it can be noticed that the error has the same general 

behavior for all the images considered here.  In all theses figures, the PCG methods maintain 

their accuracy even at large iteration steps.  In particular, the CG method initialized with 

ADI-LOD and preconditioned with incomplete Cholesky factorization (PCG-ADI-CHolesky) 

is very insensitive to large scale-steps thanks to its initialization with ADI-LOD, which as 

can be seen from previous figures, has the lowest error of all the approximated semi-implicit 

methods at scale-steps equal or larger than 20µ0.  At moderate iteration steps, the Peaceman-

Rachford semi-implicit method has the highest accuracy, while AOS has the largest error.  In 

the experiments, we found that AOS, Douglas-Rachford, and Peaceman-Rachford produce 

artifacts on the synthetic hyperspectral image for µ ≥ 20µ0.  This result coincides with the 
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results of [Weickert et al, 1998] on the practical range of scale-steps for AOS given by µ < 

20µ0.  

  
(a)      (b) 

Figure 3.17 Smoothed synthetic image using µµµµ = 20µµµµ0 and a) AOS, b)ADI-LOD. 

Figure 3.17.a shows the artifacts (seen as gray crosses on the boundaries of the ellipse 

and donut) produced by AOS on the synthetic image using µ = 20µ0, while ADI-LOD 

(Figure 3.17.b) does not produces any visible artifact.  On the other hand, ADI-LOD and the 

PCG methods did not introduce visible artifacts on any of the hyperspectral images 

considered here. 

The visual detection of artifacts on real hyperspectral images is not as easy as it was 

with the synthetic image, because isolated artifacts of size no larger than a few pixels might 

be easily overlooked among the many different structures in the image.  However, in order to 

illustrate this effect on the real hyperspectral images, we smoothed the NW Indian Pines 

image using the Peaceman-Rachford method which has the largest square error at µ = 50µ0 

(see Figure 3.18.a) and compare it with the smoothed image obtained using the PCG-ADI-
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Cholesky (Figure 3.18.b) which has the lowest square error at this scale-step.  Notice the 

strange artificial pattern over the entire image that appears on Figure 3.18.a that was not 

present in the original image (Figure 3.2.a).   

As a rule of thumb, the Peaceman-Rachford method have the best accuracies of all 

the semi-implicit methods considered here at scale-steps µ ≤ 10µ0, followed closely by the 

Douglas-Rachford method.  Given that they also have good speedups, these two methods 

should be preferred for scale-steps µ ≤ 10µ0 if both high accuracy and speedup are of great 

importance.  Given that only AOS and ADI-LOD keep good accuracy at scales µ < 20µ0, 

these two methods should be preferred here, since they also have the largest speedups.  After 

scale steps  µ > 20µ0, only ADI-LOD and the PCG methods do not introduce artifacts and 

hence, if both accuracy and speed are required, ADI-LOD predominates over the other 

methods, given that it is also the fastest.   
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(a) 

 
(b) 

Figure 3.18 Smoothed NW Indian Pines image using µµµµ = 50µµµµ0 a) with Peaceman-Rachford (notice the 

strong artifacts introduced), b) with PCG-Cholesky initialized with ADI-LOD. 
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Since, usually, we are interested in the largest scale-steps, ADI-LOD would be 

always preferred since it is the fastest of all the semi-implicit method and, at the same time, 

have good accuracy.  Nevertheless, given the higher parallelism of AOS (see Equation 3.19), 

it might become faster than ADI-LOD on parallel implementations.     

Since we are using a formal scale-space framework here, accuracy is of prime 

importance, nevertheless in practice, an image that presents artifacts after smoothing might 

have higher classification accuracies than another smoothed with no artifacts, because 

reducing intra-object variability can make the statistical model inadequate and hence, 

smoothing can in fact decrease classification accuracy for those classifiers (see next section).  

Hence, the degree of artifacts and accepted levels of error with respect to the exact solution 

of the anisotropic diffusion equation depends heavily on the application and models used.  

Here, we are interested in generating a valid scale-space for hyperspectral imagery and 

multiscale segmentation, and hence, good accuracy of the computed solution is always 

preferred to high speedups, since artifacts can produce segments that do not correspond to 

real structures in the image.  

3.3.2 Comparison of Conjugated Gradient Vectorial vs. band by band   
 
Figures 3.19.a to 3.22.a show the speedup achieved using the vector-valued CG algorithm 

(Equation 3.23) relative to running the CG on each band, independently.     
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Figure 3.19 Comparison between CG-vectorial vs. CG band by band, in terms of a) Speedup, b) square 

error, for the synthetic hyperspectral image.  
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Figure 3.20 Comparison between CG-vectorial vs. CG band by band, in terms of a) Speedup, b) square 

error, for the NW Indian Pines image. 
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Figure 3.21 Comparison between CG-vectorial vs. CG band by band, in terms of a) Speedup, b) square 

error, for the Cuprite image. 
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Figure 3.22 Comparison between CG-vectorial vs. CG band by band, in terms of a) Speedup, b) square 

error, for the False Leaves image. 

As can be appreciated from these figures, the speed up ranges from 2.0 to 3.5 times 

the running time of the band by band CG algorithm, which is a necessary improvement to 

make it competitive to the vector-valued explicit and semi-implicit methods that are already 

exploiting the advantage of vectorization in Matlab. 

Even tough the last versions of Matlab had improved the performance of for loops 

trough the use of the Just In Time (JIT) accelerator7.  Figures 3.19.a to 3.22.a show that 

vectorization improved the performance of the code.   Nevertheless, this vectorial approach is 

by no means limited to Matlab, and in fact, current high performance implementations 

exploit the fact that the same processing needs to be performed over hundreds of bands, as is 

the case of the semi-implicit schemes used here.  Of course, full parallelism of all the 

algorithms used to process hyperspectral imagery would require partitioning the image along 

the spatial direction [Plaza et al, 2006, 2007], given the large spatial size of these images 

(see Section 1.1) and hence, additional considerations should be made besides vectorization 

that depend heavily on the architecture.  High performance implementations have several 
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architectural alternatives in hyperspectral imagery such as distributed computing, clusters 

and the use of hardware implementations using FPGAs [Plaza et al, 2006, 2007], however 

each approach have their advantages and disadvantages and possibly a better alternative is to 

use a software/hardware codesign that exploits the advantages of hardware implementations 

with the flexibility and low cost implementation of complex functions [Filho et al, 2003].  

The study of high performance implementations of all algorithms presented in this and the 

next chapter is out of the scope of this work, and is a full research project on its own. 

3.3.3 Performance in terms of classification accuracy and speedup 

In order to test the classification accuracy on the original and smoothed hyperspectral images, 

we need training and testing samples.  The NW Indian Pines and Cuprite images have 

published ground truth (see Figure 3.2.b and Figure 3.5).  Images with ground truth are very 

scarce in remote sensing, given the costs involved on its acquisition.  The False Leaves is an 

indoor image with objects that can be identified visually.  This image owes its name to the 

fact that there are some plastic leaves that cannot be distinguished from the real ones, in the 

visible range.  Hence, we must use a suitable combination of bands that include the near 

infrared wavelengths to identify the false leaves and select the corresponding training and 

testing samples. 

From Figure 3.2.b, we can see that the ground truth of the Indian Pines image consists 

of 16 classes, of which 10 correspond to different kinds of crops, 5 correspond to vegetation 

and one corresponds to a building.   

                                                                                                                                                       
7 http://www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf 
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Figure 3.23 Training (blue rectangles) and testing samples (white rectangles) on the NW Indian Pines 

image. (RGB shown corresponds to bands 47, 24, and 14). 

Figure 3.23 shows the training (blue rectangles) and testing samples (white rectangles) 

selected for 14 of the 16 classes identified on the NW Indian Pines image.  The other two 

classes (Oats and Alfalfa) were not sampled given that there are not enough training and 

testing samples to perform the classification using classical statistical classification methods. 

From Figure 3.5, we can see that the ground truth for the Cuprite image consists of 25 

classes of minerals, grouped in five categories: sulfates, carbonates, Kaolinites, Clays, and 

other minerals.   
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Figure 3.24 Training (blue polygons) and testing samples (white polygons) on the Cuprite image. 

Figure 3.24 shows the training (blue polygons) and testing samples (white polygons) selected 

on 11 classes of the Cuprite image.  They are Calcite, Kaolinite and Semectite or Muscovite, 

K-Alumnite, Kaolinite, Alunite and Kaolinite or Muscovite, Calcite and Kaolinite, 

Chalcedony, Na-Montmorillonite, Chlorite and Muscovite or Montmorillonite, High-Al 

Muscovite and Med-Al Muscovite.  We consider the different kinds of Alunites as a single 

class, given that it is extremely difficult to obtain pure training and testing samples for them 

in this image.  The remaining classes were not sampled given that there are not enough 

training and testing samples or because they were too difficult of localize within the Cuprite 
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image, even with the help of the wavelengths recommended by the USGS to identify some of 

the minerals in this image (see Figure 3.4 and Figure 3.5). 

Figure 3.25 shows the training (blue polygons) and testing (white polygons) samples 

on each one of the different objects that can be identified in the Fake Leaves image, where 

we had used bands 90, 68, 29 from the original image to form the RGB shown, which allow 

us to distinguish the fake leaves (dark) from the true leaves (red).  The classes in this image 

are the wall, the jar, the flowerpot, the true leaves, the false leaves, the metallic case, plastic 

label, paper label, and lens cover (dark red) of the featured SOC-700 hyperspectral imager 

that appears in the image. 

We use here all the classifiers available in Multispec [Landgrebe, 2003]: Maximum 

Likelihood (ML), Fisher Linear Discriminant (FLD), Euclidean Distance (ED), Extraction 

and Classification of Homogeneous Objects (ECHO), Spectral Angle Mapping (SAM), and 

Matched Filter (MF) to evaluate how each classifier is affected by the nonlinear diffusion 

process.  In fact, ECHO uses the Fisher Linear Discriminant in all the smoothed images, 

since it produces the highest classification accuracies for all the images. 
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Figure 3.25 Training (blue polygons) and Testing samples (white polygons) on the False Leaves image. 

Since the original and smoothed NW Indian Pines images have 185 spectral bands 

each and the statistical classifiers employed here require more training pixels than spectral 

bands in the image [Landgrebe, 2003], we selected 20 bands using the SVD band subset 

selection algorithm [Vélez-Reyes and Jimenez, 1998; Vélez-Reyes et al, 2000; Vélez-Reyes 

and Linares, 2002] implemented at the UPRM Hyperspectral Image Analysis MATLAB 

Toolbox [Arzuaga et al, 2004] on each one of the smoothed images.  

  The best classification results for the NW Indian Pines image were obtained using α 
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= 0.012 and 50 runs of the explicit scheme at µ0 = ¼.  Hence, the semi-implicit methods were 

also run for µ = 5µ0, 10µ0, 25µ0 and 50µ0 that corresponds to (50µ0)/µ = 10, 5, 2, and 1 scale-

steps, respectively.  For the Cuprite image, we found experimentally that a value of α = 

0.015 and 50 scale-steps produced good classification results, for the explicit scheme and 

hence, we use the same values of µ, as in the NW Indian Pines image for the semi-implicit 

methods.  On the other hand, we obtained good classification results in the noisy False 

Leaves image using α = 0.015 and 100 runs of the explicit scheme, hence, the semi-implicit 

methods were run for this image  20, 10, 5, and 2 scale-steps, respectively.  

 The classification results are shown in detail from Table 3.3 to Table 3.5 for each 

image, classifier and numerical method implemented.  On these tables, S stands for the 

speedup achieved by the numerical methods implemented, and PA and UA stand for the 

producer’s and user’s accuracies [Landgrebe, 2003] respectively.  The producer’s accuracy 

indicates the percentage of pixels belonging to a given class that were correctly classified, 

while the consumer’s accuracy indicates the percentage of pixels correctly classified for a 

given class, relative to all the pixels from the image that were classified (correctly or 

incorrectly) as belonging to that class8 .  Hence, as consumer’s accuracy decreases, the 

confusion between classes (commission error) increases, even tough a given class might have 

high producer’s accuracy.   

The highest classification accuracies and speedups are highlighted on each table, for 

each method, in bold and cursive.  The highest speedups were chosen as the maximum 

                                                 
 
8 http://geospatial.amnh.org/remote_sensing/guides/image_interp/accuracy_assessment.html 
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speedup that keeps the classification accuracy very close or above the classification accuracy 

achieved with the explicit scheme.  Of course, the best performance is for those methods that 

achieve classification accuracies above the explicit method and high speedups.    

Table 3.3 Classification Accuracies NW Indian Pines image. 

Scheme µµµµ/µµµµ0 t(s) S PA UA PA UA PA UA PA UA PA UA PA UA

Original - 0.0 - 75.3 76.5 63.7 64.9 35.0 41.0 80.6 82.2 41.0 46.1 47.1 49.8

Explicit 1 118.0 1 89.2 91.4 89.9 90.1 50.6 49.9 90.1 90.3 50.6 52.2 74.0 75.0

5 23.2 5 87.5 91.2 90.3 91.1 49.7 52.9 90.9 92.2 49.2 52.5 73.7 76.5

10 11.6 10 81.2 92.1 91.9 92.5 47.8 51.6 92.7 93.7 48.9 53.2 75.5 79.0

25 4.7 25 81.7 90.9 90.9 90.6 43.7 49.6 89.7 89.6 47.6 52.8 73.0 74.6

50 2.3 52 80.2 90.0 85.7 85.9 40.5 44.8 93.7 94.1 44.9 49.8 62.3 65.9

5 21.2 6 83.9 88.0 92.9 94.1 49.9 49.6 93.1 94.5 49.5 52.1 74.2 75.2

10 10.6 11 88.1 92.3 91.1 92.1 49.3 51.4 91.6 93.0 49.6 53.5 74.5 77.8

25 4.3 28 75.6 85.7 91.1 91.5 46.7 51.2 90.9 91.5 48.9 53.0 76.6 79.9

50 2.1 56 74.1 88.1 91.0 91.0 44.0 50.1 89.9 90.1 47.6 53.1 73.8 76.0

5 32.1 4 92.7 93.6 92.7 93.5 50.7 49.5 93.1 94.2 50.6 54.3 74.2 75.2

Douglas 10 15.0 8 94.8 95.4 91.8 92.0 51.0 53.6 91.5 91.7 50.4 54.7 71.8 72.7

Rachford 25 6.0 20 88.5 89.4 76.5 77.3 47.0 47.8 77.2 80.1 48.5 51.9 56.1 58.1

50 2.9 41 77.3 78.4 61.6 62.2 44.4 45.7 71.4 72.8 43.8 48.1 41.2 38.9

5 29.4 4 89.9 92.5 92.5 93.2 51.0 50.2 92.9 93.8 50.2 53.6 74.1 75.0

Peaceman 10 14.6 8 92.7 94.0 92.4 93.1 50.8 49.7 92.8 93.7 50.8 55.1 73.5 75.8

Rachford 25 5.8 20 87.8 90.8 78.7 79.5 47.7 47.3 82.2 83.8 48.4 50.6 59.8 61.5

50 2.8 42 75.1 79.6 63.3 63.5 45.7 47.0 70.5 71.9 46.2 48.5 40.0 37.9

5 51.5 2 83.1 87.4 92.5 93.2 51.3 54.6 92.8 93.8 49.6 52.3 74.1 74.9

10 35.6 3 89.8 91.9 92.0 93.0 50.7 53.9 92.4 93.7 49.5 53.2 73.2 75.6

25 20.8 6 81.6 87.6 92.8 93.5 49.3 53.2 91.9 92.4 49.3 52.9 75.8 79.9

50 15.3 8 80.5 90.4 91.6 91.8 45.4 50.0 91.0 91.5 49.4 54.2 74.2 77.0

5 52.4 2 83.2 87.5 92.6 93.3 51.6 54.9 92.9 93.9 49.3 52.3 74.1 75.0

PCG 10 36.1 3 90.8 92.5 92.6 93.7 51.1 54.4 93.0 94.5 49.3 52.9 73.2 75.6

Cholesky 25 20.8 6 82.3 88.1 92.5 93.1 49.5 53.5 91.5 92.0 49.1 52.7 75.9 80.2

50 14.9 8 80.6 90.3 91.6 91.8 45.5 50.2 91.0 91.6 49.4 54.3 74.1 76.7

PCG 5 52.0 2 92.2 93.8 92.0 92.4 54.0 52.5 92.1 92.6 54.4 57.6 75.3 77.2

ADI 10 35.1 3 92.4 93.9 93.4 94.5 54.9 52.8 93.6 94.8 56.0 60.0 73.5 76.8

Cholesky 25 20.4 6 89.6 91.7 94.9 95.7 52.5 51.1 95.0 95.7 54.4 57.5 74.5 74.9

50 14.2 8 76.4 85.2 93.2 94.3 48.4 49.9 93.7 95.1 53.0 56.9 75.4 80.1

MF

Classification Accuracy (%)

AOS

ML FLL ED ECHO SAM

ADI

PCG-SSOR

Numerical method

 

From Table 3.3 to Table 3.5, one can see that all the smoothed images achieve higher 

producer’s and user’s classification accuracies than the original image, on all classifiers, 

except for the Maximum Likelihood classifier on the Cuprite and Fake Leaves images, which 

is due to the fact that the reduced variability of the smoothed images makes inappropriate the 

statistical model of the ML classifier, since covariances might not be full.  
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In fact, the scale-space representation of hyperspectral imagery increases in general 

both classification accuracies, which means that the accuracy by class increases and the 

confusion between classes decreases.  This should be expected from the fact that the scale-

space representation reduces the variability within the different regions in the image and 

hence, reducing the overlapping that exists between the spectrums of different classes due to 

spectral variability (see Figures 3.27 to 3.30). 

Table 3.4 Classification Accuracies Cuprite image. 

Scheme µµµµ/µµµµ0 t(s) S PA UA PA UA PA UA PA UA PA UA PA UA

Original - 0.00 - 87.3 92.2 92.2 93.1 56.1 62.8 93.5 94.5 85.9 87.5 66.0 74.8

Explicit 1 543.4 1 86.3 84.8 97.1 97.3 58.5 63.3 97.1 97.3 90.6 93.0 79.1 79.5

5 121.6 4 76.3 87.7 96.8 96.9 58.6 62.9 96.8 96.9 90.8 93.2 79.3 82.5

10 53.6 10 72.6 90.8 97.0 97.0 58.7 62.8 97.0 97.2 90.7 93.3 78.3 81.1

25 21.4 25 76.1 91.2 95.8 96.2 58.4 62.0 95.8 96.2 90.9 93.3 78.5 80.4

50 10.7 51 79.1 91.5 94.9 95.5 58.3 63.8 94.9 95.5 91.0 93.2 77.6 79.9

5 112.9 5 77.4 82.9 96.9 97.1 58.2 63.0 96.9 97.1 90.8 93.1 79.5 82.8

10 51.8 10 73.3 85.7 97.1 97.3 58.8 63.1 97.1 97.3 91.1 93.4 79.7 82.8

25 20.3 27 46.9 67.9 96.9 97.1 58.8 62.7 96.9 97.1 90.9 97.1 78.7 81.9

50 10.2 53 63.4 78.3 95.6 95.9 58.0 61.3 95.6 95.9 91.2 93.5 78.7 81.0

5 143.0 4 83.2 91.2 96.8 97.0 58.6 63.0 96.8 97.0 91.0 93.3 80.0 83.1

Douglas 10 63.8 8 86.4 92.1 95.7 96.5 59.1 63.1 95.8 96.5 91.6 93.7 77.1 78.7

Rachford 25 28.3 19 87.0 92.4 94.3 95.4 59.3 64.4 94.4 95.9 91.0 92.8 75.9 81.0

50 14.2 38 86.0 92.4 93.5 94.3 60.0 66.3 93.5 94.3 86.6 88.6 68.9 77.9

5 150.9 4 82.1 85.4 96.8 97.0 58.5 63.1 96.8 97.0 90.8 93.1 80.5 84.0

Peaceman 10 68.8 8 79.5 90.8 97.3 97.5 58.3 62.6 97.3 97.5 90.9 93.3 79.7 82.7

Rachford 25 27.4 20 84.6 91.7 94.5 95.4 59.3 63.3 94.5 95.4 90.9 93.0 77.3 81.7

50 13.5 40 83.7 91.6 92.8 93.6 59.2 65.1 93.2 94.0 85.7 85.9 68.7 77.4

5 247.2 2 81.5 85.4 96.6 96.7 58.3 62.8 96.6 96.7 90.9 93.2 79.9 83.2

10 169.0 3 79.8 86.3 96.8 97.0 58.6 62.7 96.8 97.0 91.0 93.3 79.7 83.0

25 104.0 5 77.0 87.8 97.0 97.2 59.2 62.8 97.0 97.2 91.2 93.5 79.6 82.3

50 66.9 8 77.6 91.3 96.3 96.6 58.5 62.2 96.3 96.6 91.3 93.7 78.6 81.2

5 265.2 2 80.4 85.2 96.8 96.9 58.4 62.8 96.8 96.9 90.9 93.2 80.2 83.6

PCG 10 176.1 3 79.8 86.2 96.9 97.1 58.5 62.7 96.9 97.1 91.0 93.3 79.7 83.2

Cholesky 25 109.9 5 77.3 87.9 97.0 97.2 59.2 62.8 97.0 97.2 91.3 93.6 79.5 82.1

50 67.0 8 77.7 91.3 96.3 96.6 58.5 62.2 96.3 96.6 91.3 93.7 78.4 81.1

PCG 5 284.3 2 87.5 87.9 95.9 96.2 57.9 62.6 95.9 96.2 92.2 93.9 80.3 83.6

ADI 10 177.9 3 86.0 87.5 95.6 96.0 58.4 62.8 95.6 96.0 92.1 93.8 80.1 83.6

Cholesky 25 108.2 5 78.4 85.1 96.6 96.9 59.1 63.7 96.6 96.9 91.5 93.6 79.5 83.0

50 60.0 9 47.0 68.6 96.8 97.0 59.3 63.2 96.8 97.0 91.0 93.3 79.0 82.4

AOS

ADI

SAM MF
Numerical method

Classification Accuracy (%)

ML FLL ED ECHO

PCG-SSOR

 

The bad performance of ML on the Cuprite and False Leaves images can be 

explained by the fact that these images have less spectral variability (see Figures 3.27 to 

3.30) than the NW Indian Pines image and we are using a higher threshold value α (see 
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Equation 3.6) which means that the diffusion is higher on these images and the variability in 

the image is reduced more.  Hence, the full covariance model used in the ML classifier is not 

the best statistical model for these two images.  On the other hand, the Fisher Linear 

Discriminant classifier benefits from the reduction in the variability within the image classes 

[Landgrebe, 2003] produced by the scale-space representation of hyperspectral imagery, 

hence, it has the highest classification accuracies on all the images considered here.  A 

simpler classifier such as FLD worked well, thanks to the reduced variability in the smoothed 

images 

Table 3.5 Classification Accuracies False Leaves image. 

Scheme µµµµ/µµµµ0 t(s) S PA UA PA UA PA UA PA UA PA UA PA UA

Original - 0.0 - 79.3 81.7 77.1 79.4 55.9 59.7 82.0 84.2 74.6 76.4 48.7 52.3

Explicit 1 954.2 1 47.7 50.5 93.4 96.1 60.1 65.7 94.3 96.9 78.1 80.4 73.6 77.2

5 230.8 4 35.3 50.2 93.1 95.6 60.5 68.0 93.0 95.5 76.2 79.8 74.7 79.1

10 114.4 8 43.1 54.2 93.5 95.8 60.2 66.7 94.1 96.3 76.8 79.5 74.1 77.5

20 52.4 18 65.8 85.2 94.5 96.2 59.8 65.4 94.7 96.4 78.1 80.4 72.1 75.1

50 20.7 46 88.8 92.1 88.5 91.2 58.7 63.7 88.2 91.4 77.9 80.1 64.3 69.3

5 212.3 4 35.5 50.2 92.7 95.2 60.5 68.4 92.6 95.2 76.1 80.3 74.8 79.4

10 95.5 10 34.0 50.1 92.9 95.4 60.2 67.2 92.8 95.3 76.4 79.8 75.0 78.8

20 47.6 20 41.2 54.1 93.6 95.8 60.0 66.1 94.1 96.3 77.8 80.3 74.0 77.0

50 20.0 48 74.9 89.0 89.7 93.1 58.9 64.0 89.1 93.3 78.4 80.4 67.2 70.6

5 279.7 3 37.6 50.2 92.4 95.0 60.8 69.0 92.3 95.0 76.0 80.0 75.6 79.8

Douglas 10 145.6 7 81.5 91.9 93.7 96.2 60.6 68.0 94.1 96.6 76.6 79.9 75.1 79.3

Rachford 20 63.3 15 94.6 96.0 90.0 93.6 59.6 65.5 88.8 93.9 77.3 79.7 66.7 73.7

50 25.4 38 85.0 86.8 83.2 85.6 57.5 62.2 84.1 88.7 76.6 78.9 55.9 58.9

5 281.9 3 35.5 50.2 92.1 94.7 60.9 68.9 92.1 94.7 75.8 80.0 75.0 79.4

Peaceman 10 133.8 7 41.3 61.8 92.6 95.1 60.8 68.7 92.4 95.0 76.5 80.4 74.9 79.4

Rachford 20 62.5 15 85.4 93.3 93.6 95.9 60.4 66.9 94.4 96.6 77.1 79.7 71.5 76.3

50 24.9 38 81.5 81.5 84.6 87.4 57.8 63.0 84.5 89.1 77.0 89.1 59.0 62.1

5 381.8 2 36.7 50.2 92.4 95.0 60.9 68.7 92.4 95.0 76.0 80.0 74.9 79.6

10 255.6 4 37.8 50.2 93.1 95.6 60.7 67.4 93.0 95.5 77.0 80.0 75.2 79.3

20 181.9 5 41.0 50.3 94.0 96.4 60.3 66.3 94.2 96.5 77.8 80.2 74.4 77.5

50 88.7 11 80.5 90.5 89.6 93.0 58.9 64.1 88.7 93.1 78.6 80.5 67.2 71.1

5 389.0 2 37.0 50.2 92.3 95.0 60.9 68.7 92.3 94.9 76.0 80.0 75.2 79.8

PCG 10 240.0 4 39.0 50.3 92.9 95.4 60.7 67.3 92.8 95.4 76.8 80.2 75.0 79.1

Cholesky 20 167.9 6 42.3 50.4 93.8 96.2 60.4 66.4 94.2 96.6 77.5 80.0 74.4 77.6

50 71.4 13 79.2 90.4 89.9 93.4 59.1 64.3 88.8 93.3 78.7 80.5 67.5 71.1

PCG 5 418.1 2 48.3 61.0 87.3 91.2 60.7 68.7 87.3 91.2 75.0 76.5 77.1 83.0

ADI 10 277.5 3 42.4 60.1 88.6 92.4 60.4 69.2 88.6 92.4 74.6 75.2 76.3 81.6

Cholesky 20 167.9 6 38.0 49.8 89.4 92.8 60.3 69.4 89.4 92.8 74.8 77.0 75.5 80.3

50 69.5 14 42.0 53.0 94.5 96.6 59.9 66.4 94.5 96.6 77.9 80.2 74.2 77.5

SAM MFML FLL ED ECHO

AOS

ADI

PCG-SSOR

Numerical method
Classification Accuracy (%)

 

In general, ECHO is just a little superior than FLD in terms of classification accuracy 
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on all the images considered here. The difference between ECHO and FLD reduces as the 

smoothing increases, as can be appreciated on Table 3.4 and Table 3.5, where α = 0.015 (see 

Equation 3.6), meanwhile the difference is higher in the NW Indian Pines image, where α = 

0.012.  ECHO tries to homogenize the image before classifying it, by choosing a small 

window (2x2 pixels in our simulations). Hence, if the region within the windows is already 

smooth, due to diffusion, the difference between ECHO and FLD is reduced.  

The remaining classifiers, ED, SAM, and MF are in general very insensitive to the 

scale step, but in general, they do not achieve good classification accuracies, except for the 

SAM classifier on the Cuprite image.  The relative good performance of SAM on this image 

agrees with the reported studies on mineral classification using the spectral angle and a high 

number of bands [Girouard et al, 2004]. 

In terms of the implemented numerical methods, AOS and ADI classification 

accuracies are very insensitive to the scale-step, µ, achieving high speedups and 

classification accuracies up to µ ≤ 25µ0 on all the images analyzed here.  On the other hand, 

the Douglas-Rachford and Peaceman-Rachford methods are more sensitive to the scale step, 

achieving high classification accuracy only up to µ≤10µ0, which limits their speedup.   

PCG methods are very insensitive to the scale step and all behave similarly in terms 

of classification accuracy. The best classification accuracies and speed-ups are achieved by 

PCG-Cholesky initialized by ADI-LOD. Notice that with exception of AOS for the NW 

Indian Pines image, all the speedups that achieved good classification accuracies are within 

the range defined on previous section, considering the limits imposed by the accuracy of the 

computed solution and the introduction of artifacts in the images.  This means that in general, 
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we must have good accuracy of the solution to the anisotropic diffusion PDE to achieve good 

classification accuracies.   

It is noteworthy, though, that AOS has such a good performance in terms of 

classification accuracy (Table 3.3) for the Indian Pines image using a very large step, since 

we know that AOS is not very accurate at scale steps larger than 20µ0 (see Figures 3.13 to 

3.16).  We believe that this occurs because α is relatively small here; hence the magnitude of 

the error is lower.  AOS is also symmetric and hence the error introduced can be reduced by 

a classifier as ECHO, which tends to average out random variations in a small window.  

   
(a)    (b)    (c) 

Figure 3.26 RGB composite showing the smoothed hyperspectral images, a) Indian Pines (bands 47, 24, 

and 14), b)Cuprite (bands 183, 193, and 207), and c) False Leaves (bands 90, 68, and 29). 

Figure 3.26 shows the smoothed NW Indian Pines, Cuprite and False Leaves images 

using the numerical methods that achieve the best classification accuracies, indicated from 

Table 3.3 to Table 3.5.  Notice the strong reduction in the spatial variability on each image, 

while most of the semantically meaningful edges are preserved.  In particular, the Indian 

Pines image looks as it were already segmented and the False Leaves image has no visible 

noise.  The Cuprite image looks more blurred than the other two images, because the edges in 

this image are not sharp.  However, the smoothed Cuprite image does achieves better 
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classification accuracies than the original image (Table 3.4).  

 
Figure 3.27 Superimposed spectra showing the spectral variability within three crops in the Indian Pines 

image. 

 
Figure 3.28 Superimposed spectra showing the spectral variability within three crops in the smoothed 

Indian Pines image. 

Figure 3.27 shows the variability in the spectral signature of three selected fields 

(Grass-pasture, Soybeans-notill, and Soybeans-clean) in the NW Indian Pines image.  Figure 

3.28 shows the variability in the spectral signatures in the smoothed Indian Pines image for 

the same fields.  Figure 3.29 show the variability in the spectral signature of a region of 

Calcite within the Cuprite image and of true leaves, within the noisy False Leaves image. 
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                    (a)                           (b)          

Figure 3.29 Superimposed spectra showing the spectral variability in the a) Cuprite and b) False Leaves 

image. 

 
      (a)                           (b)  
Figure 3.30 Superimposed spectra showing the spectral variability in the smoothed a) Cuprite and b) 

False Leaves image. 

Figure 3.30 shows the spectral variability of the smoothed Cuprite and False leaves 

images, within the same regions of Calcite and true leaves selected shown in Figure 3.29.  

Figure 3.31 indicates the regions selected on the Indian Pines, Cuprite and False Leaves 

images used to construct Figures 3.27 to 3.30.  
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                 (a)    (b)       (c) 

Figure 3.31 Selected regions where the spectral signatures where extracted to form Figures 3.27 to 3.30 

on a) Indian Pines, b) Cuprite, and c) False Leaves images. 

It is remarkable the reduction in the variability of the spectral signatures shown, on 

the smoothed images.  This reduction was enough to increase classification accuracy as 

reported from Table 3.3 to Table 3.5.  Further reduction in the spectral variability would 

require a higher value of α that might lead to the destruction of important edges in the image.   

In order to see the effect of nonlinear smoothing on the classification of the full real 

hyperspectral images used here, we present from Figures 3.32 to 3.34 the classification maps 

of the original and smoothed images that achieved the highest classification accuracies 

(Table 3.3 to Table 3.5).  It can be noticed from these figures that not only the testing 

samples improve their classification accuracy, but also that the smoothed images produce 

classification maps that look more accurate. 
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       (a)                (b) 

Figure 3.32 Indian Pines classification map: a) original, b) smoothed. 

 
(a)  (b) 

Figure 3.33 Cuprite classification map: a) original, b) smoothed. 

 
        (a)                (b) 

Figure 3.34 Fake Leaves classification map: a) original b) smoothed. 



 
 
 
 

 96 

3.3.4 Concluding remarks 
 
In this chapter, we showed that nonlinear diffusion can improve significantly image 

classification accuracies by reducing both, the spatial and spectral variability in hyperspectral 

imagery.  AOS and ADI semi-implicit schemes offer good performance in terms of accuracy 

and speedup of the computed solution of the nonlinear PDE.  PCG linear solvers are less 

sensitive to the scale step as the approximated ADI and AOS schemes, which mean that 

higher values of µ can be used.  However, PCG methods also require more space, and finding 

a good preconditioner is still an art.   
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___________________________________________________________________________ 

 

4 MULTISCALE REPRESENTATION AND 

SEGMENTATION OF HYPERSPECTRAL IMAGERY 
___________________________________________________________________________ 
 

 
 
 
 
 

The challenge is to understand the image 
really on all the levels simultaneously, and 
not as an unrelated set of derived images 
at different levels of blurring. 
JAN J. KOENDERINK 

 

In the previous chapter, we showed that the approximated semi-implicit discretization 

methods, ADI and AOS, are algorithmically scalable, i.e. they have linear time complexity, 

achieving acceptable accuracies (no visible artifacts) and speed ups of around 20 times over 

the explicit scheme.  On the other hand, better accuracies can be obtained using the 

preconditioned conjugated gradient method (PCG).  However, the preconditioners used did 

not scale well and hence the PCG methods implemented were slower than the approximated 

semi-implicit methods. 

 Even tough the color composites for the hyperspectral images, smoothed with 

anisotropic diffusion, look as if they were already segmented (see Figure 3.26), they are not, 

and we still need a way of segmenting them, within the scale-space framework presented on 

the previous chapter.  From the myriad of segmentation algorithms that exists nowadays for 

grayscale images [Zhang, 2001], a novel and fast segmentation algorithm proposed by 

[Sharon, et al, 2000] called our attention given that it is inspired by Algebraic Multigrid 
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(AMG) [Brigss, et al, 2000], which is a numerical method used to solve, with great accuracy 

and scalability, discrete PDEs.    

We did not use AMG on the previous chapter, because its implementation is much 

more complicated than the semi-implicit and PCG methods, and we found very good results 

using the simpler AOS and ADI schemes.  Hence, the purpose of this chapter is to integrate 

the formal scale-space framework introduced on the previous chapter with a segmentation 

algorithm that is based on this framework.   

The segmentation algorithm of [Sharon, et al, 2000] can be regarded as hierarchical 

normalized cuts.  Normalized cuts is a discrete-optimization inspired segmentation algorithm 

proposed by [Cox et al, 1996] and improved later by [Shi and Malik, 1997].  Normalized cuts 

translates the segmentation problem into a graph partitioning problem, where the pixels in the 

image are vertices in the graph and the similarity between neighboring pixels is represented 

as weighted edges of the graph.  The computationally expensive graph-partitioning problem 

in the fine grid of the image (normalized cuts) can be brought to a coarse scale, where it can 

be solved with much lower computational cost, and then propagated back to the finest level.  

In fact, it has been argued that solving the segmentation problem at a coarser scale produces 

better segmentation results than solving it in the finest scale, where only local information is 

used [Sharon et al, 2000, 2003].  On a hierarchical multiscale representation of the image, 

statistic and geometric information (shapes) can be gathered from the fine to the coarser 

levels, so that local and global information are both available to the segmentation process 

[Sharon et al, 2000, 2003].  Recently, an extension of [Sharon et al, 2000] algorithm has also 

been proposed for multispectral imagery [Gali and de Candia, 2005]. 
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However, [Sharon, et al, 2000; Gali and de Candia, 2005] algorithms are inspired by 

AMG, but they are not properly AMG since they do not solve any PDE generating a scale-

space representation of the image.  We propose here to integrate the well-founded scale-

space representation of an image using geometric PDEs, with a modified version of the 

AMG-based segmentation algorithm that naturally fits within this framework. 

As mentioned before, segmentation can be cast into a graph partitioning problem.  An 

image can be represented by a graph, where the pixels are the vertices and the edges connect 

each vertex to their closest neighbors (e.g., 4 or 8 neighborhood).  Associated to the edges 

there is a weighting function that indicates the degree of similarity between the vertices.  The 

segmentation problem can be expressed now as removing edges of the graph i.e. finding the 

graph cut that minimizes the weight of the edges removed [Shi and Malik, 1997].  The 

optimal graph cut is in general an NP-hard problem [Shi and Malik, 1997] and hence, fast 

suboptimal solutions are used.  The contribution of [Sharon, et al, 2000] consisted of 

obtaining an approximation to the optimal graph cut, not in the original (large) grid of the 

image, but, as in AMG, on a much coarser scale, where a suboptimal solution can be found 

easily and then propagated back to the finest scale.  In this way, they achieve image 

segmentation in linear time complexity, and the quality of the segmentation is often better 

than the one obtained with normalized cuts [Sharon, et al, 2000].  In addition, as the 

multiscale representation of the image is constructed, statistics can be computed recursively 

from the different regions in the image, introducing global measures in the segmentation 

process that are not available at the finest grid [Sharon et al, 2003]. 
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This chapter is organized as follows.  First, we present the scale-space representation 

and segmentation of hyperspectral imagery using AMG, and then we present the 

implementation details of the algorithm and its complexity analysis. Second, we present the 

performance tests and segmentation results using the four hyperspectral images.  Finally, we 

present some concluding remarks. 

4.1 Scale-space representation and segmentation of 

hyperspectral imagery 
 

Multigrid methods [Brigss, et al, 2000] come from the analysis of classic relaxation methods 

for solving linear systems of equations.  Classic iterative methods reduce efficiently the high 

frequency components of the error, although they are extremely inefficient to reduce the low 

frequency components and hence, they converge slowly.  To illustrate this, let us consider a 

simple one-dimensional boundary value example (e.g. the Poisson equation),  

( ) ( ) ( ) ,010,1,0,0
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∂
∂
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which can be discretized as, ,02 11 =+− +− jjj uuu  1≤ j ≤n-1, ,00 == nuu  and n is the number 

of intervals on which the interval (0, 1) has been discretized.  The Gauss-Seidel (GS) 

iterative method solves the previous equation as, ( ),
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where k∈N is the wave number.  Given that the steady state solution of the Poisson equation 

is u = 0, we can easily compute the error, iu , as a function of the number of iterations of the 

GS method.   

  
        (a)       (b) 

Figure 4.1 a) Initial Error at different frequencies, b) Reduction in the error as a function of the number 

of iterations. 

 Figure 4.1.a shows the initial error for k = 1, 3, and 6, i.e. at increasing frequency 

values.  Figure 4.1.b shows the square error as a function of the iteration number for each one 

of the three modes indicated on Figure 4.1.a.  It can be noticed that the high frequency error 

(k = 6) is quickly reduced by the iterative method, while the medium and low frequency 

errors are reduced much more slowly.  By Fourier analysis, we know that the error term can 

be expressed as a superposition of sinusoidal components at different frequencies.  Hence, as 

the example illustrates, the high frequency components of the error would be eliminated 

quickly by relaxation methods such as GS, but the low frequency components would be 

reduced at a very low rate, causing slow convergence.   

Multigrid methods aim to reduce the error components at all frequencies, in linear 

time complexity.  Multigrid involves two complementary processes: relaxation and coarse-
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grid correction.  Coarse-grid correction consists on transferring information from fine to 

coarser grids via a sampling operation.  The coarsening process is continued until a relatively 

small grid is reached where the linear system can be solved exactly, with little computational 

cost.  The solution is then propagated back to the finest level via interpolation operations.  

The coarsening operation displaces the low frequency components of the error to higher 

frequencies in the coarse grid, where classical relaxation methods reduce them efficiently 

[Brigss, et al, 2000].  The relaxation can be accomplished by a simple iterative method such 

as Jacobi or Gauss-Seidel. 

 
Figure 4.2 Comparison of cost of convergence of multigrid and a pure relaxation method to solve the 

anisotropic diffusion equation (taken from [Long, 2005]). 

Figure 4.2 shows the reduction in the error norm obtained by solving the anisotropic 

diffusion PDE using AMG and pure relaxation (Gauss-Seidel) methods, as a function of the 

number of pure relaxations made [Long, 2005].  The V-cycle indicated on Figure 4.3 will be 

explained later, in Section 4.1.2.  As can be seen from this figure, pure relaxation methods 
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reduce the error norm very slowly, while AMG reduces it as 10-r, being r the rate of 

convergence, with a computational cost that increases only linearly.     

The method used to coarsen the grid defines if the multigrid method is geometric or 

algebraic.  Geometric multigrid samples the previous grid uniformly.  Algebraic multigrid 

uses an algebraic coarsening, i.e. the grid is sampled non-uniformly, according to the 

structure of the matrix that defines the linear system, which in our case is G, the diffusion 

matrix.  However, it is well known that classical geometric multigrid is not robust on PDEs 

with highly nonlinear coefficients, as is the case of the nonlinear diffusion PDE [Brandt et al, 

1992].  As [Kimmel and Yavneh, 2003] had shown, algebraic multigrid is more robust for 

image analysis.  Recently, [Rand and Keenan, 2003] introduced geometric multigrid and 

Markov Random Fields to segment hyperspectral imagery.  Multigrid is used in [Rand and 

Keenan, 2003] to minimize an energy functional by stochastic relaxation [Geman and Geman, 

1984].  The main disadvantages of this approach are its high computational cost and the 

simplifying assumptions needed to make the stochastic approach mathematically tractable. 

AMG requires the construction of a multigrid structure that starts with the finest grid 

of the original image on its base and coarser grids are added “below it” forming an inverted 

pyramid, as illustrated on Figure 4.3. 
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Figure 4.3 Typical multigrid structure. Note that the structure is not necessarily a Cartesian grid. 

 We use standard graph theory notation (Vs, Es) to identify the sets of vertices (Vs) and 

edges (Es) of the multigrid structure, where the superscript index s indicates the grid level, 

starting with s = 0 for the finest grid and s = S for the coarsest.  On this setting, the original 

hyperspectral image is represented by an undirected graph (V0, E0), where the set of vertices 

V0 corresponds to the vector-valued pixels in the image, and E0 is the set of edges connecting 

each node to its four closest neighbors with weights 0
ijg  given by Equation 3.6. 

 The sampling (restriction) operation, denoted here as c

fH , and the interpolation 

(prolongation) operation, denoted as f

cH , are also indicated on Figure 4.3.  Associated to the 

graph, there is a similarity function g that assigns a weight to each edge (i, j) ∈ Es on each 

grid of the multigrid structure (Figure 4.3), with 0 ≤ s ≤ S, being S the coarsest grid. The 

nonlinear diffusion coefficient, given by Equation 3.6, corresponds to the similarity function 

g at the finest grid, s = 0.  

 Now, we are going to see in more detail, how the multigrid structure is constructed 

and how it is used to solve Equation 3.14. 
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4.1.1 Multigrid structure 
 
The construction of the multigrid structure requires two main steps: selecting the next set of 

vertices Vs+1 from the current grid (Vs, Es), 0 ≤ s ≤ S-1 and connecting the nodes in Vs+1 to 

obtain Es+1.  In AMG, the vertices Vs+1 must be sparse in Vs and independent of each other as 

much as possible.  We use the selection mechanism described in [Sharon et al, 2000], since it 

satisfies these requirements.  For completeness, we describe the method here in detail.  

 The mechanism used to select which vertices from (Vs, Es) will form the next grid is a 

greedy strategy, where the vertices are first sorted in decreasing order, according to their 

mass s

im , which is a measure of how many pixels in the finest grid can be assigned to a given 

vertex on a coarse grid.  At grid s=0 the mass of all vertices is set 10 =im .  The idea of sorting 

the vertices is that vertices that are representative of a large number of pixels on the finest 

grid would be more likely selected for the next grid.  The selection process consists of the 

following three steps, 

• Sort the set of vertices Vs in decreasing order of mass. 

• Initialize Vs+1 = {i0}, where i0 is the first element in the ordered set V
s. 

• For each i ∈ Vs \ Vs+1:  

        if 
( )

τ≤∑∑
∈∈ + ss ji

s

ij

j

s

ij gg
E,V 1

 ⇒ Vs+1 = Vs+1 ∪ {i}, 

where, 0 < τ < 1 is a threshold value below which we say that vertex i is independent of the 

selected vertices, Vs+1, so far.  Notice that the first coarse grid can be obtained now with the 

previous algorithm, since we have already defined 0
im , 0

ijg  and E0 and there is no needed to 
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sort the finest grid, since all the masses are equal.  To obtain the coarser grids, we require to 

compute s

im , s

ijg  and the set of edges Es for s > 0.  We will explain this in detail and the 

criteria to stop coarsening, after making some important observations about the sorting 

algorithm.  

The sorting algorithm must run in linear time to keep the overall complexity of the 

algorithm linear.  The sorting algorithm used in [Sharon et al, 2000] is bucket sort [Cormen, 

et al, 2001], which runs in linear time, on average, assuming a uniform distribution of the 

mass in the [0 1] range, after normalization.  We used instead radix-sort [Cormen, et al, 

2001], which always runs in linear time, irrespectively of the distribution of the data.  Since, 

radix-sort only works with integer values, we approximate s

im  to its nearest integer value.  

This way, radix-sort orders the masses with little selectivity at first, since initially the 

differences are mainly fractional, but as we coarsen the grid, radix-sort becomes much more 

selective.  We can make more selective radix-sort on the first levels by multiplying the mass 

by a constant factor of 100, for instance.  However, experimentally, we found better 

segmentation results being less sensitive to the small differences in the first levels, instead of 

using an absolute ordering of the masses, as bucket sort does.  Besides, it is not true that the 

distribution of mass is uniform as it is assumed by bucket sort, especially at coarser scales, 

where there can be strong differences between pixels representing large and small regions in 

the image.  

 Once the vertices of the first coarse grid are selected, we can compute the 

dependences of the vertices in Vs  \ Vs+1 to the vertices in Vs+1 and the masses, for s = 0, …, 

S-1 as, 
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where, s

ijw indicates how much vertex i∈Vs \ Vs+1 depends on vertex j∈Vs+1.  Notice that 

Equation 4.1 enables a multiscale soft-segmentation of the image, where pixels on each grid 

have a degree of attachment 10 ≤≤ s

ijw  to pixels selected at coarser levels.  Also, notice that if 

i, j ∈ Vs+1 or i, j ∈ Vs then 0=s

ijw .  This way, the vertices in Vs \ Vs+1 depend only on vertices 

in Vs+1, which intends to translate the fine grid problem to the coarse grid. 

 One can think here in gathering statistics from the previous levels as in [Sharon et al, 

2003].  However, given the little development of texture measures for hyperspectral imagery 

and the computational cost of dimension reduction methods (such as principal components) 

that are employed to make feasible the use of second and higher order statistical 

discrimination methods (such as maximum likelihood, maximum a posteriori) [Landgrebe, 

2002], we only use here mean intensities.  

 Let the hyperspectral image at grid s be [ ]T110
ssss

s−
= νuuuU L , where νs is the 

number of vertices at grid s and ui is the spectral vector at pixel i
th, 1 ≤ i < νs.  The mean 

spectral intensity at grid s + 1 is given by 
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Notice that Equation 4.3 corresponds to the weighted mean vector-valued intensity, where 
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the spectral signatures of the vertices j∈Vs\Vs+1 influenced by pixel i∈Vs+1 are weighted 

according to their dependence on i.  Notice also that Equation 4.3 defines the restriction 

operation (coarsening of the pyramid), c

fH , which in matrix format is given by 

[ ]
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+

+
==

1ss V\V

1

1
,
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w

w
HUHU . 4.4 

 

 We need now to connect the vertices in Vs+1.  This is done by first defining the 

interpolation operator and the corresponding geometric weighting g for all the vertices in the 

new level s+1.  By the Garlekin condition [Brigss, et al, 2000], f

c

sc

f

s HGHG =+1 , hence, we 

need to define the interpolation operation, f

cH .  Since, we are working with mean spectrums, 

the simplest linear interpolation operation is given by, 
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which, in matrix-vector notation can be restated as, 
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ijij

f

c

sf

c

s wH == + ,1UHU , 4.6 

 

From Equations 4.5 and 4.6, 

[ ] ∑∑ ∈
∈

+

+

+
=

s

1ss
V,

V\V

1

1

1

lk

s

lj

s

kl

s

ik

j

s

ij

ij

s wgw
w

G . 4.7 

 

 Sharon proposed a very similar equation called Iterated Weighted Aggregation (IWA) 

to connect the vertices on the coarse grid [Sharon et al, 2000].  However, while IWA was 

proposed as an approximation to Gs+1 within a minimization problem, Equation 4.7 
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corresponds exactly to Gs+1 in our AMG setup, as given by the Garlekin condition.  It can be 

noticed that Equation 4.6 only considers local measures accumulated from grid 0 up to the 

coarser grids, as in IWA.  

As in [Sharon et al, 2000], we introduced a global measure to steer the segmentation 

processes, which depends on the mean spectrums computed for each coarse vertex, 
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where, θ  is a similarity metric as defined in Section 3.1.  

 Experimentally (see Section 4.3), we found that using Equation 4.8 improves the rate 

of convergence of AMG over Equation 4.7.  This result shows the synergy that exists 

between the smoothing and segmentation processes.  We are translating the PDE and 

segmentation problems to coarser grids, but on coarser grids, the relationships between the 

vertices are not completely expressed by local measures and must also include global 

measures.  Notice here that global measures alone are not enough to discriminate between 

different segments with similar mean spectrums.  

Finally, once Gs+1 is computed, we can determine the set of edges on grid s + 1 as, 

( ){ }0V,:,E 11
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4.1.2 AMG solver 
 
Let us restate here Equation 3.14, for greater clarity, 

( ) .1,,0,1 −==− + Kkkkk
LUUGI µ  
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We will use AMG to solve Equation 3.14 on each scale-step.  In the remaining of this section, 

we will drop the dependence on the scale-step k, since the solution sought with AMG will be 

always Uk+1, for k = 0, …, K-1. 

Figure 4.4 shows a schematic of the same multigrid structure presented in Figure 4.3 

4.1, showing more clearly the V-cycle.  As indicated on Figure 4.4, the image at grid s = 0 is 

coarsened downto grid S, solving then exactly Equation 3.14 at this scale, and then 

propagating back the solution to the finest grid.  Usually a single V-cycle is not enough to 

obtain good accuracy of the computed solution, Un+1.  Hence, the first V-cycle starts with the 

image Un, but the next V-cycles starts with the approximation obtained to Un+1, in the 

previous V-cycle. 

 
Figure 4.4 Schematics for a V-cycle in Multigrid. 

  The V-cycle algorithm can be divided in three phases.  In the coarsening phase 

(Figure 4.4), the different components of the error, represented by Xs, s > 0, are estimated by 

relaxation of the residual equation ( ) sss FXGI =− µ , where Fs, s > 0, is the residual [Brigss, 

et al, 2000] at scale s.  In the coarsest grid, S, the component of the error XS is computed 

exactly by Gaussian elimination.  In the prolongation phase, the different components of the 

error are accumulated back to the finest grid as 1++= sf

c

ss XHXX , while the residual equation 
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is relaxed again to approximate the error better.  After a V-cycle, X0 receives the 

accumulated error from previous grids and the initial estimate of Uk+1 can be corrected 

as 1100 +≈+= kf

c UXHXX .   The V-cycle algorithm is presented in detail on Appendix A. 

 The restriction and prolongation operators, as well as the coarsening of matrix G, 

needed by the V-cycle, were already defined in the previous section.  The remaining 

operations, including relaxation, are simply sparse matrix operations (see Section 4.2 for an 

analysis of their complexity).  The relaxation method chosen here is Gauss-Seidel (GS) since 

it is simple and always converges for diagonally dominant matrices [Saad, 2003] as it is our 

case (see Chapter 3).  We achieved the best rates of convergence for AMG using an 

implementation that on the finest grid corresponds to a Symmetric-Red-Black GS [Saad, 

2003]; while on the other grids we alternate the order of relaxation as we did on the finest 

grid, but based only on the order assigned by the sorting algorithm. 

It remains to define now when to stop coarsening the grid.  Since, on each coarsening 

step, we reduce the grid size to less than half the size of the previous grid (assuming sparsity 

and independence of the new grid), we decided to stop coarsening the grid, when the number 

of vertices is equal or less than log2N. 

Notice that on Equation 3.14 we are estimating only one step of the semi-implicit 

nonlinear diffusion PDE.  The solution of the PDE for a given scale may require repeating 

the process described earlier several times, i.e. for each scale-step we construct the multigrid 

structure and run several extra V-cycles.  However, thanks to the numerical stability of the 

semi-implicit scheme and the linear time complexity (see Section 4.2) of AMG, we can use 

large values of the scale-step µ, which means that few scale-steps would suffice for most 
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applications and the overall complexity remains scalable algorithmically.   

4.1.3 AMG-based Segmentation 
 

We can directly use the AMG structure to segment the image.  This approach actually works 

reasonably well, and it is very flexible, since we use the same parameters to solve the PDE 

and to segment the image.  A better approach, however, consists of solving the PDE and then 

segment the smoothed image using different (updated) parameters to construct the final 

multigrid structure.  We can create an AMG structure over the smoothed image that stops the 

coarsening process when all the vertices are segment representatives.  The basic AMG 

structure for the segmentation algorithm is constructed as in the previous section, but we can 

now use the weights given by Equation 3.6 or 

( )00 ,0 :V, jiegji ij

uuθβ−=∈∀ , 4.10 

 

which is the similarity metric proposed by [Sharon et al, 2000], extended to hyperspectral 

imagery.  We can also change the parameter α by a parameter γ on the coarsening Equation 

4.8, which adds more flexibility to the algorithm.  

The saliency Γi of a vertex i is determined as in [Sharon et al, 2000], for s = 0, …, S-1 

as, 
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Equation 4.11 measures the dependence of a vertex i on its neighboring vertices, at a given 

grid level, normalized by its mass.  Hence, a salient segment would be a vertex with very low 

dependence on its neighborhood, but also influent on the previous grids.  Notice that this 
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measure of saliency is the same used in normalized cuts [Shi and Malik, 2000], but on coarse 

scales.  We define a vertex as a salient segment if its saliency is Γi  ≤ ε, where ε is a threshold 

parameter.  The coarsening stops as soon as all the vertices in the grid satisfy the saliency 

criteria.  

 Once we had detected the representatives at different grid levels, we must go back to 

the finest grid to segment the image at the highest resolution.  This process is called 

sharpening in [Sharon et al, 2000]; a hard segmentation is obtained from the fuzzy 

dependences that exist between the vertices at the different levels in the AMG structure.  The 

sharpening algorithm of [Sharon et al, 2000] works fine if we start from the coarsest grid, but 

if we start from lower levels (lower scales); the algorithm may leave large regions of the 

image un-segmented.  The reason is that, as we go down, there are much more vertices un-

labeled than representatives, in fact, some vertices cannot be labeled on a coarse scale, since 

they are on islands, i.e. pockets of vertices, isolated from the remaining vertices.  Sharon et al 

recognized this fact in [Sharon et al, 2001], where they proposed another approach that 

includes boundary tracing.  

We use here a simpler approach that already produces good segmentation results.  Let 

us call r1, r2, …, rR the R representatives identified at level s, and let ( )Rr

i

r

ii pp ,,1 L=p  be a 

vector of probabilities indicating that vertex i ∈ V0 has probabilities Rr

i

r

i pp ,,1 L  of belonging 

to the segments represented by r1, …, rR, respectively.  Hence, ( )0,,,,0 LL k

kk

r

rr p=p , with 

1=k

k

r

rp , and ( )0,,0 L=ip  for i ∉ {r1, …, rR} at the start of the sharpening algorithm.  Let us 

also call s

iN the set of vertices in Vs that are close neighbors to vertex i.  The sharpening 
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algorithm is given by,  

For levels s down to 0: 

• ∀ i∈Vs
: if max{pi}<1, 
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• ∀ i∈Vs
: if max {pi}<1, perform υ Gauss-Seidel relaxations of the form,  
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If  max{ } δ−≥= 1kr

ii pp  then ( )0,,1,,0 i LL == kr

ipp . 

• ∀ i∈Vs
: if max {pi}<1, find the closest representative rk with the largest   

   s

irk
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The three steps indicated in the sharpening algorithm attempt to assign a segment 

representative to each vertex at grid s.  The first step uses the fact that most vertices from 

grid s-1 must be strongly dependant on vertices from grids s, hence, s

irk
w might be high for 

some representative rk.  However, vertices that were chosen from s-1 to the next grid and are 

not representatives have 0=s

irk
w  for k = 1, ..., R, since both i and rk are in V

s.  Nevertheless, 

their neighbors that are in Vs-1 \ Vs might have been labeled in this step.  Hence, the next step 

is the same as in [Sharon et al, 2001], we perform υ Gauss-Seidel relaxations allowing the 

probabilities of the neighbors to affect the probabilities of each vertex, based now on their 

similarities.  As noted in [Sharon et al, 2001], two GS relaxations suffice, since a higher 

number of relaxations does not produce any changes on vertices located on isolated pockets 

or on vertices that have nearly the same probability of belonging to two different segments.  

The third step assigns the vertices that have not been labeled yet to the closest representative.  
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Also as in [Sharon et al, 2001], probabilities higher than a given threshold, 1-δ, are set to one; 

in order to speedup the sharpening process. 

4.2 Implementation details and Complexity 

 Most of the algorithm’s parameters are set by trial and eror, e.g. refer to [Sharon et al, 

2001; Galli and De Candia, 2005; Galun et al, 2003; Akselrod-Ballin et al, 2006].  In 

particular, we use τ  = 0.2,  δ  = 0.2,  ε  = 10-5, the number of GS relaxations for the 

sharpening algorithm is υ  =  2, and the number of GS relaxations in AMG is simply υ0 = υ1 

= … = υS = 1.  Experimentally (Section 4.3), we found that two V-cycles suffice to achieve 

good accuracy for scale-steps µ ≤ 5, which corresponds to 20 times the maximum scale-step 

that can be used with the explicit scheme to achieve good accuracy (see Section 3.3).  The 

remaining parameters α, β, and γ depend on the image and the application itself, since they 

define the level of smoothing (α) and the threshold in similarity (β, γ) that is acceptable 

within a homogenous region.  In all our experiments, 0.005 ≤ α ≤ 0.015, and γ ≤ β ≤ α, 

which indicates that the range of variability is relatively small and can be set according to the 

scene at hand and the scale needed.  Notice here that thanks to the smoothing provided by the 

nonlinear diffusion PDE, β and γ  can be set to lower values allowing greater discrimination 

between the more homogeneous regions in the smoothed image.  

 We selected α, β, and γ by trial and error, however, we use a simple technique that 

can be automated.  First, we selected the value of α that produces the best overall accuracy 

for the smoothed image.  The scanning of the best α requires only steps of 0.001 or higher 

within the range indicated before.  Sometimes the best α for smoothing is not the best for 
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segmenting (see next section), but it is a good starting point.  If we are smoothing and 

segmenting, we fix α = β = γ and vary α at steps of ±0.001, starting from the best value 

found for smoothing and stop when classification accuracy stops improving.  Usually, the 

best α for smoothing and segmentation is close to the best α for smoothing only.  Once we 

have selected α, the remaining two parameters (β, γ) are set initially to the same value as α.  

We fix γ = β and search for the best overall accuracy reducing β at steps of -0.001, since β ≤ 

α.  Finally, we vary γ at steps of -0.001 until a new maximum in classification accuracy is 

reached.  

The advantage of this approach is that classification accuracy change monotonically 

in all our experiments. Hence, if we find that for a given parameter, say β, a change in -0.001 

reduces classification accuracy, then there is no need to continue reducing that parameter 

because classification accuracy would continue degrading. However, a better approach that 

can be addressed in the future is the use of parallel genetic algorithms to search the parameter 

space.      

 We introduce some changes in Sharon’s algorithm that improves the running time and 

algorithmic scalability of the algorithm for hyperspectral imagery, and overcomes some 

limitations of the original algorithm.  In particular, we made the following changes, 

• Sharon’s algorithm [Sharon et al, 2000], uses state vectors of the same size as the 

number of pixels in the image. Since at first there are as many segments as pixels in 

the image, there is an enormous waste of disk space, mostly filled with zeros.  A 

better approach for large sparse graphs is to use Red-Black trees, [Cormen, et al, 
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2001], to store the neighborhood of each vertex, which also provides fast searches 

within each neighborhood. 

• The time complexity of the segmentation algorithm is linear, but the constant of 

linearity grows exponentially with the size of the neighborhood [Brandt, 2000].  We 

reduce the neighborhood size by two mechanisms.  First, we eliminate vertices with 

weights lower than 0.1.  Second, we limit the number of neighbors to 10, significantly 

reducing the running time of the algorithm without affecting negatively the accuracy 

of the AMG solver or the segmentation algorithm.  

• In [Sharon et al, 2000], the pixels are assigned to each representative one at a 

time.  That is, they perform a top-down sharpening on each representative.  This 

segmentation is time consuming (especially with many segments).  We sharpen the 

image, with all the representatives at the same time, as indicated on the sharpening 

algorithm (Section 4.1.3).  The segmentation results are the same, but with an 

improvement in running time.   

• The vector of probabilities indicated on the sharpening algorithm (Section 4.1.3) 

is not practical for implementation purposes, since most of its entries are always zero.  

We use instead variable length vectors that store only the indices of the 

representatives and their corresponding probability.  On any scale, a given vertex may 

be related to a few representatives, and since it is always labeled on that scale, there is 

no storage overhead. 
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All the algorithms presented here were implemented in C++ for Linux, under the 

Cygwin9 environment.  We used the C++ Geospatial Data Abstraction Library (GDAL10), 

which supports more than 50 raster image formats, including BIL, BSQ and BIP formats, 

commonly used in hyperspectral imagery, without limit in the size of the image.  We used 

GDAL to read the hyperspectral images and to write the smoothed hyperspectral images on 

disk.  We also used LAPACK11 to obtain an accurate solution of the PDE at the coarsest level 

S, using LU factorization with pivoting first and then Gaussian elimination.  An accurate 

solution of Equation  3.14 can always be found using Gaussian elimination, since the matrix 

I-µG is diagonally dominant [Golub and Van Loan, 2000].  Gaussian elimination has time 

complexity O(Mνs
3), where νs is the number of vertices at scale s and M the number of bands 

in the image, and it is only used in AMG for the coarsest scale, where the number of vertices 

is νs = O(log N).  We used Gaussian elimination on the finest grid, for comparison purposes 

only and independently of the AMG framework proposed here (Section 4.1). 

From the previous section, it can be seen that in AMG and the segmentation 

algorithms only a handful of operations are required for each vertex on Equations 4.1 to 4.11.  

As indicated before, the sorting algorithm runs in linear time on the number of vertices at 

each grid.  Also, since a fixed number of relaxation sweeps are made at each level, relaxation 

is linear in the number of vertices, at each grid.  The matrix operations indicated on the 

sharpening algorithm (Section 4.1.3) have also linear time complexity since matrix I-µGs is 

sparse with at most 10 off-diagonal (neighbors) elements and there are νs diagonal elements 

                                                 
9 http://www.cygwin.com/ 
10 http://www.gdal.org/ 
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(vertices) at scale s.  Hence, the product (I-µGs)Xs takes ~10Mνs = O(Mνs) time. Also, the 

exact solution of Equation 3.14, using Gaussian elimination takes O(M log3νS) time which is 

O(MνS), for sufficiently large νS.  On the other hand, since νs  ≤  ½νs+1, 0 ≤ s < S, with ν0 = N, 

the running time of the complete AMG-segmentation algorithm is linear in the number of 

pixels and spectral bands, 

( )NMONMNMM
s

s

s

s =<






≤ ∑∑ κκνκ 2
2

1
, 4.12 

 

where, κ is the number of operations on each vertex.  

 Let us analyze now the storage requirements for the proposed algorithm.  AMG 

requires storing only two matrices of size ~Mνs at each level that dominate the disk storage 

requirements: X and F, with the original image stored in F0.   At each scale, storing X and F 

require 2Mνs disk space.  By the same reasoning as before, the disk space required is given 

by 
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≤ν  

Hence, the disk requirements are less than 4MN, with additional variables of size O(νs) such 

as Gs and other temporal variables that can only account for O(N) overall.  For sufficiently 

large M, as is the case of hyperspectral imagery, the disk requirements are dominated by the 

4MN term, again linear in the number of pixels and hyperspectral bands.  

The segmentation algorithm does not require additional storage. The disk requirements for 

ADI and AOS are ~2MN, and PCG methods require ~4MN (see Chapter 3).  Since AMG is 

                                                                                                                                                       
11 http://www.netlib.org/lapack/ 
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scalable and can have accuracy greater than traditional relaxation methods and the 

approximated solutions provided by AOS and ADI schemes, we have achieved significant 

improvement with respect to previous work in terms of scalability, while keeping storage 

requirements equivalent to PCG methods.     

4.3 Experiments 
 

We use four hyperspectral images in our experiments, representing different landscapes,  

• Indian Pines image (Figure 3.2.a), described in Section 3.2, with ground truth 

shown on Figure 3.2.b. 

• Cuprite image (Figure 3.4.a), described on Section 3.2, with ground truth shown 

on Figure 3.5. 

• A high spatial-spectral resolution image of the Washington DC Mall area taken 

by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor on 

August 23, 199512.  This image contains 1280×307 pixels and 224 bands.  Several 

bands are eliminated because they correspond to atmospheric absorption bands or 

they are too noisy, leaving 191 bands in the 400-2480 nm range.  We choose a sub-

image of 282×307 pixels and 191 bands (Figure 4.5.a) as representative in our 

experiments.  There is no need for ground truth on this image, given its high spatial 

resolution (3m) that allows identifying the different objects in the image by simple 

visual inspection.  We use the same classes indicated by previous studies of this 

image, [Ball and Bruce, 2005; Landgrebe, 2002] directly marked on Figure 4.5.a.  

                                                 
12 Available on the accompanying CD of [Landgrebe, 2003] 
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• The Enrique Reef image (Figure 4.5.b), which corresponds to a small part of the 

AVIRIS image taken over the south-west coast of Puerto Rico in 2006.  We use this 

image because the Enrique Reef environment is a well-known area of study for the 

marine science department at the UPRM and is part of the seaBED test bed at 

CenSSIS (Goodman et al, 2006).  Hence, we used their expertise to identify training 

and testing samples on the image.  The ground truth of this image is directly marked 

on Figure 4.5.b.  We eliminated noisy spectral bands, so that our Enrique reef image 

consists of 46×90 pixels and 146 bands in the 414-2310 nm range. 

  
   (a)                                         (b)  

Figure 4.5 RGB composite of a) Washington DC (bands 63, 52, and 36) and b) Enrique Reef images 

(bands 50, 27, and 17), showing also their ground truth. 

Classification accuracy of the NW Indian Pines and the Washington DC Mall area 

have been analyzed recently using a Bayesian MRF approach [Neher and Srivastava, 2005].  

Also the Cuprite image has been used recently [Bachmann et al, 2005] to study the feasibility 

of dimension reduction using manifold coordinates.  However, we would not compare here 
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our results with previous classifications of these images, since we are using our own set of 

training and testing samples chosen specifically to test the performance of our segmentation 

algorithm.  Comparisons between different classification methods should always be made 

using the same images, set of training and testing samples and spectral bands.  Since, 

supervised classification accuracy may vary strongly from one set of training samples to 

another and also according to the number of bands used.      

In Section 4.3.1, we will test the performance of AMG as a solver of Equation 3.14 

using a large scale step, µ = 5.  This scale-step is typically the largest value for µ, such that 

the solution obtained does not fall away from the more accurate solution that would be found 

using a much smaller scale step (see Chapter 3).  In Section 4.3.2, we will test the 

performance of the AMG-based segmentation algorithm, in terms of classification accuracy. 

4.3.1 Performance of AMG as a solver 
 
We first compute the sum of square errors between the computed solution of Equation 3.14 

using AMG and the solution of Equation 3.14 obtained using LAPACK at the finest grid, 

using α = 0.015 as the threshold in the diffusion coefficient (Equation 3.6), which is the 

largest value of α we had used in these and previous experiments (Chapter 3).  We test AMG 

using local measures only, i.e. Equation 4.7, and incorporate the mean spectrum, i.e. 

Equation 4.8, where θ can be either the Euclidean distance or the spectral angle. 

Given that Gaussian elimination for banded matrices, as is the case of G on the finest 

grid, requires to store vectors of size O(N 3/2), it easily overcomes the memory available for 

large images. In particular, we could not obtain the solution of 3.14 using LAPACK on the 

finest grid, for the Cuprite image, using a PC with 2Gb of RAM memory.  Hence, we use 
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instead the first 300×300 vector-valued pixels (50 bands) of the Cuprite image, which we call 

here, small Cuprite.  

Figure 4.6 shows, in semi-logarithmic scale the sum of square errors as a function of 

the number of V-cycles computed using Equation 4.8, where θ is the spectral angle.  The 

error reduces at a rate of r = 10-d, where d is the slope of the line shown on Figure 4.6.  From 

this figure, the rate of convergence is in the range r = 0.013-0.032.  These results are quite 

good, since they compare well with the reported convergence rates for well-tuned AMG 

algorithms (r∼0.05) [Briggs et al, 2000; Kimmel and Yavneh, 2003].  The rates of 

convergence for α < 0.015 could be even better, since the matrix I-µG tends to the identity as 

α decreases. The rate of convergence indicates that the error is reduced by a factor r on each 

V-cycle, so that if r = 0.05, the error is 5% of its initial value on the first V-cycle and 0.025% 

on the next V-cycle.  Experimentally, we found that 2-V-cycles are sufficient to provide 

accuracies superior to the ones obtained using PCG schemes with a tolerance of 10-3.  This is 

the same tolerance used in Chapter 3 with very good results in terms of the accuracy of 

solution of the geometric PDE and of the classification.  
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Figure 4.6 Performance of AMG vs. the number of V-cycles, in terms of the square error. 

   

Table 4.1 AMG Rates of Convergence. 

Equation Indian Pines small Cuprite Washington DC Enrique Reef

(12) 0.032 0.051 0.079 0.051

(13)-ED 0.016 0.020 0.050 0.032

(13)-SA 0.013 0.016 0.032 0.016  

 Table 4.1 compares the rates of convergence of AMG using only accumulated local 

measures, i.e. Equation 4.7, and the rates of convergence of AMG using local measures and 

Euclidean distance (ED) or spectral angle (SA) between mean spectrums, i.e. Equation 4.8.  

It can be noticed that by introducing simple global measures, such as the mean spectral 

intensity, the error convergence rate is at least two times faster than using accumulated local 

measures only.  It can be also noticed that AMG converges faster using the spectral angle 

than using Euclidean distances, tough the comparison may be not completely fair, since 

defining θ as the spectral angle means changing to a PDE, which is not longer Equation 3.3.  
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Notice also that the slowest rate of convergence corresponds to the Washington DC 

image, followed by the Enrique reef image.  This is due to the high number of objects with 

strong vectorial boundaries in these images.  This implies that g(θ ) varies strongly on a large 

region within the image, and the simple non-uniform sampling used here is less effective to 

translate the problem to the coarser grids.  Nevertheless, the rates of convergence of the 

AMG method for these images are still quite good, and there is no need for using more 

accurate, but computationally expensive, non-uniform sampling methods such as those 

indicated in [Brandt, 2000].  

Figure 4.7 compares the sum of square errors with respect to the solution obtained 

with LAPACK on the finest grid for four methods: ADI and AOS schemes, the Conjugated 

Gradient method, preconditioned with incomplete Cholesky factorization (PCG-Cholesky, 

see Chapter 3), and AMG using two V-cycles.  It can be noticed from this figure that the sum 

of squared errors with the proposed AMG is always lower than the error of the other solvers.  

In particular, the error in AMG is three to four orders of magnitude lower than in ADI and 

AOS schemes, and even lower than PCG with a tolerance of 10-3, which is the tolerance used 

in Chapter 3.  



 
 
 
 

 126 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

Indian Pines small Cuprite Washington DC Mall Enrrique reef

ADI AOS PCG-Cholesky AMG

S
u
m
 o
f 
S
q
u
ar
e 
E
rr
o
rs

 
Figure 4.7 Performance of AMG vs. other solvers. 

  In order to test the performance of AMG in terms of CPU time versus the size of the 

image (scalability), we selected four sub-images of size 50×50, 100×100, 200×200, and 

282×307 pixels from the Washington DC image, with all its 191 bands.   

Figure 4.8 shows the CPU time of AMG using µ = 5, α = 0.015 and 2 V-cycles, vs. 

the size of the image, relative to 50×50 image.  Figure 4.8 also shows, for comparison 

purposes, the CPU time required to solve Equation 3.14 for ADI, PCG-Cholesky, and 

Gaussian elimination.  From this figure, we can see that our implementation of AMG is eight 

times slower than ADI, but AMG is significantly more accurate than ADI and it also 

naturally enables the segmentation of the image.  Further reductions in the running time of 

AMG can be obtained by using single Red-Black GS relaxation sweeps, instead of the 

symmetric Red-Black relaxation used here, at the expense of decreasing the convergence rate 

by a factor of 2 (which is still good, see [Kimmel and Yavneh, 2003]).  However, we prefer 

here to trade speed for accuracy of the computed solution for the nonlinear diffusion PDE, 

since this also may affect classification accuracy, maintaining nevertheless a reasonable 

computational cost. 
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Figure 4.8 CPU time vs. the size of the image. 

 Figure 4.9 shows the CPU time as a function of the image size for AMG as a solver 

of Equation 3.14 and to solve both Equation 3.14 and segment the hyperspectral imagery.  

From this figure, it is clear that solving Equation 3.14 with AMG and segmenting the images 

has linear time complexity, and the segmentation step takes approximately a 25% of the total 

smoothing and segmentation time. 
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Figure 4.9 CPU time for AMG smoothing and segmentation. 

4.3.2 Performance of the AMG-based segmentation 
 
We now evaluate the quality of the segmentation algorithm for classification accuracy. It is 

clear that over-segmentation affects the accuracy of classification algorithms, since splitting 

arbitrarily a homogeneous region will produce sub-regions with significantly different 

statistical characteristics [Ketting and Landgrebe, 1976].  On the other hand, under-

segmentation might be even worse, since portions of objects belonging to different classes 

may be passed to the classification algorithm as single objects, precluding the possibility of 

classifying them correctly.  Hence, classification accuracy provides a measure of 

segmentation quality that corresponds well with the requirements of a good segmentation, 

and also permits to use real hyperspectral images with ground truth, instead of synthetic test 

images as often required by current methods that measure the quality of segmented images 

[Zhang, 2001]. 
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We use the segmentation map to produce a piecewise segmented hyperspectral image, 

where each segment has the spectral signature corresponding to the mean spectrum in the 

segmented region.  We select training (blue polygons) and testing samples (white polygons) 

on each one of the four hyperspectral images considered here, and shown from Figures 4.10 

to 4.12.  Notice that the training and testing samples for the NW Indian Pines are different 

from those used in Chapter 3.   

 
Figure 4.10 Training (blue rectangles) and testing samples (white rectangles) on the NW Indian Pines 

image (RGB shown corresponds to bands 47, 24, and 14). 

The reason is that we are interested now in testing segmentation accuracy trough 

classification, so larger testing areas are selected in order to penalize over-segmentation. 

Nevertheless, we use the same Training and Testing samples for the Cuprite image (see 
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Figure 3.24), since it is difficult to obtain larger areas here without biasing the overall 

accuracy towards the most abundant minerals. 

 
Figure 4.11 Training (blue polygons) and testing samples (white polygons) on the Washington DC mall 

image (bands 63, 52, and 36). 
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Figure 4.12 Training (blue polygons) and testing samples (white polygons) on the Enrique reef Image 

(bands 50, 27, and 17). 

We choose ECHO, [Kettig and Landgrebe, 1976], spectral-spatial as our classifier, 

provided by MultiSpec.  We cannot use simpler classifiers such as Euclidean Distance or 

Spectral Angle Mapper (SAM), since they do not take into account the spatial domain, which 

is critical to evaluate the quality of segmentation.  Also, we cannot use Maximum Likelihood 

or other second order statistical classifiers, since they cannot compute accurate covariance 

matrices with few pixels.  Hence, we use ECHO, with a small window of 2×2 pixels that uses 
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Fisher Linear Discriminant.  ECHO clusters the segments into different classes, according to 

their distance (in terms of Fisher) and according to the homogeneity of the neighborhood, 

computing likelihoods, whenever possible. 

Table 4.2 Overall accuracies in terms of the Kappa statistic. 

Training Testing Training Testing Training Testing Training Testing

Original 89.7 68.5 98.7 92.8 100 83.1 100 91.6
Smoothed 99.9 79.2 99.8 96.5 100 84.9 100 94.2
Segmented 97.1 83.0 99.8 95.3 100 83.2 100 95.8

Smoothed and Segmented ED 94.5 87.5 99.7 96.8 100 89.2 100 97.4

Smoothed and Segmented SAM 98.4 89.0 99.6 97.2 100 90.5 100 98.1

NW Indian Pines Cuprite Washington DC 

Mall

Enrique Reef

Classification Accuracy

 

Table 4.2 shows the best classification accuracies in terms of the Kappa statistic 

obtained by smoothing with AMG, segmenting with the AMG-based segmentation algorithm, 

and combining smoothing and segmentation using AMG with Euclidean Distance (ED) or 

SAM.  The Kappa statistics accounts for both the percentage of user’s accuracy and the 

percentage of producer’s accuracy (see Section 3.3.3) in a balanced way [Landgrebe, 2003].  

The Kappa statistic measures the level of agreement between user’s and producer’s 

accuracies taking into account that both accuracies may agree simply by chance [Viera and 

Garret, 2005].  A Kappa value of 100% indicates perfect agreement between user’s and 

producer’s accuracies, while a Kappa value of 0% indicates that the agreement between 

user’s and producer’s accuracies is due only to chance.  Hence, obtaining an improvement in 

the Kappa value indicates that the improvement in classification accuracy was not due to 

chance.  

We could not obtain a classification of the original and smoothed Enrique reef image 

using ECHO.  Hence, the accuracy reported in Table 4.2 for these two images corresponds to 

the highest classification accuracy, which was obtained using the Spectral Angle Mapper 
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(SAM), considering all bands.   As can be seen from this table, just by smoothing the image, 

we achieve an improvement in the classification accuracy.  Also, segmenting the image 

usually achieves even better classification accuracies than just smoothing, but not in all the 

cases.  If both smoothing and segmentation are combined, better classification accuracies are 

obtained than using the smoothing or the segmentation processes alone.  The main reason is 

that nonlinear diffusion reduces the intra-region variability, while keeping the object’s 

boundaries, which improves global separability, while maintaining local information 

(boundaries) almost intact. 

Table 4.3 to Table 4.8 provide detailed information on the percentages of user’s 

accuracy (UA), producer’s accuracy (PA), and the number of samples (ns) used for each 

class and method tested here.   At the end of each table, we summarize the total number of 

samples, the average user’s and producer’s accuracies, weighted by the corresponding 

number of samples on each class [Landgrebe, 2003], and the Kappa statistic.  Smoothing and 

segmentation using the Euclidean distance is abbreviated in these tables as S&S ED, while 

the smoothing and segmentation using SAM is abbreviated as S&S SAM.  Note that we are 

not reporting here the accuracies for the training samples of the Washington DC Mall and 

Enrique Reef images, since as can be seen on Table 4.2, they were always 100%. 
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Table 4.3 Classification training samples, NW Indian Pines image. 

UA PA UA PA UA PA UA PA UA PA

Corn-min               397 81.9 71.8 99.7 99.7 99.5 99.0 100.0 90.9 100.0 100.0

Alfalfa                24 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Corn-notill            603 91.7 90.0 100.0 100.0 100.0 94.0 95.3 98.3 100.0 100.0

Corn                   105 71.3 97.1 100.0 100.0 96.3 98.1 79.5 100.0 100.0 100.0

Grass/Pasture          199 100.0 96.0 100.0 100.0 100.0 87.9 100.0 91.0 100.0 89.9

Grass/Trees            301 96.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Grass/pasture-mowed    20 100.0 100.0 100.0 100.0 45.5 100.0 52.6 100.0 51.3 100.0

Hay-windrowed          251 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Soybeans-notill        383 85.8 94.8 99.7 99.2 100.0 90.9 98.0 90.9 99.7 90.9

Soybeans-min           724 90.2 85.6 100.0 99.9 95.3 100.0 99.6 100.0 100.0 100.0

Soybean-clean          149 89.2 100.0 98.0 100.0 81.0 100.0 62.4 38.9 81.0 100.0

Wheat                  82 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Woods                  427 99.7 88.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Bldg-Grass-Tree-Drives 172 78.6 98.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Stone-steel towers     40 100.0 100.0 100.0 100.0 100.0 100.0 36.0 100.0 100.0 100.0

Overall 3877 91.1 90.8 99.9 99.9 98.0 97.4 96.1 95.1 99.0 98.6

Kappa statistic

ns

94.5

Smoothed Segmented

99.9

Original

97.1

Class
S&S ED S&S SAM

98.489.7  
Table 4.4 Classification testing samples, NW Indian Pines image. 

UA PA UA PA UA PA UA PA UA PA

Corn-min               436 66.3 59.6 83.0 72.7 96.3 78.0 82.7 86.5 100.0 100.0

Alfalfa                12 100.0 58.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Corn-notill            572 69.8 72.2 69.6 79.7 82.9 68.5 93.0 85.5 100.0 100.0

Corn                   79 47.0 49.4 89.7 65.8 100.0 17.7 61.5 20.3 100.0 100.0

Grass/Pasture          166 59.5 92.8 64.1 100.0 80.7 88.0 85.9 98.8 100.0 89.9

Grass/Trees            295 84.3 96.3 89.1 100.0 100.0 96.3 100.0 96.3 100.0 100.0

Grass/pasture-mowed    10 100.0 100.0 100.0 100.0 8.7 100.0 83.3 100.0 51.3 100.0

Hay-windrowed          255 97.3 69.4 100.0 67.1 100.0 66.7 100.0 100.0 100.0 100.0

Soybeans-notill        436 54.7 90.1 68.3 98.2 74.0 87.6 74.3 89.7 99.7 90.9

Soybeans-min           740 74.2 47.7 90.3 63.9 84.8 88.6 100.0 89.2 100.0 100.0

Soybean-clean          160 90.4 94.4 83.4 97.5 78.5 98.1 60.4 50.6 81.0 100.0

Wheat                  104 97.2 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Woods                  478 97.7 72.6 95.3 92.9 97.8 100.0 98.7 97.5 100.0 100.0

Bldg-Grass-Tree-Drives 159 45.7 62.9 75.9 55.3 72.9 100.0 89.7 98.7 100.0 100.0

Stone-steel towers     42 100.0 92.9 100.0 97.6 100.0 97.6 34.2 90.5 100.0 100.0

Overall 3944 75.0 71.8 83.6 81.5 88.1 84.8 89.9 88.9 93.4 90.2

S&S SAM

68.5 79.2 83.0 87.5 89.0

Class
Original Smoothed Segmented

ns
S&S ED

Kappa statistic  
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Table 4.5 Classification training samples, Cuprite image. 

UA PA UA PA UA PA UA PA UA PA

Calcite                         821 98.6 100.0 99.5 99.8 99.5 100.0 100.0 100.0 100.0 99.3

High-Al-Muscovite               807 99.1 99.6 100.0 100.0 99.6 100.0 99.3 98.6 100.0 99.5

Kaolinite+Semectite-     

Muscovite   
363 91.4 100.0 100.0 100.0 99.7 100.0 97.1 100.0 97.6 100.0

K-Alumnite                      398 99.5 99.5 100.0 99.7 100.0 99.2 100.0 100.0 100.0 98.5

Kaolinite                       294 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Alunite+Kaolinite-         

Muscovite     
406 99.0 94.3 99.8 100.0 100.0 100.0 100.0 100.0 99.3 100.0

Calcite+Kaolinite               754 99.1 100.0 99.7 100.0 100.0 100.0 100.0 100.0 99.5 100.0

Chalcedony                      362 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Na-Montmorillonite              450 100.0 99.1 99.6 100.0 100.0 100.0 100.0 100.0 99.8 100.0

Chlorite+Muscovite-       

Montmorillonite 
449 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Med-Al-Muscovite                446 100.0 92.4 100.0 98.7 100.0 98.9 100.0 98.7 98.9 98.7

Overall 5550 98.9 98.8 99.8 99.8 99.8 99.9 99.7 99.7 99.6 99.6

Original Smoothed Segmented S&S ED S&S SAM

98.7 99.8 99.8 99.7 99.6

Class ns

Kappa statistic  

Table 4.6 Classification testing samples, Cuprite image. 

UA PA UA PA UA PA UA PA UA PA

Calcite                         859 99.9 97.0 99.6 97.1 99.8 99.4 99.8 97.2 100.0 99.8

High-Al-Muscovite               479 72.1 99.8 94.9 100.0 96.2 100.0 94.1 100.0 95.6 99.6

Kaolinite+Semectite-     

Muscovite   
376 98.9 100.0 99.5 100.0 99.7 100.0 93.8 100.0 99.5 100.0

K-Alumnite                      230 84.0 97.8 83.2 97.0 66.5 92.2 81.3 96.1 77.4 95.2

Kaolinite                       325 90.5 100.0 90.5 100.0 92.9 100.0 91.5 100.0 94.2 100.0

Alunite+Kaolinite-         

Muscovite     
521 99.0 91.6 98.6 91.4 96.1 79.5 100.0 90.2 97.4 87.7

Calcite+Kaolinite               473 98.7 99.8 99.6 100.0 96.5 100.0 100.0 100.0 100.0 100.0

Chalcedony                      480 99.6 92.9 98.9 92.9 97.2 94.8 98.5 93.8 100.0 95.6

Na-Montmorillonite              417 99.8 99.5 100.0 98.3 100.0 96.9 100.0 98.3 100.0 100.0

Chlorite+Muscovite-       

Montmorillonite 
184 98.8 89.1 100.0 100.0 100.0 89.7 100.0 84.2 100.0 100.0

Med-Al-Muscovite                404 90.6 56.9 94.2 92.8 100.0 96.5 98.0 99.3 100.0 95.0

Overall 4748 94.5 93.5 97.1 96.9 96.4 95.8 97.1 96.8 97.7 97.5

Original Smoothed Segmented S&S ED S&S SAM

92.8 96.5 95.3 96.8 97.2

Class ns

Kappa statistic  
Table 4.7 Classification testing samples, Washington DC Mall image. 

UA PA UA PA UA PA UA PA UA PA

Water            1386 99.9 99.1 98.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0

Grass            385 96.9 98.7 100.0 100.0 99.7 100.0 99.7 100.0 99.2 100.0

Trees            552 98.2 97.5 96.0 99.5 99.2 92.6 99.8 99.5 98.7 98.6

Rooftop          814 71.3 67.1 73.0 50.2 70.8 85.6 82.6 68.3 97.2 68.7

Road             1249 92.2 82.4 94.9 94.3 98.9 67.8 98.9 92.2 98.8 91.9

Paths            432 59.0 62.0 47.9 69.7 81.7 72.2 89.0 84.5 56.6 98.6

Shadow           171 49.9 98.8 87.2 100.0 34.6 97.1 37.2 91.2 88.5 90.1

Overall 4989 87.6 86.3 88.5 87.8 91.0 86.2 93.7 91.2 94.9 92.2

83.1 84.9 83.2 89.2 90.5

Class
Original Smoothed Segmented

Kappa statistic

ns
S&S ED S&S SAM

 



 
 
 
 

 136 

Table 4.8 Classification testing samples, Enrique Reef image. 

UA PA UA PA UA PA UA PA UA PA

Mangrove         16 62.5 93.8 62.5 93.8 100.0 62.5 100.0 100.0 78.9 93.8

Water            128 98.5 100.0 99.2 100.0 100.0 100.0 97.7 100.0 100.0 100.0

Seagrass         80 84.8 97.5 92.0 100.0 98.8 100.0 100.0 100.0 98.8 100.0

Carbonate Sand   70 100.0 82.9 100.0 91.4 100.0 90.0 100.0 92.9 100.0 100.0

Reef Flat        117 99.1 90.6 99.1 90.6 90.7 100.0 95.8 97.4 99.1 95.7

Overall 411 94.9 93.7 96.5 95.6 97.1 96.8 98.1 98.1 98.7 98.5

Original Smoothed Segmented S&S ED S&S SAM

91.6 94.2 95.8 97.4 98.1

Class ns

Kappa statistic  

As explained before, the selection of parameters was made here in such a way that the 

overall classification accuracy (represented by the Kappa statistic) increase, as much as 

possible using smoothing, segmentation or both smoothing and segmentation.  Hence, as can 

be appreciated from the previous tables, some classes decrease their accuracy in favor of 

other classes that have a larger number of pixels; see for instance the grass/pasture-mowed 

class in Table 4.4.  Nevertheless, as can be seen from Table 4.3 to Table 4.8, most of the 

classes always benefit from smoothing, segmentation or both processes.  However, if we 

were interested in improving only the accuracy of a particular class (which is the case of 

target detection), we must select α, β, and γ  towards that objective. 

We must emphasize here that we are classifying the piece-wise spectrally-constant 

hyperspectral images obtained from the segmentation map, with the sole purpose of testing 

the quality of the segmentation.  A more accurate classification of the image would take into 

account the segmentation maps to extract information from the smoothed image.  Future 

work on this area should also consider the introduction of spectral-spatial similarity metrics 

or texture and unsupervised classification of the homogeneous regions segmented.  Finally, 

we must also emphasize that the scale space is not only a vehicle to achieve better 

segmentation results, but also provides smoother images that can provide better results for 
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other hyperspectral image processing algorithms such as classification, registration, and 

impainting, in conjunction with the segmentation maps.  

  
(a)      (b) 

Figure 4.13 Smoothed images with AMG: a) NW Indian Pines (bands 47, 24, and 14) and b) Cuprite 

(bands 183, 193, and 207). 

  
(a)      (b) 

Figure 4.14 AMG Smoothing a) Washington DC (bands 63, 52, and 36) and b) Enrique reef (bands 50, 27,  

and 17). 
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Figures 4.13 and 4.14 show RGB composites of the smoothed hyperspectral images 

that produced the best classification accuracies, as indicated in Table 4.2.   

  
(a)      (b) 

Figure 4.15 a) Segmented NW Indian Pines image (bands 47, 24, and 14), b) segment boundaries. 

  

  
(a)      (b) 

Figure 4.16 a) Segmented Cuprite image (bands 183, 193, and 207), b) segment boundaries. 
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Figures 4.15 to 4.18 show RGB composites of the segmented hyperspectral images 

that resulted on the best classification accuracies, indicated in Table 4.2, and the 

corresponding segment boundaries.  It should be noticed here that with the exception of the 

Indian Pines image, the segmented images shown from Figures 4.15 to 4.18 were obtained 

using smoothed images with a different α value than those in Figures 4.13 and 4.14.  The 

value of α that produces the best classification results using only nonlinear diffusion is not 

necessarily the best parameter for obtaining the best accuracies using both smoothing and 

then segmentation.  

Notice also that all the images are over-segmented, especially the Cuprite image.  As 

stated before, sub-segmentation is much worse than over-segmentation, since a sub-

segmented image will merge two or more segments belonging to two or more classes.  Hence, 

it should be expected that the best classification accuracies corresponds to over-segmented 

images.      

  
(a)      (b) 

Figure 4.17 a) Segmented Washington DC image (bands 63, 52, and 36), b) segment boundaries. 
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(a)      (b) 

Figure 4.18 a) Segmented Enrique Reef image (bands 50, 27, and 17), b) segment boundaries. 

 Even more, ECHO would benefit of some variability that allows computing variances 

within the training samples, and hence, using the Fisher Linear Discriminant.  Nevertheless, 

ECHO penalizes also over-segmentation, since for a given scale that produces the best 

classification accuracy, the following finest scale always produces lower classification 

accuracies.  Table 4.9 shows the classification accuracies (Kappa statistic) of the scale that 

produces the best classification accuracies, as reported in Table 4.2 and for comparison 

purposes, the classification accuracy of the previous coarser scale and the following finer 

scale.  The best classification accuracies for all images occurred at the coarsest level or very 
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close to it.  In fact, the best classification accuracies are within two levels from the coarsest 

level.  In the case of the NW Indian Pines image, the best classification accuracy was for the 

coarsest level and that is why there is no coarser level on Table 4.9.  These results indicate 

that the parameters selected to stop coarsening the grid (see Section 4.2) are appropriated for 

all the images used and allows to reduce the search for the best segmentation to the first few 

coarsest scales and that the classification with ECHO is a good indicator of segmentation 

accuracy, even tough it may prefer over-segmentation. 

Table 4.9 Classification accuracies around the best scale 

Training Testing Training Testing Training Testing Training Testing

Best classification result 98.4 89.0 99.6 97.2 100 90.5 100 98.1

Previous coarser scale - - 99.7 94.2 100 85.3 69.3 65.1

Next finer scale 98.4 82.1 99.5 94.2 36.2 55.3 100 96.5

Enrique reef
Classification Accuracy

Indian Pines Cuprite Washington DC

 

 Figure 4.19 shows the classification map for the four original hyperspectral images 

used here.  The areas of the training and testing samples are also indicated to facilitate the 

visual inspection of the uniformity of the classification within each region.  Figure 4.20 

shows the classification map for the hyperspectral images smoothed with AMG.  It can be 

noticed here that the classification maps are more uniform within each training and testing 

region than with the original images (Figure 4.19).  Figure 4.21 shows the segmentation 

maps for the best accuracies obtained using AMG to smooth and segment the four 

hyperspectral images.  By visual comparison is easy to see that Figure 4.21 has the greatest 

uniformity within each training and testing areas, and in the whole segmentation map. 
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(a)      (b) 

  
(c)      (d) 

Figure 4.19 Classification maps for the original a) NW Indian Pines, b) Cuprite, c) Washington DC, and 

d) Enrique Reef images.  
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(a)      (b) 

  
(c)      (d) 

Figure 4.20 Classification maps for the smoothed a) NW Indian Pines, b) Cuprite, c) Washington DC, 

and d) Enrique Reef images.  
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(a)      (b) 

  
 (c)      (d) 

Figure 4.21 Classification maps for the smoothed and segmented a) NW Indian Pines, b) Cuprite, c) 

Washington DC, and d) Enrique Reef images. 
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Table 4.10 shows the parameters corresponding to the results indicated in Table 4.2.  It can 

be noticed that the α value for the best classification accuracies using smoothing only differs 

slightly from the value of α that produces the best accuracies using both smoothing and 

segmentation.  Also, it can be noticed from Table 4.10 that the range of variability of 

parameters α, β, and γ is reduced, even tough the four images differ greatly in size and 

number and type of regions in the image, the level of noise, and the strength of the edges.  

Finally, and for completeness, we should mention here that the scale used to smooth with 

nonlinear diffusion all the hyperspectral images was 10, with scale-steps of 5 for all the 

images.  Using this scale, the number of AMG scale-steps required was only two. 

Table 4.10 Algorithm parameters. 

α β γ α β γ α β γ α β γ
Smoothed 0.010 - - 0.010 - - 0.011 - - 0.008 - -

Segmented - 0.008 0.006 - 0.007 0.003 - 0.010 0.007 - 0.008 0.005

Smoothed and Segmented ED 0.012 0.011 0.004 0.008 0.008 0.002 0.012 0.007 0.006 0.010 0.003 0.003

Smoothed and Segmented SA 0.008 0.007 0.003 0.006 0.003 0.001 0.011 0.011 0.009 0.010 0.008 0.003

Enrique reef
Algorithm parameters

Indian Pines Cuprite Washington DC

 
 
 The Indian Pines image is a patchy image, for which many objects are difficult to 

differentiate due to the variability of the spectral signatures within each region and the 

similarity between different classes (see Chapter 3).  However, the boundaries of the 

different regions in the Indian Pines image are relatively strong and help the segmentation 

process.  The separability of classes is higher on the Cuprite image, as can be seen from the 

training and testing accuracies, but the edges between the different regions are weak.  The 

classes in the Washington DC image are also easier to separate and the edges are strong, but 

the number of objects in this image is very high, which may present a problem for 

segmentation.  Finally, the Enrique reef image is very easy to classify and segment, but it 
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contains the highest level of variability (even after eliminating the most noisy bands), which 

can be appreciated on the visible variability of the seawater in Figure 4.5.b.   Hence, even 

tough each image presents different challenges, we could successfully smooth, segment and 

classify all of them using the proposed AMG framework, with the parameters indicated on 

Table 4.10, which shows a relatively low range of variability. 

4.3.3 Concluding remarks 
 
We have integrated here geometric scale-space theories and algebraic multigrid solvers for 

the analysis and processing of hyperspectral images.  We have shown that a geometric scale-

space representation of hyperspectral images can be efficiently generated combining 

nonlinear diffusion PDEs and AMG methods, with good accuracy and scalability.  

Additionally, AMG provides the necessary structure to naturally obtain a hierarchical 

segmentation of the image.  As our results indicate, the segmentation achieved using the 

smoothed image is better than just segmenting the original image.  

We should note that a number of techniques are currently being developed for the fast 

computation of geometric PDEs, see for example [Darbon and Siguelle, 2006] and references 

there in.  
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___________________________________________________________________________ 
 

5 CONCLUSIONS AND FUTURE WORK 
___________________________________________________________________________ 
 

 
 
 
 
 
 
 
 

 
 
Before I came here I was confused about 
this subject. Having listened to your 
lecture I am still confused. But on a higher 
level.  
ENRICO FERMI

 

5.1 Introduction 
 
PDE-based algorithms for image enhancement, segmentation and restoration have a large 

history of success for scalar and color images in computer vision, but they have been 

disregarded in segmentation and classification of hyperspectral imagery.  This work showed 

that PDE-based, image processing methods can improve significantly image enhancing, 

segmentation and classification for hyperspectral imagery at a low computational cost, using 

semi-implicit schemes.  Traditional statistical classification methods are very robust at low 

dimensional spaces, but they require an enormous amount of training data for higher 

dimensional data, as is the case of hyperspectral imagery, which is usually not available.  On 

the other hand, parabolic PDEs offer a well-sounded, common framework to perform image 

smoothing and object segmentation using all image bands, with improved accuracy. 
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5.2 Conclusions 
 
Chapter 3 shows that the formal scale-space provides a framework for image processing that 

can improve significantly image enhancing, and classification in hyperspectral imagery at a 

low computational cost, using semi-implicit schemes.  The scale-space offers a well-founded, 

common framework to perform image smoothing, object-based segmentation, and 

classification.    

We also showed that in the scale space representation of hyperspectral imagery, 

smoothing occurs in both the spectral and spatial domain.  Not only the spatial features are 

smoothed out but also the spectral features (by spatial averaging).  It was also shown that this 

framework is computationally feasible for hyperspectral imagery, allowing to process all the 

bands in the image containing information of the scene of interest.  In addition, it was shown 

that the scale-space framework can be used to improve classification accuracy of 

hyperspectral imagery, since the smoothing process reduces intra-class variability, which 

increases class separability.  Furthermore, the reduced variability enables high classification 

accuracy with simple linear classifiers such as the Fisher Linear Discriminant classifier.  We 

also think that the scale space representation can have positive effects in other hyperspectral 

image processing tasks such as unsupervised classification, registration, image compression, 

and target recognition. 

In particular, AOS and ADI semi-implicit schemes offer high performance in terms of 

accuracy and speedup of the computed solution of the anisotropic PDE, when scale-steps µ ≤ 

20µ0 are used.  If accuracy is of prime importance, the Douglas and Peaceman schemes can 

achieve higher accuracies at scale steps µ ≤ 10µ0 sacrificing speed.  Even tough, we did not 
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achieve high speedups with the PCG methods, the initialization with ADI-LOD proved to be 

a good alternative, with speedups between 8 to 14 (see Table 3.3 to Table 3.5) that are 

superior to the Douglas and Peaceman-Rachford methods.  In fact, we believe that if a better 

preconditioner is found for Equation 3.14, such that the PCG algorithm would run twice as 

fast as it did in our experiments, then PCG methods would beat all the approximated semi-

implicit schemes seen on Chapter 3, since they have the highest accuracy and their speedup 

would be higher than the AOS and ADI methods.  However, PCG methods also require more 

disk space, and finding a good preconditioner is still an art, hence, we consider that AOS and 

ADI methods are the best choice, if we are only interested in image smoothing. 

  In Chapter 4, we integrated the geometric scale-space theory and algebraic Multigrid 

solvers for the analysis and processing of hyperspectral images.  With this integration, we 

improved accuracy and algorithmic scalability of the solution to the nonlinear diffusion PDE 

using the semi-implicit scheme in addition to provide the necessary structure to obtain a 

multiscale hierarchical segmentation of the image.  AMG is slower than the approximated 

semi-implicit AOS and ADI schemes, but it is faster than PCG methods and much more 

accurate than the approximated semi-implicit methods studied on Chapter 3.  The AMG-

based segmentation algorithm enables higher level image processes such as unsupervised 

classification, registration, image compression, change detection, etc. 

The experiments conducted in Chapter 4 indicate that it is always possible to improve 

the overall classification accuracy of hyperspectral image either by smoothing, segmenting, 

or combining both processes, irrespectively of the type of landscape the hyperspectral image 

is imaging.  These results also indicate that even tough the rate of convergence of AMG can 
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be reduced by the presence of many strong transitions, as it happens in urban images, it is as 

accurate or better than the conjugated gradient method (see Figure 4.7), which we showed to 

be very accurate in solving the nonlinear diffusion PDE on hyperspectral imagery (Chapter 

3).    

As we can be seen from Table 4.2, images that have strong spatial or spectral 

variability and low classification accuracies, such as the NW Indian Pines, benefit more from 

the nonlinear diffusion PDE and segmentation, thanks to the strong reduction in both 

dimensions.  On the other hand, images that already have good classification accuracies, such 

as the Cuprite image, would benefit less from the scale-space framework. Additionally, as 

Table 4.3 to Table 4.8 indicate, not all classes would benefit from smoothing or segmentation, 

since the dissimilarity metric employed does not necessarily improves the separability of a 

class with its background. Further work should be dedicated to explore other similarity 

metrics such as the spectral information divergence (SID) [Chang, 2000] and the use of 

statistics gathered from previous levels to improve the smoothing and segmentation 

processes. 

Since the computational cost of smoothing and segmenting hyperspectral images is 

not negligible, potential users of this methodology should evaluate first if the original image 

would benefit from a reduction in the spectral and spatial variability. Besides supervised 

classification, other higher level processes in hyperspectral imagery could also benefit from 

the scale-space framework introduced here, such as unsupervised classification, image 

registration, and image compression. 
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Finally, the selection of the three parameters indicated on Table 4.10 might seem too 

complex for hyperspectral imagery, however and as stated in [Martín-Herrero, 2007], the 

tunability of the scale-space framework provides higher flexibility to enhance the 

performance of multiscale segmentation, as we exploited here. Other anisotropic diffusion 

PDEs should be also considered in the future for hyperspectral imagery, as it is also indicated 

in [Martín-Herrero, 2007]. 

 We summarize the main contributions of this thesis in the following two statements. 

• Even tough, the formal scale-space had already been introduced in the past (see Section 

2.7), it has not been actively used in remote sensing, principally due to the fact that early 

numerical approaches to solve PDEs use simple explicit schemes that require a large 

number of iterations to reach a given scale.  Since typical hyperspectral images consists 

of large datasets (see Section 1.1), the scale-space approach was not particularly 

attractive to the remote sensing community.  In fact, the few papers that exist on this 

subject do not present the scale-space framework behind vector-valued PDEs, they only 

present the nonlinear diffusion PDE as a nonlinear filter that perform denoising on 

multispectral image.  We had made the formal scale-space framework much more 

attractive computationally, thanks to the extension of semi-implicit schemes and PCG 

methods that runs 5 to 20 times faster than traditional explicit methods, in fact, according 

to our own experience, two steps of any of the semi-implicit schemes presented on 

Chapter 3 and 4 are enough to smooth hyperspectral imagery, with satisfactory accuracy.  

We also compare the different semi-implicit numerical methods presented here and 

provide some guidelines that allow the users to select, according to their needs, the best 
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semi-implicit method to the problem at hand.  Up to our knowledge, this thesis is the first 

introduction of the formal scale-space framework to smooth and segment hyperspectral 

imagery.    

• It has been recognized in the past (see Section 2.6) that the scale-space representation of 

grayscale and color images might improve segmentation accuracy.  However, parabolic 

PDEs cannot provide hard segmentations, since their solution, at any scale, is always a 

smooth function, i.e. parabolic PDEs cannot produce discontinuous functions that are 

required to segment the images.  Variational approaches that lie within the Mumford 

Shah segmentation model allow discontinuous solutions called free discontinuity 

problems, which solution lies on the space of bounded variations [Aubert and Kornprobst, 

2002], where non-physical solutions are also possible and leads to challenging theoretical 

and numerical problems [Weickert, 1996].  Our main contribution here is to integrate the 

formal scale-space governed by conservation laws, with a segmentation algorithm that 

uses as much as possible the information obtained by the scale-space framework.   

Even tough, heuristic approaches to multiscale representation of images can produce 

acceptable segmentations and have been successfully used to improve classification 

accuracies in the past (see for instance the scientific papers on behalf of the ECOGNITION 

suite of algorithms13), it is our belief that the introduction of a formal framework can allows 

us to fully understand and improve the current state of the art in multispectral image 

processing.  

                                                 
13 http://www.definiens.com/scientific_papers.php?cat_id=1&link_id=24&sublink_id=25 
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5.3 Future Work 
 

We propose here the following ideas to continue and improve this research, 

• The computational and storage requirements to process hyperspectral imagery far exceed 

what is possible on a single workstation (see Section 1.1).  Hence, there is a need of 

bringing the approximated AOS and ADI semi-implicit schemes, the PCG methods and 

the AMG solver and segmentation algorithms to high performance platforms.  It is not 

easy to obtain a scalable parallelization of AMG, which can constitute a research project 

on its own, since first one need to optimize the sequential code and then minimize the 

need of communication between the processors in order to obtain scalability on 

implementation.  The huge memory requirements of HSIs might require the use of 

distributed systems, where the data is spread among the system components.  High 

performance implementations have several architectural alternatives in hyperspectral 

imagery such as distributed computing, clusters and the use of hardware implementations 

using FPGAs [Plaza et al, 2006, 2007], however each approach have their advantages 

and disadvantages and possibly a better alternative is to use a software/hardware 

codesign that exploits the advantages of hardware implementations with the flexibility 

and low cost implementation of complex functions [Guilhermino et al, 2003].  

• We have extended the nonlinear diffusion PDE and made it a bit anisotropic, but fully 

anisotropic PDEs such as those indicated on Equations 2.23 to 2.25 could also be used to 

generate a scale-space representation of Hyperspectral imagery and be compared with 

our approach in terms of speed, segmentation and classification accuracy.  On the other 



 
 
 
 

 154 

hand, some authors [Bachmann, 2005, 2006] have argued that the nonlinear structure of 

hyperspectral imagery can be better exploited by similarity metrics based on the 

manifold coordinates i.e. using geodesic distances, rather than the usual metrics based on 

the Euclidean space (see Figure 5.1). 

 
Figure 5.1 Manifold coordinates, taken from [Bachmann et al, 2005]. 

Hence, a possible continuation of this work could be the use of geometric PDEs 

embedded on non-flat manifolds such as the orientation diffusion PDEs proposed by 

[Tang, 2000; Sapiro, 2001] or the Beltrami flow of [Kimmel, 2000] (see Section 2.5).  

The manifold coordinate system can be obtained using the same approach as [Bachmann 

et al, 2005, 2006].  The running time of this approach is O(N log2N), which is quite good, 

but indicates that PDEs on manifolds are not as scalable as our simpler approach based 

on the Euclidean space.  Nevertheless, it is possible that class separability increases along 

the manifold coordinates as the work of [Bachmann et al, 2005, 2006; Mohan et al, 

2007] indicates, such that the extra cost could be more than justified.   
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• Several free and commercial algorithms are available nowadays that provide hierarchical 

multiscale segmentation of multispectral imagery such as ERDAS 14 , EDISON 15 , 

INFOPACK16, SPRING17, RHSEG18 (NASA), GENIE PRO19, and DEFINIENS20.  Most 

of these algorithms are restricted to multispectral imagery and many of them are based on 

heuristic clustering strategies (see [Hay et al, 2003; Meinel and Neuber, 2004] for a 

comparison among them).  A comparison of the formal scale-space representation of 

hyperspectral imagery introduced here, with other state of the art segmentation 

algorithms is a work that must be addressed in the near future.  The results of such 

comparison could be to demonstrate the advantages of the formal scale-space framework 

over hierarchical clustering in hyperspectral imagery, or give guidelines on how to 

improve our approach to make it competitive with current state of the art hierarchical 

segmentation algorithms. 

• From the segmentation map obtained at the coarsest scale, we can obtain statistics for 

each segment, represented by histograms on each band, or we can obtain generalized 

vector-valued histograms [Rubner et al, 2000] that represent better the fact that segments 

in hyperspectral images are vector-valued.  Extracting statistics at the coarsest level is 

cheaper at this scale, since the number of objects is O(logN), where N is the number of 

pixels in the image (see Chapter 4).  The generalized histograms can be obtained from 

each segment by vector-quantization [Linde et al, 1980; Nasrabadi and King, 1988].   

                                                 
14 http://gi.leica-geosystems.com/LGISub7x384x0.aspx 
15 http://www.caip.rutgers.edu/riul/research/code/EDISON/index.html 
16 http://www.infosar.co.uk/misc/products.html 
17 http://www.dpi.inpe.br/spring/english/index.html 
18 http://techtransfer.gsfc.nasa.gov/RHSEG/index.html 



 
 
 
 

 156 

Using these histograms one can determine, by similarity metrics between histograms, if 

two or more segments belong to the same class.  Typical similarity metrics used for 

hyperspectral imagery are the Chi-square and Kolmogorov-Smirnov distances for the 

band by band histograms [Rubner et al, 2000; Katartzis et al, 2004], and the Earth 

Moving Distance [Rubner et al, 2000] for the generalized vector-valued histograms.  The 

histograms can use the real valued spectral signatures at the finest level or we can use 

Complex Transforms as introduced by [Castrodad et al, 2007]. 

• A necessary step to bring the scale-space framework to the level of usability required by 

commercial applications consists of providing some help to select the parameters 

required by the scale-space framework (see Chapter 4).  One way to do this (used by 

most of the commercial segmentation algorithms cited before) is to provide a friendly 

user interface that allows the users to refine the results interactively.  Another possibility 

consists of determining automatically the parameters needed by the scale-space 

framework, from the image itself (see Chapter 3) and from tabulated values learned 

previously according to different user’s needs.  Another approach could be to explore the 

parameter space using genetic algorithms that refine the search by maximizing a given 

objective function that measures the quality of the segmentation, as GENIE PRO does. 

  

                                                                                                                                                       
19 http://www.genie.lanl.gov/ 
20 http://www.definiens.com/definiens-professional_11_7_9.html 
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__________________________________________________________________________________________ 

6 ETHICAL CONSIDERATIONS 
___________________________________________________________________________ 
 

 
 
 
 
 
 
 
 
 
 
 
 

Unfortunately, some have begun to pursue 
scientific research for its own benefit or 
for profit, without respect for human life. 
NATHAN DEAL 
 
There is a computer disease that anybody 
who works with computers knows about. 
It's a very serious disease and it interferes 
completely with the work.  The trouble 
with computers is that you “play” with 
them!  
RICHARD P. FEYNMAN 

 

Ethics in computer science and software engineering is usually associated with viruses, 

software piracy, privacy and security.  Leading computer science professional organizations 

as IEEE21 and ACM22 have published ethic and professional conduct codes, but they are 

principally oriented towards professional practicers, not researchers [Honeycutt and Wright, 

2006].  This chapter focuses on the ethical conduct of the researcher in computer and 

information sciences and engineering.  A complete exposition of the subject can be found in 

the work of [Wright, 2006], within the NSF project Land Grant University Research Ethics 

(LANGURE23), to develop a model curriculum in research ethics for doctoral candidates.     

                                                 
21 http://www.ieee.org/portal/pages/about/whatis/code.html 
22 http://www.acm.org/constitution/code.html 
23 http://www.chass.ncsu.edu/langure/ 
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 Computers are routinely used to predict weather, crop productions, disease 

propagation, financial estimates, etc, affecting directly or indirectly the lives of millions of 

people, even those who never had use a computer.  Faulty software or software that does not 

meet in application, the performance reported on research papers can cause great lost in 

terms of money, time and sometimes human lives.  Given the strong dependence of modern 

society on computer systems, it is of prime importance to address the ethical issues related to 

computer science and computer engineering research.  As stated in the ACM code of ethics, 

“When designing or implementing systems, computing professionals must attempt to ensure 

that the products of their efforts will be used in socially responsible ways, will meet social 

needs, and will avoid harmful effects to health and welfare.” 

 In particular, three cornerstone ethical responsibilities must be present on any modern 

scientific research [Wright, 2006]: “the responsible conduct of research, clear and complete 

recording and reporting of research procedures, results and analysis” (repeatability of the 

experiments), “respect for those that might be affected by the research.”   

As in our present work, empirical sciences rely on measurements and observations to 

support the conclusions of a research.  Software implementations created with the purpose of 

providing a superior performance of one algorithm over another should be as neutral as 

possible, and when experimental bias exists, this should be clearly expressed and their effect 

on the results explained.  Well-known metrics should be used, whenever possible to compare 

two or more algorithms.  Different programming languages and compilers have different 

features that allow optimizations that target a specific architecture, and hence, two different 

algorithms might be incorrectly evaluated if they are implemented and or compiled under 
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different languages or platforms.  Hence, when comparing two or more different algorithms 

in terms of their performance, they must be coded with the same language and compiled with 

the same compiler and platform, in order to mitigate the bias introduced by the skills of the 

programmer with a specific language and the bias introduced by different compilers, 

compiler settings and platforms.  There might exist involuntary bias, if time consuming 

processes are running in the background, for instance an antivirus action, while one of the 

algorithms is tested.  Hence, and even tough computers are deterministic, many unaccounted 

factors might bias the result of an experiment and it is responsibility of the researcher to 

ensure the repeatability of the experiments reported. 

    As [Wright, 2006] states: “the ability to duplicate the work of other researchers is 

perhaps the most fundamental principle and responsibility of science.  Repeating an 

experiment allows a new result to be corroborated or refuted, as well as providing the means 

to restate and refine the problem under consideration.  Duplicating the prior work of other re-

searchers is often also more than simply recreating the earlier experiment: the later researcher 

should also be looking for new results that extend or clarify the earlier work.  It is the 

continual refinement of hypotheses that builds credibility of researchers and results alike”. 

 It is a well-known issue in research ethics, the infringement of copyrights and patents 

of other publications or researchers, upon which the research is based.   With the increasing 

use of the web (and powerful search engines such as Google) in research providing easy and 

almost unlimited access to the algorithms, figures and the work of other researchers, several 

ethical issues arise [Duncan, 1996], such as invasion of privacy of unknowing subjects, 

sharing and use of the data without approval, proper credit to the authors, and rushing to 
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publish incomplete or unreviewed work on the web.  Web based research (as it is conducted 

nowadays by almost all students) has a great potential to harm the rights of unknowing 

subjects trough search engines.  Researchers are nowadays strongly tempted by the 

possibility of luring data from the web and publish their results, without proper review, to 

obtain a greater impact of their research.  Hence, it is important to obtain the review of a 

disinterred third party, such as the peer reviewed process required by most of the prestigious 

proceedings and journals.       

In our work, we compared algorithms under the same language and compilers 

(Matlab code with Matlab code, and C++ code with C++ code with the same compiler 

settings) and repeat the experiments in order to avoid the presence of processes running on 

background.  We also document here all the theory and formulation necessary to duplicate 

our work that could not be included in our research papers, due to space limitations.  We also 

make proper references to the ideas and work of previous researchers thorough this document.    
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___________________________________________________________________________ 

 

APPENDIX A: ALGORITHMS 
___________________________________________________________________________ 
 
 

 
 
 
 
 

Programming is one of the most difficult 
branches of applied mathematics; the 
poorer mathematicians had better remain 
pure mathematicians.  
EDSGER DIJKSTRA

 
 

APPENDIX A1  THOMAS ALGORITHM FOR VECTOR-VALUED 

IMAGES 
 
The following algorithm is a straightforward extension of the algorithm presented in 

[Weickert et al, 1998] for scalar images.  Let GX = V, be a tri-diagonal linear system where 

X, and V are N× M dense matrices (hyperspectral images) and G is an N×N tri-diagonal 

matrix of the form, 
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where,  1≤d≤N-1.  All the dense matrices are represented here as hyperspectral images of the 

form, 
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where, xi are spectral vectors of length M.  The first step is to factorize G = LU such that L 

and U are bi-diagonal matrices of the form, 
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It is clear that the LU decomposition takes O(N) time and the temporal vectors l and m 

require only ~2N disk space.  Now, the system LUX = V can be solved as, 





=

=

YUX

VLY
 

 

 

 

 

 

 

 



 
 
 
 

 163 

Forward substitution 
 
We solve here the system LY = V, 
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Backward substitution 
 
We solve here the system UX = Y, 
 

( ) idiiii

iii

m

dNifor

m

dNNifor

+−=

−=

=

+−=

xyx

yx

β

1,,

1,,

L

L

 

 
Forward and backward substitution performs N linear combinations of vectors of size M.  

Hence, the running time of Thomas algorithm for vector-valued images is dominated by 

these two operations and takes O(NM) time.  Notice that the temporal variable Y is not 

required, since we can use X instead of Y on the forward substitution and overwrite X on the 

backward substitution.  Hence, the disk space requirements of the vector-valued Thomas 

algorithm are O(N) and it does not cause overhead on hyperspectral imagery where M >> 1. 

 Finally, the Thomas algorithm given here is completely general, but for our particular 

case, d = 1 for Gx and d = Nx for Gy as were defined on Section 3.1. 
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APPENDIX A2  ANALYTICAL INCOMPLETE CHOLESKY 

FACTORIZATION 
 
The following is the analytical incomplete LU Factorization that can be found in [Saad, 

2003], pg. 305 and it is repeated here for completeness.  The incomplete LU factorization of 

matrix A that comes from a five point discretization of an elliptic PDE, given by, 
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takes the form ( ) ( )FDDEDA −−≈ −1 , where E is the lower diagonal part of A, F is the 

upper diagonal part of A, and D can be found recursively by, 
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In our particular case, A = I - µGx - µGy which is symmetric, so E = F and the preconditioner 

is given by, 

( ) ( ) ( ) ( )[ ] TTT
LLDEDDEDEDDEDC
~~21211 ≡−−=−−= −−− , 

which is the incomplete Cholesky factorization used in our work. 
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APPENDIX A3  AMG V-CYCLE 
 
For clarity, we repeat here Figure 4.4 

 
 
• Grid 0:  
� Relax υ0 times ( ) nUXGI =− 00µ with initial guess Un. 

� Compute the error ( ) nUXGIX −−= 000 µ , the residual ( ) 000 XGIF µ−= , and restrict it 

as 01 FHF f

c= . 

… 

• Grid s: 
� Relax υs times ( ) sss FXGI =− µ , with initial guess 0. 

� Compute the error ( ) ssss XGIFX µ−−= , the residual ( ) sss XGIF µ−= , and restrict it 

as sc

f

s FHF =+1 . 

… 

• Grid S: Solve exactly ( ) SSS FXGI =− µ  to obtain XS. 

… 

• Grid s: 
� Correct 1++= sf

c

ss XHXX . 

� Relax υs times ( ) sss FXGI =− µ , with initial guess Xs. 

… 

• Grid 0: 
� Correct 100 XHXX f

c+= . 

� Relax υ0 times ( ) nUXGI −− 00µ with initial guess X0 to obtain X0≈Un+1. 
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___________________________________________________________________________ 
 

APPENDIX B: DETAILS ON SELECTED SUBJECTS  
___________________________________________________________________________ 
 

APPENDIX B1: APPROXIMATED SEMI-IMPLICIT METHODS 
 
Douglas-Rachford: 
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If Uk+1 is close to Uk, then, 
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It is easy to verify that this expression is equivalent to 
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Peaceman-Rachford: 

Having into account the following identities, 
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Equation 3.15 can be rewritten as, 
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where, if Uk+1 is close to Uk, then, 
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This equation is also known as the Crank-Nicholson scheme and it is second order accurate, 

both in scale and space, which can be solved as, 
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Additive Opperator Splitting (AOS): 

Let us rewrite Equation 3.15 as, 

( ) kkk

y

k
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1
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If we pre-multiply both sides of this equation by ( ) 1
2

−
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AOS uses the first order Taylor’s series approximation (I-X)-1 ≈ I+X on the LHS of the 

previous equation such that 
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which reduces to 
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By the same reasoning, we can pre-multiply both sides of Equation 3.15 by ( ) 1
2
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yGI µ  and 

obtain, 
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Adding these two last equations and disregarding the k

y
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xGG2µ  term, 
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which can be solved as, 
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APPENDIX B2: POSITIVE DEFINITIVENESS AND CONDITION 

NUMBER OF THE DIFFUSION MATRIX IN THE SEMI-IMPLICIT 

EQUATION  

Let us prove that matrix Ak ≡ I-µGk is positive definite, so that the CG is an efficient iterative 

method to solve it.  The Gershgorin theorem [Saad, 2003] states that for any eigenvalue λ of 

a matrix Ak (in our case) there exists 1 ≤ i ≤ N such that  
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Since Ak is strictly diagonally dominant for all valid semi-implicit discretizations of the 

nonlinear diffusion equation and the elements in the main diagonal are positive (see Section 

2.4), 

k

ii
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k

ij

k

ii aaa ∑
≠

<≤−λ , 

hence,  

,20 k

iia<< λ  

and since all the eigenvalues of Ak are positive, then Ak is positive definite [Horn and 

Johnson, 2006].  Notice that until now, we have not used the known structure of our 

particular matrix given on Equation 3.14 and hence, this result is valid for any other 

discretizations that satisfy the requirements for a valid discrete scale-space.   

We can obtain much more information from the Gershorin theorem for our particular 

matrix, since we know that (see Equation 3.13) for each eigenvalue, there exists 1 ≤ i ≤ N 

such that 
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given that µ > 0 and 0, >k

lig  (Section 2.4) and we have defined for convenience, 
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Gershorin inequality reduces in our case to 
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 This result confirm us that Ak is positive definite, but also provide us with lower and 

upper bounds for λ, which is useful to determine an upper bound for the condition number of 

A
k, 









+≤≥ ∑
l

k

lii g ,maxmin max21,1 µλλ . 

Hence, the condition number will be bounded by, 









+≤ ∑
l

k

lii g ,max21 µκ . 

From the previous result, we can see that µ affects directly the condition number, so that 

large values of µ, as those used in Section 3.3, deteriorates the convergence of the CG (see 

Equation 3.20).  Also, we can verify from this result that as stated in [Weickert et al, 1998] 

the threshold parameter α in Equation 3.6 affects the condition number.  In order to see this, 

let us consider the case when α→0, then g→0 (see Equation 3.6) and κ→1, but this case is of 

no practical importance, since if g→0 there is no diffusion whatsoever.  On the other hand, as 

α increases there is more diffusion and if α→1 then g→1 and the condition number is 

maximal for a given µ.  Hence, as α increases the condition number increases too. 
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