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Abstract

Finite field arithmetic plays an important role in a wide range of applications. This
research is originally motivated by an application of computational biology where
genetic networks are modeled by means of finite fields. Nonetheless, this work has
application in various research fields including digital signal processing, error correct-
ing codes, Reed-Solomon encoders/decoders, elliptic curve cryptosystems, or compu-
tational and algorithmic aspects of commutative algebra. We present a set of efficient
algorithms for finite field arithmetic over GF (2m), which are implemented on a High
Performance Reconfigurable Computing platform. In this way, we deliver new and
efficient designs on Field Programmable Gate Arrays (FPGA) for accelerating fi-
nite field arithmetic. Among the arithmetic operations, the most frequently used and
time consuming operation is multiplication. We have designed a fast and space-saving
multiplier, which has been used for creating other efficient architectures for inversion
and exponentiation which have in turn been used for developing a new and efficient
architecture for finite field interpolation. Here, the bit-level representation of the el-
ements in GF (2m) and some special structures in the formulation of multiplication
and inversion algorithms, have been exploited in order to use efficiently the FPGAs
resources. Furthermore, we have also proposed a novel approach for multiplication
over finite fields GF (pm), with p 6= 2, where the computational complexity is reduced
from O(n2) to O(n log n).
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Resumen

La aritmética sobre campos finitos desempeña un importante papel en diversas apli-
caciones. Esta investigación ha estado motivada originalmente por una aplicación de
Bioloǵıa Computacional donde se modelan redes genéticas a través de campos finitos.
Sin embargo, este trabajo tiene también aplicación en varios campos de investigación,
tales como el procesamiento digital de señales, códigos de corrección de errores, cod-
ificación y decodificación de códigos de Reed-Solomon, criptograf́ıa de curva eĺıptica,
o aspectos computacionales y algoŕıtmicos de algebra conmutativa. Presentamos en
este trabajo, una colección de algoritmos eficientes para hacer aritmética sobre cuer-
pos finitos del tipo GF (2m), los cuales son implantados sobre una plataforma de
computación reconfigurable de alto rendimiento. De esta manera, proveemos diseños
nuevos y eficientes para acelerar aritmética de campos finitos sobre FPGAs (del inglés
Field Programmable Gate Arrays). Entre las operaciones aritméticas, la multipli-
cación es la operación que se usa con mayor frecuencia y es además la más lenta.
Hemos diseñado por lo tanto, un multiplicador rápido y económico en espacio, el cual
ha sido usado para crear otras arquitecturas eficientes para el cálculo de inversas y de
exponenciación, las mismas han sido usadas para a su vez desarrollar una arquitectura
eficiente para interpolación sobre cuerpos finitos. En este caso, la representación de
los elementos del cuerpo GF (2m) a nivel de bits y algunas estructuras especiales en
la formulación de los algoritmos de inversa y multiplicación ha sido aprovechada con
el fin de usar eficientemente los recursos del FPGA. También hemos propuesto un
método nuevo para multiplicación sobre cuerpos finitos del tipo GF (pm), con p 6= 2,
donde la complejidad computacional es reducida de O(n2) a O(n log n).
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Chapter 1

Introduction

Computer Science is a science of
abstraction -creating the right
model for a problem and
devising the appropriate
mechanizable techniques to solve
it-.

Alfred Aho & Jeffrey Ullman

The use of computational tools for accelerating engineering and scientific comput-

ing applications has been a fundamental theme in computer science research. High

Performance Computing (HPC) has been used successfully for the acceleration of de-

manding computational applications, but the computational requirements are growing

as researchers (from a broad range of science and engineering disciplines) are formulat-

ing more sophisticated problems. This pressure has influenced an interest in pushing

the limits of current technologies, and in exploring new technologies for HPC. This

dissertation is motivated by the potentiality of accelerating a biological application

by means of a new way of high performance computing, namely High Performance

Reconfigurable Computing (HPRC), where speedup is achieved by exploiting the syn-

ergism between hardware and software execution [32].

1



Caṕıtulo 1. Introduction 2

1.1 Motivation

Finite field arithmetic has a wide range of applications in various fields of science and

engineering, including digital signal processing, cryptography, error-correcting codes

and, more recently, in modeling genetic networks as finite dynamical systems.

The dynamical system concept is a mathematical formalization for any fixed “rule”

which describes the time dependence of a point’s position in its environment space

[70]. Finite dynamical systems are dynamical systems on finite sets. The theory

of finite dynamical systems has been used successfully in modeling gene regulatory

networks [12,80,81,98] by means of finite fields.

This research is motivated by an important problem in computational biology: the

problem of modeling gene regulatory networks in order to determine gene behavior

in biological systems and how they interact with each other. This is concerned with

the reverse engineering problem for genetic networks; this is the problem of deter-

mining the network that describes functional relations between genes, given a set of

experimental data.

In this work we consider the reverse engineering problem in the context of univari-

ate finite fields models [12, 14, 15]. In this framework, which is based on the theory

of finite dynamical systems, solutions of the reverse engineering problem relies on

intensive arithmetic computations over finite fields. Addition and multiplication are

the two basic operations. But even though addition is easily realized at very low

computational cost, multiplication is costly in terms of computation time and circuit

complexity. Moreover, other arithmetic operations on finite fields used for reverse

engineering such as inversion and exponentiation are performed by repeated multipli-
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cations. The research elaborated in this dissertation provides a means for effectively

accelerating the finite field arithmetic involved not only in reverse engineering large

genetic networks, but in the whole range of applications of finite fields.

1.2 Problem Definition

The goal of this work is to provide a set of fast algorithms and then implementa-

tions for performing finite field arithmetic, including not only the usual operations of

addition, subtraction, multiplication, and division, but also interpolation.

This work was motivated by the reverse engineering problem for genetic networks

(a more detailed description of which is given in Section 3.2) which can be loosely

stated in the context of the univariate finite field model as follows:

Given a time series of gene expression measurements that have been discretized

to a prime number p of expression levels, s1, s2, . . . , sn where each si represents the

“state” of say m genes and a set of conditions χ, find a function f defined on the

finite field GF (pm) such that f(si) = si+1, for all i = 1, 2, . . . , n−1 and f satisfies the

conditions in χ. The set of all functions f satisfying f(si) = si+1, i = 1, 2, . . . , n− 1,

is given by

f(x) = P (x) + g(x)

where P is a polynomial determined by interpolating at the given points of the time

series and g(x) belongs to the ideal of polynomials that vanish on the si.

In order to perform interpolation for large genetic networks, it is essential to

develop the capacity for performing very fast and efficient arithmetic over finite fields.
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Researchers have employed various strategies to accelerate finite field calculations

using both uniprocessor [55] and parallel computing based solutions [14]. However,

there exist factors that limit the performance and scaling of finite field arithmetic

algorithms such as limit in memory space, load balancing or simply Amdahl’s law,

which provides an upper bound on the speedup achievable by applying a certain

number of processors to solve a problem in parallel. According to this argument [4],

the speedup of a program using multiple processors in parallel computing is limited

by the sequential fraction of the program.1 For example, if 95% of a program can be

parallelized, the theoretical maximum speed-up using parallel computing would be

twenty times, regardless the number of processors used.

Recently the potentialities of FPGAs have been taken into consideration for im-

proving the performance of high-performance computing (HPC) applications as an

alternative to massively parallel computing. High performance reconfigurable com-

puters, based on the use of high-performance processors and FPGAs for accelerating

HPC applications, are gaining interest in different research areas [48]. There has been

significant research to support the potential performance gains available through the

use of reconfigurable hardware for certain classes of computationally-intensive tasks.

Nonetheless, despite well-known advantages of HPRC [16], using this technology could

present significant challenges that need to be resolved [56]. Therefore, the suitability

of a problem for HPRC based solution should be judiciously studied.

The problem of accelerating the interpolation phase of reverse engineering for large

1Amdahl’s Law: If 1− P is the fraction of a calculation that is serial and P the fraction that can
be parallelized, then the greatest speedup that can be achieved using N processors is: 1

(1−P )+ P

N

. In

the limit, as N tends to infinity, the maximum speedup tends to 1
(1−P )

.
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genetic networks could expend many computational resources and development effort.

However, given that elements in binary extension finite fields can be represented as bit

sequences on hardware platforms, a solution based on high performance reconfigurable

computing seems to be a practical approach for effectively accelerating computations

of finite field arithmetic involved in reverse engineering large genetic networks that

are modeled by finite fields of characteristic 2.

Some important issues concerning an efficient HPRC-based solution of our in-

tended application have to be overcome. Problems such as CPU-FPGA interfaces,

selecting optimal algorithms suitable for FPGAs, using appropriate structures for

the designs, limited resources, administrating wisely the time/space tradeoff, must

be addressed in order to develop an application delivering substantial performance

improvement with a reasonable use of computational resources.

1.3 Research Objectives

The main goal of this research is to provide computational means to achieve efficient

designs for fast finite field arithmetic that are needed in applications such as digital

signal processing, coding theory, cryptography, and especially reverse engineering

genetic networks.

Optimal and appropriate algorithms must be selected in order to solve problems

that include mainly finite field multiplication, inversion, and interpolation.

We deal mainly with arithmetic in fields GF (2m). Such a field models a genetic

network in which each of the m genes has just two states, either on or off. Motivated

by this application, we wish to develop algorithms that can be readily implemented
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for a large number of genes m.

It is necessary to study the state of the art of methods employed for solving the

aforementioned problems, and optimize procedures for implementing efficient solu-

tions according to the requirements of the intended application.

In order to optimally use the available resources and simultaneously achieve signif-

icant speedups, it is crucial to evaluate some drawbacks that need to be solved. In this

sense, the following must be considered: the impact of data flow and data representa-

tion on the architectures performance, the overhead associated with communications

between CPU and FPGA, the area constraints, and the problem size.

1.4 Contribution

A novel approach for finite field multiplication over odd-prime extension fields has

been introduced. A fast and space-saving design for a finite field multiplication over

GF (2m) was also introduced. This multiplier became essential for the design of an

efficient architecture for finite field inversion toward the ultimate and more challenging

problem of developing a new and efficient architecture for finite field interpolation.

This research provides novel and efficient computational methods for accelerating

finite field based algorithms employed for the interpolation phase of the solution of

the reverse engineering problem for genetic networks. This computational biology

application could be practical for biologists who need to have a better understanding

on complex biological phenomena, such as, prediction of effects of new drugs, or

disease mechanisms.

Although the ideas developed are intended for the aforementioned computational
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biology application, these notions could be employed as well to other applications

where models based on finite fields are involved. In this sense, this work provides a

contribution into the computational and algorithmic aspects of commutative algebra.

Furthermore, high-performance finite field arithmetic is useful for solving problems

in digital signal processing, error correcting codes, Reed-Solomon encoders/decoders,

elliptic curve cryptosystems, and learning algorithms.

We have developed a novel high-speed and space-saving design for finite field mul-

tiplication in GF (2m). This simple and fast architecture is useful for implementing

an efficient FPGA-based approach for inversion which is used for developing finite

field interpolation. The former became the principal achievement in this work, given

that the major research effort was oriented to overcome some implied issues concern-

ing finite field interpolation. As a result, a new efficient architecture for univariate

polynomial interpolation over binary finite fields has been obtained. The proposed

interpolator reaches substantial acceleration factors. Thus, it promises to be useful

for an efficient solution of the reverse engineering problem for Boolean genetic net-

works, in the same way as it can contribute to solve other problems requiring efficient

interpolation over large finite fields GF (2m). To the best of our knowledge, this is

the first work concerning an entire design of finite field polynomial interpolation for

FPGAs.

We have also developed a new multiplication for certain fields of characteristic

p 6= 2. This algorithm, based on convolution, reduces the complexity of multiplication

in GF (pm) from O(m2) to O(m log m).

The algorithms and architectures proposed have proven to perform efficiently in
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an HPRC environment. We hope that this will contribute to the development of the

incipient research area that is HPRC. But this contribution is not only limited to the

achieved results, but to how the results were achieved. Moreover, the methods and

techniques employed in this work could be used with future reconfigurable computing

technologies.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 summarizes the

fundamental theory relevant to the materials presented in this dissertation. The first

section of the chapter introduces some basic definitions concerning high performance

reconfigurable computing followed by a description of the hardware and software tools

employed in the development of this research. The chapter closes with an overview

of finite field theory, and finite field arithmetic techniques.

Chapter 3 describes reverse engineering in the context of univariate finite field

model. Some theory about reverse engineering and a description of the model used

are presented.

The design of a new finite field multiplier over GF (2m) is presented in Chapter 4.

Experimental results are shown. In addition, the use of finite field multiplication for

computing finite field inversion is considered.

Finite field polynomial interpolation on FPGAs is studied in Chapter 5, the com-

plete design of the proposed architecture is described, and some numerical experi-

ments are presented.

Finite field multiplication over GF (pm), with p 6= 2 via number theoretic transform
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is addressed in Chapter 6.

Some ethical issues concerning the present research are mentioned in Chapter

7. Finally, Chapter 8 gives some concluding remarks, and the chapter closes with

recommendation for future work.



Chapter 2

Background material

If human life were long enough
to find the ultimate theory,
everything would have been
solved by previous generations.
Nothing would be left to be
discovered.

Stephen Hawking

This Chapter summarizes the fundamental mathematical and computational the-

ory which is relevant to the materials presented in this dissertation.

2.1 High Performance Reconfigurable Computing (HPRC)

In this work we consider the opportunities of adapting a current high-performance

computing application to efficiently operate on a reconfigurable platform using a High

Performance Reconfigurable Computing (HPRC) paradigm. Some fundamental terms

and a brief description of the reconfigurable platform used in the present research are

described in this section.

10
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2.1.1 HPRC Terminology

This section introduces some HPRC terms which are referred to in subsequent sec-

tions. These and other terms commonly used in HPRC can be found in [11,48,101].

Reconfigurable Computing is a computing paradigm employing FPGAs or

reconfigurable devices for processing data. A different bitstream can be loaded

during the execution of a program or to run a different program on the fly.

A Field Programmable Gate Array (FPGA) is a regularly tiled two-

dimensional array of logic blocks. The logic blocks communicate through a

programmable interconnection network that includes both nearest neighbor as

well as hierarchical and long path wires. An algorithm design produces a bit

pattern that connects the logic blocks in an FPGA in order to implement that

algorithm in hardware.

A Reconfigurable Device may be an FPGA, or any other device whose func-

tionality can be changed during execution. If in a hardware architecture both

functionalities of processing elements and interconnections between them can

be modified after manufacture time then it is a reconfigurable device or archi-

tecture.

High Performance Reconfigurable Computing is defined as the study of

computation using reconfigurable devices and high-performance computers.

Speedup is a measure of how much faster a given program runs when exe-

cuted onto a reconfigurable device as compared to serial execution on a single
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processor. The speedup ratio is determined as by S = runtime on CPU
runtime on FPGA.

Bitstream is the file that configures the FPGA (often has a .bit or .bin exten-

sion). The Bitstream gets loaded into an FPGA when ready for execution. It is

obtained after synthesis, mapping, place and route phases of the implementation

process.

Configuration should refer to the bitstream currently loaded on an FPGA.

Reconfiguration also named programming, or re-programming, is the action

of loading a circuit design onto an FPGA.

Synthesis is the process of creating a netlist from a circuit description, usually

described by an HDL (Hardware Description Language).

Place and Route is the process of converting a netlist into physically mapped

and placed components on the FPGA, ending in the creation of a bitstream.

Essentially tries to fit the circuit design onto the FPGA surface as well as

possible.

Local Memory is a memory directly connected to an FPGA but that is not

inside the FPGA chip itself. Often named as DRAM, SRAM, QDR, DDR

SRAMs, or ZBT RAM.

Host Memory is a memory accessible by the whole computer. It should refer

to memory on the microprocessor motherboard and it is not necessarily directly

accessible through the FPGA.
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Hardware Emulation/Simulation is the process of mimicking the behavior

of a circuit or FPGA configuration on a CPU based system.

2.1.2 Hardware and Software Tools

The implementations and results presented in this work have been developed on the

Cray XD1 system [25]. This is a modular high performance computing system with

the base unit consisting of a chassis with up to six nodes which are technically known

as compute blades. In our Cray XD1, each compute blade contains two AMD Opteron

275 2.2 GHz dual core processors with 8 GBs of memory per processor. Each compute

blade includes also a RapidArray processor which provides two 2 GB/s RapidArray

links to the switch fabric. An application acceleration system is also included in a

compute blade.

GB/s
3.2

GB/s
2.0

GB/s
2.0

3.2 GB/s

3.2 GB/s

3.2 GB/s

3.2 GB/s
QDR II
SRAM

QDR II
SRAM

QDR II
SRAM

QDR II
SRAM

Application

Accelerator

( FPGA )

Xilinx
Virtex II Pro

Processor

RapidArray 3.2 GB/s

Cray RapidArray Interconnect

HyperTransport
AMD Opteron

Figure 2.1: The Cray XD1 processor module.
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The application acceleration system is an FPGA-based reconfigurable computing

module that provides an FPGA complemented with a RapidArray Transport core

providing a programmable clock source, and a 3.2 GB/s link to the AMD Opteron

processor (see Figure 2.1). Four banks of 8 MB Quad Data Rate II (QDR) SRAM

local memories are included as well in the application acceleration module. The

FPGAs units are Xilinx Virtex II Pro 50.

Each node runs a Cray modified version of SuSE Linux (kernel 2.6.5). The

Cray XD1 is supplied with standard primitives [26] (RapidArray Communications

Libraries) for FPGA setup and CPU-FPGA interactions. The FPGA developments

presented in this work were done by using the tools included in the Xilinx ISE Founda-

tion 9.1i development toolset [140]. Simulations have been done using the ModelSim

simulator of Mentor Graphics [95]. In this work all codes are synthesized from VHDL

language.

2.2 Finite Fields

A brief overview about fundamentals of finite fields is given in this section. A compre-

hensive review of finite fields with important definitions and properties with proofs

can be found in [85].

Informally, a field is a set of elements in which it is possible to add, subtract, mul-

tiply and divide, such that the commutative, associative and distributive properties

are satisfied. The fields with a finite number of elements are called finite fields. This

is stated more formally in the following definition.
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Definition 1 A finite field {F,+, ·} consists of a finite set F , and two operations +

and · that satisfy the following properties:

1. ∀a, b ∈ F, a + b ∈ F, a · b ∈ F

2. ∀a, b ∈ F, a + b = b + a, a · b = b · a

3. ∀a, b, c ∈ F, a + (b + c) = (a + b) + c, (a · b) · c = a · (b · c)

4. ∀a, b, c ∈ F, a · (b + c) = (a · b) + (a · c)

5. ∃0, 1 ∈ F, a + 0 = 0 + a = a, a · 1 = 1 · a = a

6. ∀a ∈ F,∃(−a) ∈ F such that a + (−a) = (−a) + a = 0

∀a 6= 0 ∈ F,∃a−1 ∈ F such that a · a−1 = a−1 · a = 1

Finite fields are also referred to as Galois fields. A finite field with q elements is

denoted by GF (q). The number of elements in a field can be either prime or a power

of prime. From now p will denote a prime. GF (pm) is the field of pm elements, it is

also called an extension field of GF (p) and p is called the characteristic. It can be

shown that for any element α in a field of characteristic p, pα = α + α + · · · + α (p

times) is equal to zero.

Some additional definitions and properties of finite fields needed for understanding

the material presented in this dissertation are introduced below.

Definition 2 The order of a finite field is the number of elements in the field.

Definition 3 Let α be a nonzero element of GF (pm), the order of α is the smallest

positive integer, ord(α), such that αord(α) is the identity element of GF (pm) .
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For α 6= 0 in GF (pm), ord(α) always divides pm − 1. Hence αpm−1
is always the

identity element of GF (pm).

Definition 4 When ord(α) = pm − 1, α is called a primitive element of GF (pm).

Definition 5 A polynomial, whose coefficients are elements of GF (pm), is said to be

a polynomial over GF (pm).

Definition 6 A polynomial over GF (pm) is irreducible if it cannot be factored into

non-trivial polynomials over the same field.

Every irreducible polynomial of degree m over GF (p) defines an unique exten-

sion field GF (pm), and for every power of a prime pm, there is exactly one (up to

isomorphism) field GF (pm).

Definition 7 A primitive polynomial is a polynomial F (X) with coefficients in GF (p)

which has a root α in GF (pm) such that {0, 1, α, α2 , α3, . . . , αpm
−2} is the entire ex-

tension field GF (pm), and moreover, F (X) is the smallest degree polynomial having

α as root.

2.3 Finite Fields Representation

The representation of the field elements distinguishes the particular features in the

finite field arithmetic. The most common representations are the powers representa-

tion, dual basis, normal basis, and standard basis [59].

Let α be a primitive element of GF (pm). In the powers representation, the set

of elements of GF (pm) can then be represented as:
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{0, 1, α, α2 . . . , αpm−2
}

In a normal basis representation, each of the basis elements is related to any one

of them by applying the p-th power mapping repeatedly, where p is the characteristic

of the field, that is to say:

Let GF (pm) be a field with pm elements, and β an element of it such that the m

elements

{β, βp, βp2
, . . . , βpm−1

}

are linearly independent.

The first normal basis multiplication algorithm was reported by Massey and

Omura [90] and its first implementation was reported by Wang et al [138]. To

date, numerous implementations based on the Massey-Omura multiplier have been

reported [54,111,112].

The dual basis is not a concrete basis like the polynomial basis or the normal

basis; it rather provides a way of using a second basis for computations. Using a dual

basis can provide a way to easily communicate between devices that use different

bases, rather than having to explicitly convert between bases using the change of

bases formulas. The original dual basis representation for finite field multiplication

is due to Berlekamp [10]. Later on, this algorithm was modified, generalized, and

implemented in hardware by Hsu et al [58]. Other dual basis implementations based

on Berlekamp’s algorithm have been reported [47,114].
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The standard basis is a natural representation of finite field elements as poly-

nomials over a ground field, which is also known as polynomial representation. It is

defined as follows:

Let α ∈ GF (pm) be the root of an irreducible polynomial of degree m over GF (p).

The standard or polynomial basis of GF (pm) is then

{0, 1, α, . . . , αm−1}

Thus, in this representation each element of GF (pm) is expressed as a polynomial

c0 + c1α + c2α
2 + cm−1α

m−1 over GF (p).

Because of its simplicity, the standard basis representation has been widely used.

The earliest standard basis multiplier was proposed by Bartee et al. [9]. A first high

performance standard basis multiplier for VLSI was reported by Scott et al. [121].

Some recent implementations are reported in [113]. Since the present research has

been developed concerning standard basis, in the remainder of this Chapter we will

consider uniquely the previous work related with finite fields represented in standard

basis.

In this research, the finite fields of fundamental interest are the extension fields of

GF (2), denoted by GF (2m). The simplest example of a finite field is the binary field

GF (2) = {0, 1}, the operations in this field are addition and multiplication modulo

2.

From Table 2.1 it is easily verified that the 6 properties of Definition 1 hold, and

therefore GF (2) is a finite field.



Caṕıtulo 2. Background material 19

Table 2.1: Operations for the finite field GF (2)

a b a + b a · b

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

We can create larger fields by extending GF (2) to an m-dimensional vector space

leading to finite fields of size 2m. Then we have the field GF (2m) where each element

could be seen as a binary m-tuple.

As an example of an extension finite field, consider the field GF(8). We can use

three alternate and equivalent representations to represent each element in the field:

1. In the powers representation all non-zero elements in GF(8) may be represented

as powers of a primitive field element α (see details in [85]), then each non-zero

element is of the form αn for n = 0, 1, . . . , 6

2. In the polynomial representation each element in the field GF (8) = GF (23) is

represented as polynomials with degree less than 3 whose coefficients belong to

GF (2). The polynomials are defined according to the irreducible polynomial

that generates the field.

3. In the m-tuple representation each element in the field GF (8) = GF (23) can be

represented as an 3-dimensional binary vector, i.e, a binary 3-tuple. Each vector

is determined by the coefficients of the respective polynomial representation.

We can take advantage of the powers representation in a mathematical framework

while the m-tuple representation is convenient to deal with digital hardware. The
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Table 2.2: Alternative representations in the field GF (23)

Powers Polynomial 3-tuple
Representation Representation Representation

0 0 000

α0 1 001

α1 α 010

α2 α2 100

α3 α + 1 011

α4 α2 + α 110

α5 α2 + α + 1 111

α6 α2 + 1 101

use of both representations for fast finite field arithmetic is addressed in the next

subsections.

2.4 Related Work on Finite Field Arithmetic

In this section we review some recent works concerning arithmetic in binary extension

fields GF (2m) with standard basis representation.

2.4.1 Multiplication over Finite Fields

The finite field multiplication plays a predominant role in accelerating reverse engi-

neering of genetic networks and other known finite field applications. In consequence,

it has been necessary to expend important efforts in designing efficient multipliers.

It is well known that arithmetic in GF (2m) has been attractive for implementing in

hardware, hence the binary finite field arithmetic using FPGAs has gained significant

attention in recent years. In this manner, different FPGA based approaches have

been proposed in recent years. An early survey of finite field multiplier designs and
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their performance characterization on FPGAs is presented in [1].

A much studied method for finite field multiplication is the Massey-Omura Mul-

tiplier. This approach has been improved from its original [89], by removing redun-

dancies [111]. This method is essentially effective for normal bases, however, it has

been used on applications intended for standard basis. Savas et al, used this mul-

tiplier combined with a process for normal/standard basis conversion [119]. Other

improvements of this method for FPGA platform have been reported [1].

A multiplication method generally used in cryptosystems is the so-called Mont-

gomery multiplication. Montgomery multiplication was first proposed for efficient

integer modular multiplication [97]. Later on, it was extended to finite field multi-

plication in GF (2m) by Koç et al. [76]. They describe this multiplication method as

follows:

Let f(x) be an irreducible polynomial that defines the field GF (2m) and r(x)

be a fixed element in GF (2m) such that gcd(f(x), r(x)) = 1. Then, the extended

Euclidean algorithm can be used to determine f̃(x) and r̃(x) that satisfy

r(x)r̃(x) + f(x)f̃(x) = 1 (2.1)

clearly r̃(x) = r−1(x) is the inverse of r(x). Given two fields elements a(x), b(x) ∈

GF (2m), the Montgomery multiplication is given by

c(x) = a(x)b(x)r−1(x) mod f(x) (2.2)

The efficiency of this multiplier is dependent on the chosen fixed field element
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r(x). Efficient architectures for certain class of fields GF (2m) have been implemented

on FPGAs [93].

Essentially, a finite field multiplication in standard basis consists of a polynomial

multiplication followed by a modular reduction. Some authors have realized that the

performance of a multiplier can be improved by reducing computation in these two

steps. Some proposed solutions include combining all the computations inito one step,

computing both steps at the same time, or precomputing the first step. Next we will

refer to some approaches concerning these issues.

Systolic array architectures have been considered in the design of multipliers over

GF (2m), this paradigm has been useful for speeding up computations by exploiting

bit-level parallelism and pipelining. Some systolic architectures for fast finite field

multiplication have been presented [29, 82]. A high-throughput hardware-efficient

semi-systolic linear array for a serial-parallel implementation of finite field multiplier

over GF (2m) is presented in [45], where the polynomial multiplication step is com-

puted into a serial design while the reduction step of multiplication is performed by

a bidirectional modulo reduction technique.

An efficient multiplication scheme for a standard basis multiplier has been devel-

oped by Mastrovito in [91]. In this approach the multiplication C = A·B is performed

by means of a matrix-vector product ~c = Z~b, where ~c and ~b are the components vec-

tors of C and B and Z is the Mastrovito matrix whose elements are obtained by

XOR operations over some of the components of A. With the construction of Z the

reduction step is precomputed and polynomial multiplication step is performed by

the Matrix-vector product. The Mastrovito based multiplier has been broadly used
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due to its capabilities for reducing the time and space complexity when finite fields

generated by some classes of irreducible polynomials are used. Given that the amount

of operations in the multiplier is determined by the irreducible polynomial which de-

fines the field, some authors have proposed architectures based on certain irreducible

polynomials [6, 132]. Other variant of multipliers based on Mastrovito matrix have

been reported in [52,108,125].

In Chapter 4 we will present a novel design based on the Mastrovito matrix [39],

this multiplier has been compared with other standard basis multiplier over GF (2m),

some of which are mentioned below.

In [44], an efficient multiplier architecture of the type serial/parallel is presented

where the modular reduction is carried out concurrently over each partial product,

and finally all the partial products are added to obtain the final result. A similar, but

more flexible architecture, is proposed in [75], where the value of the field degree can

be changed and the irreducible polynomial can be configured and programmed; this

feature can be achieved by implementing demultiplexers in the architecture design.

In [49], the authors consider a hybrid-Karatsuba multiplier based on the Karatsuba

multiplication method which reduces the number of multiplication but at the cost

of increasing the number of additions and the total propagation delay. To achieve a

tradeoff between area and propagation delay, a hybrid model using Karatsuba formu-

las combined with the classical polynomial multiplication method is proposed.
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2.4.2 Division over Finite Fields

Finite field division, which implies computation of inversion, is the most complex

finite field arithmetic operation and various algorithms and architectures have been

proposed based on different approaches [31], such as the extended Euclidean algorithm

or one of its derivatives, the extended binary gcd [100] (also known as extended Stein’s

algorithm), or Fermat’s little theorem.

New formulations of the extended Euclidean algorithm have led to design archi-

tectures for finite field inversion. For instance, in [141] Yan et al. propose a version of

the extended Euclidean algorithm to deal with a new two-dimensional systolic archi-

tectures for inversion in GF (2m). Another new architecture based on the extended

Euclidean algorithm uses a distributed control mechanism which results in the ar-

chitecture having the same circuitry regardless of the value of m, this architecture

provides good scalability properties.

Stein’s algorithm has been used in an application to cryptosystems in [73]. A

variation of this architecture is presented in [74] for GF (2163) and GF (2239). These

kinds of algorithms are usually considered to be slow [41], because a great number

of degree comparisons is required at each step, increasing in this way the area-time

complexity. However, in [96] the authors claim to overcome the traditional obstacles

by replacing the comparisons by a much more simple counter and taking advantage of

binary representations on FPGAs. This idea was exploited also by Wu et al. in [139],

where two very similar serial binary shift-right algorithms are presented. The authors

show that these modifications lead to an even better area-time complexity.

Another well studied finite field method for inversion is due to Itoh and Tsujii.
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This algorithm is based on Fermat’s Little Theorem and uses a clever re-arrangement

of the finite field operations to compute binary exponentiations through addition

chains. The algorithm was originally conceived for inversion over normal basis repre-

sentation [65] in GF (2m). However, since the first publication some generalizations

have been reported. In [50], Guajardo et al. have formulated a design generalizing

the algorithm to any field of the type GF (pm), showing that the method can be

used in standard basis too. Other improvements of Ito-Tsujii algorithm are reported

in [117, 134, 142]. Recently Rodriguez et al. [115, 116] have proposed parallel archi-

tectures of the standard Itoh-Tsujii algorithm, which deliver good performance on

FPGAs.

We have developed an FPGA based implementation of the standard Itoh-Tsujii

algorithm [50,117]. In Chapter 5, we will provide more details concerning this archi-

tecture for finite field inversion as a component of Newton’s algorithm for interpolation

over finite fields.

2.4.3 Interpolation over Finite Fields

The interpolation process always implies intensive arithmetic. It is a given that as the

finite field arithmetic involved in interpolation develops into abundant and complex

operations, interpolation over finite fields becomes a challenging process. In recent

years, some researchers have considered the suitability of interpolation over finite

fields for certain applications such as decoding error correcting codes [105], testing

and fault detection [28], and in learning algorithms [120].

More recent developments include the work of Zilic and Vranesic [145]. The afore-
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mentioned research, presents a multivariate interpolation algorithm over arbitrary

fields which is suited for small finite fields. This algorithm uses tools of linear algebra,

including the new properties of the generalized multivariate Vandermonde matrix.

The use of finite field interpolation in a public key cryptography application was

evaluated in [79] for tackling the problem of the discrete logarithm. The authors stud-

ied the Aitken and Neville interpolation methods on discrete exponential functions

over finite fields; they concluded that the computational cost of finding a polyno-

mial that interpolates the discrete logarithm by either method is high. However, the

approach could be applied to low degree polynomials.

A parallel approach for univariate polynomial interpolation over finite field is

proposed by Bollman et al. in [14]. They obtain the interpolation polynomial through

Lipson’s algorithm which is based on the Chinese remainder theorem. Using the

divide-and-conquer idea, Lipson’s algorithm builds a solution in a tree-like fashion.

This feature is exploited for the parallelization of the algorithm.

The methods and techniques presented in this review have been conceived for

software based solutions. As far as we know, up until now no other finite field inter-

polation method has been entirely developed for hardware devices or FPGAs.

We have developed an FPGA based implementation for univariate polynomial

interpolation over GF (2m) [40]. In Chapter 5, we will provide more details concerning

this novel architecture.



Chapter 3

Reverse Engineering Genetic
Networks

The machine does not isolate
man from the great problems of
nature but plunges him more
deeply into them.

Antoine de Saint-Exupéry

The results of our research on fast finite field arithmetic, given in the succeeding

chapters, have a wide range of applications. However, as mentioned previously, our

work has been motivated by the reverse engineering problem for genetic networks.

Thus, before discussing our specific results in fast finite field arithmetic, in this chapter

we give an overview of the reverse engineering problem and our approach to the

problem through the use of univariate finite field model.

3.1 On the Use of Mathematical Models

For decades biologists have claimed the need to formalize the process of modeling

and analyzing biological systems. Various mathematical models have been proposed,

from those described by systems of differential equations [143] to those descriptive

models based on a formal language [46]. However various of these models have been

27
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debated in the biologist community because a rigorous mathematical knowledge is

required or on the contrary, those models turn out to be oversimplified [92]. Many

other models have been developed in the past decades, still in recent years researchers

have employed significant effort for the development of new models adapted to the

need of new technologies.

Recent technological advances in the life sciences have contributed to the increase

of the amount of experimental data, such as whole genome sequences or structures

of proteins in living organisms. With this abundance of information has come the

ability to gain knowledge about the underlying system. In response to these modern

exigencies, various methods for discovering interactions in biological systems have

been proposed. In what follows, we describe a number of different reverse engineer-

ing approaches for modeling genetic networks, comprising continuous and discrete

methods.

3.1.1 Machine Learning Methods

Machine learning techniques such as genetic algorithms, neural networks, and fuzzy

logic have been broadly applied to reverse engineering genetic networks. Genetic

algorithms have been employed for parameter estimation in genetic networks models

from both artificial and experimental microarray data [110, 137], genetic algorithms

were also used in [62] to construct genetic networks from time-series gene expression

data. Other methods that use genetic algorithms have been developed with different

modeling frameworks of genetic regulatory networks, see for example [5, 133].
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Neural networks have been employed for clustering of gene expression data [57],

while in [60] the relationship between clusters is determined by using artificial neural

networks. Kasabov in [69] employed neuro-fuzzy style neural networks, knowledge-

based neural networks, for the classification of clusters and reverse engineering of

Genetic networks. Sokhansanj et al. [124] have introduced a linear fuzzy gene network

model that represents a set of fuzzy ’if-then’ rules for genetic regulatory networks.

In cite [20], other applications of machine learning techniques for reverse engineering

regulatory networks are reviewed.

3.1.2 Bayesian Networks

Bayesian methods make use of the Bayes’ rule to reverse engineer genetic networks

by inferring the causal relationship between two network nodes based on conditional

probability distributions. Friedman et al. in [42] proposed Bayesian networks to infer

causal dependencies between genes in gene regulatory networks. An extension of this

work was proposed in [107] by Pe’er et al. to reverse-engineer significant subnetworks

of interacting genes such that detailed regulation types (activation or inhibition) can

be inferred from the input data of perturbation experiments such as gene deletion or

over-expression.

The concept of a dynamic Bayesian network was introduced by Hartemink et al.

in [53] to deal with time-dependent data. Basically, these are simple extensions of

the static Bayesian methods using time-series input data. Dynamic Bayesian meth-

ods also focus on the probabilistic causal relationship between two network nodes

and assume that these relationships do not change over time like the static Bayesian
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methods. Recently, Zou and Conzen [146] have investigated a new dynamic Bayesian

algorithm for predicting the gene regulatory networks from time course expression

data, identifying events that take place over a given period of time, and estimat-

ing the so-called transcriptional time-lag between genes. The authors claim their

approach significantly improves accuracy and reduces computational time compared

with existing dynamic Bayesian networks approaches. More about Bayesian networks

models for reverse engineering genetic networks can be studied in [20,66].

3.1.3 Ordinary Differential Equations

Systems of ordinary differential equations (ODE) have been successfully applied for

modeling biological systems. In general, an n-nodes gene regulatory network can be

represented by a system of ordinary differential equations

dx1(t)
dt

= f1(x1(t), . . . , xn(t))

...

dxn(t)
dt

= fn(x1(t), . . . , xn(t))

where x(t) = (x1(t), . . . , xn(t)) is a vector of nodes xi (1 ≤ i ≤ n) representing gene

expression levels at time t and f = (f1, . . . , fn) is a vector valued function from the

real n-dimensional space IRn into IRn.

Various approaches of reverse engineering based on ODE models have been re-

ported in the literature. Yeung et al. described in [143] a method to reverse-engineer

genetic networks with linear ODEs where a set of solution is determined by singular

value decomposition (SVD). In [135], it is presented an alternate algorithm, where
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new linear algebra techniques are used to choose one solution from the set of solu-

tions obtained by SVD. In [17] Chen et al. used linear ODEs in order to formulate

four models for gene and protein expression data. They describe two algorithms

for constructing such models from data. Other ODE-based approaches for reverse

engineering genetic networks can be studied in [20,66,126].

3.1.4 Boolean Networks

A Boolean network is defined by G(V, F ), where V = {v1, . . . vn} represents a set

of nodes corresponding to genes, and F = {f1, . . . fn} is a set of Boolean functions

assigned to each node. The state of a node is completely determined by the values of

other nodes at a determined time, the transitions between states are determined by

Boolean functions.

A Boolean function is a function involving Boolean variables and the operations

∧, ∨, ¬, which are defined in Table 3.1.

Table 3.1: Boolean Operations.

x y x ∧ y x ∨ y ¬x

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Boolean methods for reverse engineering are used to infer gene regulatory networks

by applying Boolean logic to the discretized gene states which indicate gene expression

levels. The states values are 0 and 1, where 0 mean an off (unexpressed or inactive)

state, while 1 mean an on (expressed or active) state of genes.
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Stuart Kauffman was amongst the first biologists to use the idea of Boolean net-

works to model gene regulatory networks as logical switch networks [71, 72]. In the

last decades this approach has been well studied. Recent studies in this field include

the contribution of Liang et al. [84] who proposed an information-theoretic algorithm

for constructing Boolean networks from Boolean time series data. The algorithm

constructs both the global function as well as the graph describing the system, such

that the system can take the maximal amount of information, as defined by the Shan-

non’s entropy 1. Although this study is limited to synchronous Boolean networks, the

algorithm is generalized to include multi-state models.

In [3], Akutsu et al. present an reverse engineering approach based on a Boolean

network model without time delay (asynchronous), for identifying a genetic network

by multiple gene disruptions and overexpressions. They calculated upper and lower

bounds on the number of experiments that would be required if the network were

Boolean.

Ideker et al. formalized a model for reverse engineering through an inference

method called predictor. The predictor method is used to provide candidate networks

as a Boolean network model that are consistent with expression data by employing

combinatorial optimization techniques [63,64].

In this review, it is worth mentioning a Boolean network approach that incorpo-

rates stochastic features of gene regulation. Probabilistic Boolean networks have been

introduced in [122]. They are probabilistic extensions of Boolean methods, these net-

1In information theory, the Shannon entropy or information entropy is a measure that quantifies
the information contained in a message, usually in bits or bits/symbol. It is the minimum number of
bits (message length) needed to encode a string of symbols, based on the frequency of the symbols.
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works consider many Boolean functions fi1 , fi2, . . . fik , of each node xi and the proba-

bilities with which each Boolean function fij is chosen to predict the state of xi. Some

recent studies concerning probabilistic Boolean networks include [30], [87], [144]. A

comparison of probabilistic Boolean network versus dynamic Bayesian network ap-

proaches for reverse engineering is presented in [83].

There exist many more reverse-engineering methods based on Boolean models.

This review does not claim to be comprehensive, but it provides a context for new

methods inspired by Boolean models. For more thorough reviews the reader can

consult [66].

3.1.5 Finite Field Models

One of the disadvantages of the Boolean network modeling framework is the limited

range of gene expression levels, given that Boolean variables can only represent all or

no effects [103]. The need to discretize gene expression data into an on/off scheme

causes loss of information. In response to this deficiency, researchers have proposed

to generalize the Boolean genetic networks to finite field genetic networks.

Laubenbacher et al. [81] have proposed a multivariate model in which each of m

genes is described by a function fi : GF (p)m → GF (p). Moreno et al. [98] have

proposed a univariate model in which the dynamics of the complete network of m

genes is described by a single function f : GF (pm) → GF (pm). Now, each of the

Boolean operations, ∧, ∨, and ¬ can be expressed in terms of mod 2 operations, i.e.,
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x ∧ y = xy

x ∨ y = x + y + xy

¬x = 1 + x

and so each of the above Boolean models can be considered as finite field model where

p = 2.

Bollman et al. show that the univariate and multivariate models are equivalent

and that one can be converted to the other by means of a discrete Fourier transform.

Laubenbacher et al. [81] provide a computer algebra solution to the reverse engi-

neering problem for the multivariate model which can be described as follows:

Given a sequence of n “states” s1, s2, . . . , sn ∈ GF (p)m, find all functions

fi : GF (p)m → GF (p) such that fi maps each sj to the i-th coordinate of sj+1, and

from each such set choose a function that is not identically equal to zero at all sj.

Alternative models of gene expression in genetic networks based on finite fields

are addressed by Ortiz-Zuazaga et al. in [104]. They have developed heuristic proce-

dures that select genes based on coarse-grained reproducible changes. The selection

procedure clusters genes into discrete groups suitable for reverse engineering. Ortiz-

Zuazaga also proposes in [102] a probabilistic finite field genetic networks model which

is an extension of the probabilistic Boolean networks. This probabilistic model com-

bines the benefit of probabilistic Boolean networks with finite field genetic networks.

In a sense, this approach is useful for overcoming limited ranges of gene expression

while deals with the uncertainty in expression measurements. In this context, a par-

ticular model of interest is the so-called ternary model where the values are expressed
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in term of elements in the field GF (3), so it is possible to capture the biological

intuition of genes being expressed, repressed or unchanged.

Continuous methods have been studied because biological systems have been un-

derstood in terms of continuous events, where the system moves continuously from

one state to another. However, discrete methods are usually involved in discovering

regulatory interactions in biological systems as well, even when raw continuous data

is analyzed [128]. For instance, dynamic models constructed from reverse engineering

methods must fit discrete instances of a continuous process [129]. Usually discrete

methods include a discretization step.

A Finite Dynamical System (FDS) constitutes a very natural discrete model for

regulatory process, such as genetic networks [12]. In the present research we focus on

a discrete method which represents gene interaction in a biological system through

graphs associated with functions. By using this FDS-based model, it is feasible to

express the considerable quantity of data in a computationally tractable environment.

The model mentioned above is characterized by systems of discrete-value func-

tions. Vertices on the graph correspond to states in a biological system, which take

on discrete quantities or levels, and the edges depict interactions between biochemical

states affecting their levels. The number of discrete quantities or levels to be con-

sidered is two, to signify presence/absence or activity/inactivity of the genes in the

system. The aforementioned is equivalent to the Boolean network model (reviewed in

Section 3.1.4). This approach results into two related models. Namely, the univariate

model which was developed by Moreno and colleagues [98, 99], and the Multivariate

Model developed by Laubenbacher et al. [81]. The multivariate model gives local in-
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formation at each gene, whereas the univariate model gives global information about

the network. However, one model can be converted to the other by means of discrete

Fourier transform (see [12])

In [102] Ortiz introduces an alternative model where the scope of the states is

expanded by adding a third level, this is known as the ternary finite field model.

The application presented in this work tends toward the univariate version of the

binary finite field model.

3.2 Reverse engineering genetic networks

3.2.1 Preliminaries

In general the term reverse-engineering can be defined as follows:

Definition 8 Reverse engineering is the general process of analyzing a subject system

to identify its components and their interrelationships, and create representations of

the system in another form.

In this work, we consider reverse-engineering in terms of the following definition:

Definition 9 The reverse-engineering problem for genetic regulatory networks is the

problem of determining the network that describes functional relations between genes,

given a set of experimental data (gene expression data).

Gene regulatory networks (GRN) represent the set of all interactions among genes.

We are interested in tackling the problem of reverse engineering genetic regulatory

networks from time-series gene-expression through the finite field univariable model.
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A GRN with m genes can be represented by a finite dynamical system.

Definition 10 A Finite Dynamical System (FDS) is an ordered pair (X, f) where X

is a finite set and f is a function f : X → X.

Definition 11 The state diagram of a FDS (X, f) is the digraph whose nodes are

members of X and whose edges are the set of all (x, f(x)), where x ∈ X

In an n-dimensional FDS state diagram, each node represents the states of the n

genes at a determined time of the time-series, while the edges represent transitions

between states.

A network of m genes in the multivariate finite field model is represented by the

FDS (GF (p)m, f). The state of each gene i is represented by an ai ∈ GF (p) and the

next state of gene i is given by the value of a function fi(a1, a2, . . . , am) ∈ GF (p).

Given a state (a1, . . . , am) of the network, the next state is thus given by the function

f(a1, . . . , am) = f1(a1, . . . , am), f2(a1, . . . , am), . . . , fm(a1, . . . , am)

A network in the univariate finite field model is represented by the FDS (GF (pm), f).

In this case, each α ∈ GF (pm) represents a state of the m genes and each value of

f represents the next states of the m genes, given the present state. In either model

there are a total of pm possible states, but in practice we have information on only a

small fraction of these.

For k data points in the time-series expression data, we know k states in GF (pm);

that is s0, s1, s2, . . . , sk−2, sk−1. In this way the dynamics of the network is described
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by the time series

f(s0) = s1, f(s1) = s2, . . . , f(sk−2) = sk−1. (3.1)

3.2.2 The Reverse Engineering Problem for the Univariate Finite
Field Model

In the context of univariate finite field models, the reverse engineering problem is

stated as follows:

Given a time series s0, s1, . . . , sk−1 of measurements of gene expression data rep-

resenting the states of m genes at times t0, t1, . . . tk−2, and a set of conditions χ,

the reverse engineering problem is the problem of finding a function f such that f :

GF (q) → GF (q) has the property that f(sj) = sj+1, where sj = (a0, a1, . . . , am−1),

and f satisfies the conditions in χ. Our solution f(x) to the reverse engineering

problem then involves the determination of a polynomial P (x), such that f(x) =

P (x) + g(x), and P (si) = P (si+1), and g(x) is a polynomial such that g(si) = 0,

for i = 0, 1, . . . , k − 2. The set of all such polynomials g constitutes an ideal. The

polynomial P (x) can be determined interpolating over the points si. Once having

determined P (x), the polynomial g(x) can be used to adjust the model in order to

satisfy the conditions in χ. Efficient means for computing the interpolation step of

reverse engineering for p = 2 are provided in Chapter 5.
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3.2.3 Dealing with Large Genetic Networks

In a finite field model for genetic networks we assume that gene expression is dis-

cretized so that there are a prime number p of levels. There are several ways to

discretize the real-valued microarray data. One way is by thresholding. Another way

is to normalize gene expressions and use the deviation from the mean to discretize

the data. Inconsistencies due to either noise or biological variance can be resolved by

using information theoretic error correction [102].

If there are m genes and p levels of expression, then there are pm states and we

model such a network by the elements of GF (pm). In this work we consider univariate

finite field models with p = 2, so that each gene assumes just two states, either on

or off. Thus, our methods for finite field arithmetic are defined on fields GF (2m).

Nevertheless, one can take advantage of the isomorphism GF ((2r)s) ≈ GF (2rs) in

order to extend the model for representing networks where each gene has 2r states.

In practice, m can be quite large. For example, [82] outlines a study of gene reg-

ulatory networks in yeast. Yeast has 6000+ genes. Their study includes a subset of

106 transcription factors and 2343 genes for which strong empirical evidence of inter-

action was found using the experimental technique outlined in the paper. Advances

in techniques should yield data on all 6270 genes in yeast, and eventually similar data

will be available for all 20,000+ human genes. It is thus of vital interest to develop

algorithms to reverse engineering very large networks. A solution to the reverse engi-

neering problem for large values of m using multipoint interpolation relies on intensive

and expensive arithmetic computations over finite fields. Thus, in order to solve the

reverse engineering problem for the very large genetic networks that biologists would
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like to consider, it is essential to develop capacity for performing fast and efficient

arithmetic over very large finite fields, especially multiplication.

Fast finite field multiplication on GF (2m) can be achieved by using Zech loga-

rithm tables or by directly performing bit-level operations on CPU registers. But

these approaches are not practical for large finite fields (see Sections 4.1.1 and 4.1.2

for an explanation). On the other hand, composite fields can be useful for dealing

with large genetic networks, but the composite field representation is not optimal for

exploiting software and hardware resources for acceleration purpose (see Section 4.1.3

for details). In the following chapter we present an efficient solution for carrying out

fast finite field multiplication for large fields.



Chapter 4

Finite Field Multiplication in
GF (2m)

Speed has always been
important otherwise one
wouldn’t need the computer.

Seymour Cray

4.1 Fast Arithmetic in GF (2m)

The most common, as well as the slowest operation in most finite field application is

multiplication. Our aim is to develop an efficient multiplier for GF (2m). To achieve

this goal, we have considered several approaches: the table lookup method, the direct

computation on hardware registers via bit-level operations, and the composite fields

method.

4.1.1 Lookup Tables

A lookup table is a data structure that associates keys with values, which is used to

replace a runtime computation with a simpler lookup operation. The speed gain can

be significant, since retrieving a value from memory is often faster than undergoing an

41
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expensive computation. Since there is no computation involved, the look-up operation

is performed in constant time O(1).

Using power representation, multiplications can be implemented by first adding

the exponents of the operands, followed by an integer modulo reduction. Similarly,

exponentiation can be implemented easily. However the penalty of choosing the power

representation results in more complicated additions. A useful approach for finite field

additions in power representation is the so-called Zech Logarithms or simply Zech log.

Details about the definition and properties of Zech’s Logarithms can be found in [61].

Definition 12 Zech log: Let α be a primitive element of a finite field, then Z(i),

the Zech log of an integer i may be defined such that

αZ(i) = 1 + αi (4.1)

It should be noted that every nonzero element of GF (2m) has a unique repre-

sentation in the form 1 + αi, note also that for a ≤ b, αa + αb = αa(1 + αb−a) =

αa+Z(b−a) mod (2m − 1). Addition is thus performed by adding one exponent to the

Zech log of the difference of two exponents, these Zech logs are found in a pre-

computed table. In this way we can perform fast multiplications and additions by

table lookup, avoiding costly computations.

Example 1 Table 4.1 is useful for performing arithmetic over GF (24).

In Table 4.1 powers of α are used, this representation was described in section 2.3.

The right column corresponds to the Zech logarithms, which are defined by z(i) =

log(αi + 1), z(0) is denoted by *.
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Table 4.1: Lookup table for GF (24) with Zech logarithms

i αi z(i)

0 0001 *
1 0010 4
2 0100 8
3 1000 14
4 0011 1
5 0110 10
6 1100 13
7 1011 9
8 0101 2
9 1010 7
10 0111 5
11 1110 12
12 1111 11
13 1101 6
14 1001 3

Multiplication: α9 · α5 = α9+5 = α14

Addition: α7 + α3 = α3(α4 + 1) = α3αz(4) = α3α1 = α4

By using lookup tables we can perform arithmetic operations at “almost no cost”,

but the memory space becomes a great limitation. For instance, a 32-bit word length

for storing the elements of GF (230) in a table, requires 22 · 230 bytes = 4 GB in main

memory. This method is efficient for small finite fields, but it is not practical for the

large fields that arise in actual reverse engineering problems.

4.1.2 Finite Field Arithmetic via bit-level Operations

We have seen in section 2.3 that an element in GF (2m) can be represented as a

sequence of m bits in GF (2). This representation is useful for manipulating finite

field elements via bitwise operations, so we can exploit the hardware architecture of
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computers by carrying out finite field arithmetic by means of bit-level operations.

Example 2 The addition of the two elements α4+α2+α and α4+α+1 over GF (25)

is defined by

1 0 1 1 0
1 0 0 1 1

0 0 1 0 1

Notice that addition operation in GF(2) (as defined in Table 2.1) is just the XOR

of two words. This is possible because there is no carry propagation. So, addition

is a very fast operation whose complexity is constant. A very natural approach

for multiplication in GF (2m) is to multiply two elements in the field as polynomial

multiplication modulo a irreducible polynomial, using the school-book method for

polynomial multiplication. This operation is accomplished using simply left-shifts

and XORs. We call this simple procedure the direct method for multiplication [36].

The following example illustrates direct multiplication.

Example 3 Consider the multiplication (α3 +α2 +α)× (α4 +α+1) in the finite field

GF (25) defined by the irreducible polynomial t5 + t2 + 1. The direct multiplication is

illustrated in Figure 4.1.

Taking advantage of the hardware architecture, shifts and XOR operations are ac-

complished as bit-parallel operations on CPU registers, so this method has complexity

O(m). But in the basic implementation of this method, the field size is limited by the

architecture word-length. Although some data structures could work for overcoming
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α  + α  + α3 2

α  + α  + 14

α  + 13

0  1  1  1  0
0  1  1  1  0

0  0  0  0  0
0  0  0  0  0

0  1  1  1  0

0  1  1  1  1  0  0  1  0
1  0  0  1  0  1  0  0

1  0  0  1  0  1  0

0  1  1  1  0
1  0  0  1  1 

1  0  0  1  0  1
0  0  0  0  0  1  0  0  1

Figure 4.1: Example of finite field multiplication over GF (25)

the field size limit, the overall performance of these implementations is affected by

lack of plain bit-level parallelism and straightforward operations.

In order to deal with large finite fields, we can take an additional advantage by

combining the direct multiplication method presented in this Section with the table

lookup method presented in Section 4.1.1. In this sense, we bring into play the idea

of composite fields.

4.1.3 Composite Fields

A special type of finite fields GF (2k) where the exponent is a composite integer

k = nm is commonly called a composite field. If k is a composite number k = nm,

then it is possible to derive a different representation method by defining GF (2k) over

GF (2n). This is an extension field which is not defined over the prime field but one

of its subfields.
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A composite field is denoted as GF ((2n)m) where GF (2n) is known as the ground

field over which the composite field is defined.

Since the fields GF (2nm) and GF ((2n)m) are isomorphic, we can choose conve-

niently the ground and extension field sizes in order to represent finite field operations

over GF (2nm) as operations in GF ((2n)m) an use table lookup for operations in the

ground field GF (2n).

Elements in GF ((2n)m) are then of the form f0 + f1β + f2β
2 + · · · + fm−1β

m−1

where each fi is of the form fi = a0 + a1α + a2α
2 + · · ·+ an−1α

n−1, each aj ∈ GF (2),

α is a root of an irreducible polynomial of degree n over GF (2), and β is the root

of an m-degree irreducible polynomial over GF (2n). It can be shown that an m-

degree polynomial which is irreducible over GF (2) is also irreducible over GF (2n) if

gcd(n,m)= 1.

By choosing judiciously the ground and extension field some computation could

be shifted to the extension field, while the operations in the ground field could be

performed by reasonably sized lookup tables. This technique trades additional com-

putation for a significant decrease in storage space.

Obviously the field size in a composite field is conditioned to a composite number

nm, where m and n are relatively primes. Furthermore, the choice of m and n are

dependent of the available hardware resources. In this way, the amount of available

memory constrains the ground field size and leads to inconsistent performance across

architectures. In [123] Shu et al. have addressed this issue by avoiding lookup tables

and combining bit-parallel operations in the ground field with serial operations in

the extension field. However, this method is feasible only for composite fields gen-
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erated by low Hamming weight irreducible polynomials, where composite fields can

be constructed via an irreducible pentanomial of degree nm, but not an irreducible

trinomial of degree nm.

It has be claimed that the property of composite fields could be used to derive

more efficient multipliers [118,131]. However, according to Shu and colleagues [123],

to date there has not been enough solid empirical evidence to support this view, in

particular for FPGA implementations.

The access from the FPGA to memory is expensive, regardless of whether it

is a local memory attached directly to the FPGA or the host memory. Therefore,

combining direct computation with lookup tables on an FPGA implementation of a

composite field multiplier becomes a challenging effort. On the other hand, given that

on current FPGAs it is possible to allocate data using tailored registers, we can think

about straightforward implementations using registers as long as needed, avoiding

excessive communications between FPGAs and memories.

4.2 The Mastrovito Method

A very natural approach for standard basis multiplication in GF (2m) is to multiply

two elements in the field as polynomial multiplication modulo an irreducible polyno-

mial. This operation is typically accomplished in two stages: polynomial multiplica-

tion and modular reduction.

Let A(α), B(α), C(α) elements in GF (2m) and f(α) the irreducible polynomial

generating GF (2m). Then the finite field multiplication C(α) = A(α)B(α) is accom-

plished by calculating
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C(α) = A(α) ∗B(α) mod f(α) (4.2)

where ∗ denotes polynomial multiplication. In a first stage the product A(α) ∗B(α)

is calculated, resulting in a polynomial Q(α) of degree at most 2m− 2.

Q(α) = A(α) ∗B(α) =

(

m−1
∑

i=0

aiα
i

)(

m−1
∑

i=0

biα
i

)

(4.3)

In a second stage the modular reduction is performed on Q(α), that is, C(α) =

Q(α) mod f(α), resulting in the polynomial C(α) of degree at most m− 1.

It is easy to show that the expansion of equation (4.3) can be expressed as a

matrix-vector product Q = MB, where Q is a vector of dimension 2m − 1, which

consists of the coefficients of Q(α). In the same way B is a m-dimensional vector

which consists of the coefficients of B(α), while the (2m− 1)×m matrix M involves

coefficients of A(α). This is:
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a0 0 0 · · · 0 0

a1 a0 0 · · · 0 0

...
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Notice that the last m − 1 components of the vector Q (i.e. [qm, . . . , q2m−2])

contain terms with degree greater than m− 1. These terms must be reduced modulo

the irreducible polynomial f(α) = αm +g(α) in order to express them as polynomials

in the field GF (2m), here g(α) is an n-degree polynomial. The reduction is obtained

by using the reducing identity αm = g(α), so all the terms with degree greater than

m − 1 will be reduced to terms with degree in the proper range [0,m − 1]. Each

reduced term is added to the respective terms in [q0, . . . , qm−1], and so we get C(α).

A particular term may need to be reduced several times. The maximum number of

reductions is determined by:

N [m,n] =

⌈

m− 1

∆

⌉

(4.4)
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where ∆ = m− n [52].

For example, let m = 3 and f(α) = α3 +α2 +1, thus α3 = α2 +1 and α4 = α3 +α.

Using these identities the term q3α
3 is reduced only once: q3α

3 = q3α
2 + q3, while

q4α
4 is reduced twice: q4α

4 = q4α
3 + q4α = q4α

2 + q4α + q4, and so we get C(α) =

q4α
4 + q3α

3 + q2α
2 + q1α + q0 = (q4 + q3 + q2)α

2 + (q4 + q1)α + (q4 + q3 + q0). Notice

that the maximum number of reductions is N [3, 2] = 2.

Instead of performing finite field arithmetic in two steps as described above, the

Mastrovito method formulates these two steps into a single matrix-vector product.

The modular reduction is previously computed over the matrix M obtaining an al-

ready reduced m × m dimensional matrix Z, this matrix is called the Mastrovito

matrix. As result, the finite field multiplication defined in (4.2) is computed by

C = ZB.

4.3 A New FPGA-based Approach

A common method for obtaining efficient FPGA implementations is by means of

pipelining. In the case of multiplication in GF (2m), such an approach can be ef-

fected by exploiting the symmetries of the Mastrovito matrix. In this section we are

introducing a pipelining design for computing efficiently the matrix-vector product

involved in the Mastrovito method.

A method for constructing the Mastrovito matrix is proposed in [52]. According

to this method if GF (2m) is defined by the trinomial αm + αn + 1 then Z is given by
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Z =









U

L









(4.5)

where U and L are Toeplitz matrices defined as follows:

Let F = [ 0 am−1 am−2 . . . a1
] and for each i = 0, 1, . . . ,m− 1, let F [i →]

be the result of shifting F i positions to the right (vacated positions on the left are

filled with zeros). Also let G = [ an an−1 . . . a1 a0 am . . . an+1
]

U is n×m, its first column is [ a0 a1 . . . an−1
]T , and its first row is

[a0]||
N−1
∑

i=0

F [i∆→] (4.6)

where ∆ = m−n, || represents concatenation, and N is a short notation for N [m,n].

L is ∆×m, its first column is [ an an+1 . . . am−1
]T , and its first row is

G +

N−1
∑

i=0

F [i∆→] (4.7)

Although the previously described method is used for constructing the entire

Mastrovito matrix Z, in this work we construct only one row of Z which is sufficient

in our approach for carrying out multiplications in GF (2m). By constructing the n-th

row Zn (where rows are numbered 0, 1, . . .), the remaining rows of Z can be obtained

by means of right-shifts and concatenations over Zn.

Example: If GF (27) is defined by α7 + α4 + 1, then ∆ = 3, N = 2, and
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G = [ a4 a3 a2 a1 a0 a6 a5
]

N−1
∑

i=0

F [i∆→] = F+F [∆→] = [ 0 a6 a5 a4 a3 a2 a1
]+[ 0 0 0 0 a6 a5 a4

]

and so L0 is

Z4 = [ a4 a3 + a6 a2 + a5 a1 + a4 a0 + a3 + a6 a6 + a2 + a5 a5 + a1 + a4
]

The multiplication is computed in m cycles. One output bit of C is obtained in

each cycle by multiplying (inner product) the current row Zi by B, the current row

is obtained by right-shifting the previous row and filling the vacated position on the

left with ai. Algorithm 1 shows this process.

Algorithm 1
Input: A(α), B(α), Zn; A(α), B(α) ∈ GF (2m)
Output: C(α) = A(α)B(α); C(α) ∈ GF (2m)

S ← Zn

for i = 0 to m− 1
c(i+n) mod m ← S · B
S ← right-shift(S)
s0 ← ai

end for
return(C)

The proposed multiplier is designed by exploiting the symmetries that take place

in the Mastrovito matrix when the field is defined by an irreducible trinomial, but

they do not exist for some field degrees. For instance, there exists 269 irreducible
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trinomial xm + xn + 1 over GF (2) with degrees m < 512, the rate is about one

half (0.52). Actually, Paszkiewicz has determined in [106] that the rate for which an

irreducible polynomial over GF (2) and degree m < 10000 exists is a bit greater than

0.5.

4.4 FPGA Implementation

The proposed multiplier is implemented in a parallel/serial architecture, which com-

putes a multiplication in m clock cycles. One output bit of C is obtained in each

cycle by multiplying (inner product) the current row Zi by B, thus achieving the

matrix-vector product C = ZB. According to this method, the finite field multiplica-

tion is carried out by means of m inner products. Hence, inner product is the main

operation in our finite field multiplier.

Since all the inner products are performed over fields of characteristic 2, they

could be done by means of FIR (Finite Impulse Response) filters. FIR filters are

widely used in various Digital Signal Processing (DSP) applications. A comprehensive

treatment about the fundamentals of FIR filters and FPGA implementations can be

found in [94].

A traditional architecture of a FIR filter is shown in figure 4.2. The m-bit input

is shifted through m bit-registers (known as taps). Each output stage of a particular

register is multiplied by a known factor. The resulting outputs of the multipliers are

then summed to produce the filter output. A conventional FIR filter implementa-

tion consists basically of multiplication units and summation units. Inner product

operations are carried out by a Multiply-and-Accumulate model, which compute and
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accumulate the binary partial products in a bit-register. This implementation requires

m multiplications and m − 1 additions to compute an inner product over an m-bit

input. Thus, m cycles are required before the next inner product can be processed.

Reg2 Reg m−1Reg1Reg0

b0 b1 b2 bm−1

Data Out

Data In

. . .

Σ

Figure 4.2: A m-Tap FIR filter traditional architecture.

Instead of using the aforementioned Multiply-and-Accumulate model, in this work

we use a Multiply-and-Add design. By using this approach, two bit sequence can be

multiplied in parallel, and afterwards, the sum of the resulting bit sequence has to be

computed. This parallel implementation can speed-up the performance of the inner

product. Here parallel multiplication is possible because the input vectors, namely,

the current row of the Mastrovito matrix Zi and the field element B are accessible at

the same time. With this approach each inner product can be completed in one clock

cycle.

In addition to the inner product, the entire multiplier implementation also includes

the action of a shift register in each clock cycle, as is shown in figure 4.3. The initial

row Zn already includes the reductions required for the finite field multiplication, thus

avoiding the modular reduction stage in the finite field multiplier. A template for Zn

is precomputed and then hardwired, taking advantage of subexpression sharing in
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Figure 4.3: Block diagram of the proposed multiplier.

order to reduce the number of operations.

One output bit of C is obtained in each cycle by multiplying (inner product

performed by a FIR filter) the current row stored in register S by B. The current

row is obtained as a result of right-shifting the previous row and filling the vacated

position on the left with ai.

4.5 Experimental Results

In this section we present a performance comparison between our finite field multiplier

and other efficient FPGA implementations of finite field multiplication over GF (2m).

Each of these multipliers represent elements in the polynomial basis.

Naturally, a finite field multiplication consists of a polynomial multiplication fol-

lowed by a modular reduction. In [44], an efficient multiplier architecture of the type

serial/parallel is presented where the modular reduction is made concurrently over

each partial product, and finally all the partial products are added to obtain the final
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result. A similar, but more flexible architecture, is proposed in [75], where the value

of the field degree can be changed and the irreducible polynomial can be configured

and programmed; this feature can be achieved by implementing demultiplexers in the

architecture design. In [49], the authors consider a hybrid-Karatsuba multiplier based

on the Karatsuba multiplication method which reduces the number of multiplication

but at the cost of increasing the number of additions and the total propagation de-

lay. To achieve a tradeoff between area and propagation delay, a hybrid model using

Karatsuba formulas combined with the classical polynomial multiplication method is

proposed.

In Table 5.2 we compare our approach with the mentioned polynomial basis mul-

tipliers reported in [44,49,75]. The field sizes used in this experiment are the same as

those used in the cited references, the only suitable benchmarks for comparisons that

are known to us. However, our approach can be implemented for larger finite fields.

We have synthesized over different target devices for comparison propose, how-

ever our work is focused on accelerating finite field arithmetic in a high performance

hardware/software environment. Our target platform is a Cray XD1 system which

includes six FPGAs units tightly integrated to 12 2.2 GHz Opteron AMD processors

through a high bandwidth interconnection system. FPGA units are Xilinx Virtex

II-Pro xc2vp50-7.

The times in Table 5.2 have been measured using FPGA synthesis results re-

ported by Xilinx tool XST (Xilinx Synthesize Technology) included in the package

ISE Foundation 7.1. Our implementations are synthesized without area and timing

constraints.
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Table 4.2: Multipliers comparison

Field Target FPGA Implementation
Time Space
(µs) (slices)

GF (2210)
Xilinx Virtex Reference [75] 12.30 343

xcv-300-6 This work 2.21 334

GF (2233)
Xilinx Reference [49] 2.58 not reported

xc2v-6000-4 This work 2.42 415

GF (2239)
Xilinx Virtex Reference [44] 3.10 359

xcv-300-6 This work 2.47 385

According to the given results, our implementation exhibits the best time perfor-

mance, whereas the area is not the most favorable for some cases. However our main

goal is to achieve very fast computation using reasonably the physical devices.

Higher acceleration rates are obtained using the Cray XD1 FPGA (see Table

5.4). According to our results, there are significant opportunities for speed up on the

Cray XD1 using reasonably the FPGA’s physical space, however the communication

time between CPU and FPGA becomes an obstacle. The communication model that

we have used is a simple push-model in which the CPU pushes the input data to

the FPGA’s registers, and reads the output data from a destination register on the

FPGA. Our experimental results indicate that this is a costly communication model,

for example the direct multiplier for GF (263) spent 2.77 µs for communications and

0.62 µs for computations. Other works such as [34] have reported similar commu-

nication problems with the Cray XD1. However, in [130] it is shown that a savvy

decision about the workload assigned to the FPGA can vastly improve the communi-

cation performance on the Cray Hyper-transport I/O bus over other communication

interfaces technologies.
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Table 4.3: Multipliers comparison on the Cray XD1 FPGA

Field
Time Space Space
(µs) (slices) Utilization

GF (2210) 1.85 305 1.29%

GF (2233) 2.02 369 1.56%

GF (2239) 2.04 363 1.53%

4.6 Finite Field Inversion

Among the arithmetic operations needed in the interpolation phase of the reverse

engineering problem, the inversion is the most time consuming operation. Finite field

inversion is computed by repeated multiplications, various methods for finite field

inversion were described in Section 2.4.2. The Itoh-Tsujii algorithm [65], which is

based on Fermat’s Little Theorem has been reported to be an efficient alternative for

FPGA implementations [116].

Fermat’s little theorem states that if α is a nonzero element of GF (p) then αp−1 ≡

1 (mod p). In terms of binary extension fields, this theorem establishes that for any

nonzero element α ∈ GF (2m), the identity α−1 ≡ α2m
−2 holds. Thus, multiplicative

inversion can be computed by:

α−1 = α2m
−2 = α

Pm−1
i=1 2i

= α21
× α22

× · · · × α2m−1
(4.8)

Equation 4.8 can be carried out through m−1 squaring and m−2 multiplications

by using the binary exponentiation method. However, the Itoh-Tsujii method reduces
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the number of multiplications to k+HW (m−1)−1, and the number of exponentiations

to k + HW (m − 1), where k = ⌊log2 (m− 1)⌋, and HW (m − 1) is the Hamming

weight (i.e. the number of nonzero bits) of the binary representation of m− 1. The

Itoh-Tsujii algorithm computes α2m
−2 by using recursive rearrangements of the finite

fields operation involved in equation 4.8. The algorithm is derived from the following

theorem:

Theorem 1 Let A be any arbitrary nonzero element in the field GF (2m). Let us

consider

m− 1 = 2k1 + 2k2 + · · ·+ 2k
t−1 + 2kt

where k1 > k2 > · · · > kt−1 > kt. For each k in {k1, k2, . . . , kt−1, kt} consider the

sum sk =
∑2k

i=1 2i = 2 + 22 + 23 + · · ·+ 22k

. Then the multiplicative inverse of A, can

be written as

A−1 = A2m−1+···+22+2 = (Askt )



· · · (Ask3 )

[

(Ask2 ) (Ask1 )2
2k2
]22k3

· · ·





22kt

Proof: See sketch in [117]. A more detailed proof can be found in [50].

In order to carry out inversion over finite fields through the Itoh-Tsujii algorithm,

it is essential to perform two basic operations: finite field multiplication, whose al-

gorithm has been described in Section4.3, and the binary exponentiation which is
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implemented by repeated multiplications such as depicted in Algorithm 2. We de-

rived from Theorem 1 the Itoh-Tsujii algorithm presented in Algorithm 3.

Algorithm 2 bin-power
Input: X, l

Output: Y = X−1

X ← X ·X
For i = 0 to l

For j = 1 to 2l−1

X ← X ·X
EndFor
Y ← X

EndFor
Return(X)

Algorithm 3 Itoh-Tsujji Algorithm
Input: A ∈ GF (2m), A 6= 0, m

Output: C = A−1

j = 1
C ← A

For i = 0 to k1 − 1
D ← bin-power(C,i)
If LSB(m− 1) = 1 {comment: LSB = Least Significant Bit }

Askj
= C

kj = i

j++
EndIf
right-shift(m− 1)
C ← C ·D)

EndFor
For t← j downto 2

C ← Askt−1 · bin-power(C,kt−1)
EndFor
Return(C)
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Example 4 As an example we consider the inverse of A ∈ GF (211), A 6= 0. Note

that m− 1 = 10 = 23 + 2 = 2k1 + 2k2 . Then

A−1 =
(

Ask2
)(

Ask1
)22k2

=
(

A2+22
)(

A2+22+23+···+28
)22

Notice that in computing Ask1 , we also compute Ask2 . And Ask1 can be computed by

an addition chain. Then the computation of A−1 is as follows:

A2

A22

A2 ·A22
= A2+22

(

A2+22
)22

= A23+24

(

A2+22
)

·
(

A23+24
)

= A2+22+23+24

(

A2+22+23+24
)222

= A25+26+27+28

(

A2+22+23+24
)

·
(

A25+26+27+28
)

= A2+22+23+24+25+26+27+28

(

A2+22
)

·
(

A2+22+23+24+25+26+27+28
)22

= A2+22+23+24+25+26+27+28+29+210

Although this section was focused in the Itoh-Tsujii inversion algorithm over

GF (2m), this algorithm can be used with the same computational complexity on

any field GF (pm). In the next chapter we will study an efficient approach for finite

field multiplication over GF (pm) where p is an odd prime. An efficient FPGA-based

implementation of Itoh-Tsuji’s algorithm over GF (2m) is presented in Section 5.3.



Chapter 5

Polynomial Interpolation over
GF (2m)

A supercomputer is a device for
converting a CPU-bound
problem into an I/O bound
problem .

Ken Batcher

5.1 Finite Field Polynomial Interpolation on FPGAs

The work presented in this chapter deals with the problem of constructing a function

which exactly fits a set of data points over finite fields. Interpolation over finite fields

has application in various fields, such as error-correcting codes, cryptography, and

learning algorithms [145], and reverse engineering genetic networks. In this work,

finite field polynomial interpolation is used as a means toward solving the reverse

engineering problem for genetic networks as described in Chapter 3.

Finite field polynomial interpolation for reverse engineering large genetic networks

can be very computationally intense. In order to accelerate the interpolation process,

we introduce an efficient architecture for an FPGA implementation. But, the suit-

62
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ability of this problem for a HPRC based solution should be judiciously analyzed. In

this way, selecting an appropriate algorithm for an FPGA implementation becomes

a challenging effort. A first approach is to consider well performed algorithms for

polynomial interpolation. In this sense, Lipson’s algorithm promises to be a good

candidate given its low computational complexity, nevertheless the suitability of this

algorithm for an efficient FPGA implementation has to be validated. In the following

section we will consider the optimality of Lipson’s algorithm for an FPGA solution

beyond the computational complexity.

5.2 Lipson’s Algorithm for Interpolation

Different methods exist for finite field polynomial interpolation, some classical meth-

ods such as Lagrange or Newton’s interpolation are relatively simple. They are derived

from simple formulas, but their computational complexity is O(n2), where n is the

number of points to be interpolated. In contrast, other methods such as Lipson’s

algorithm [86], which is based on the Chinese remainder theorem has complexity

O(n log2 n). Bollman et al. [14] have shown that a parallel version of this algorithm

is suitable for speeding up finite field interpolation on shared memory systems.

Lipson’s algorithm builds a solution using the divide-and-conquer idea. It develops

the interpolation polynomial as a recursive sequence of polynomial multiplications and

additions. In each cycle a number of polynomials are constructed. Each polynomial

is obtained by multiplying and adding pairs of polynomials in a tree-like fashion (see

for example Figure 5.1).
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Figure 5.1: Example of interpolation using Lipson’s Algorithm.

Despite its low asymptotic complexity, this approach requires a large amount of

storage space. For this reason, it is not an optimal algorithm for an FPGA imple-

mentation.

It is not unusual to encounter algorithms that are optimal for CPU-based imple-

mentations that are not necessarily the best approach for FPGA-based implemen-

tations. This issue is addressed by Herbordt et al in [56]. In this sense, Newton’s

algorithm is a better alternative than Lipson’s for implementing an efficient solu-

tion on FPGAs. Newton’s interpolation design is based on multiply-and-accumulate

(MAC) sequences, so it makes the most of the area in the FPGA. Results shown in
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Table 5.1 support an assessment regarding the suitability of Lipson’s and Newton’s

interpolation as an efficient FPGA-based solution. As can be seen from the table,

using Lipson’s algorithm, an Xilinx Virtex II Pro 50 FPGA becomes saturated when

only eight points in GF (263) are interpolated.

Table 5.1: Performance comparison of Lipson’s and Newton’s interpolation over
GF (263) implemented on an FPGA Xilinx Virtex II Pro 50.

Points
Interpolation Time Space
Algorithm (µsec.) (% slices)

4
Lipson 152.3 88.9
Newton 146.4 32.4

8
Lipson 697.6 103.1
Newton 815.3 36.3

5.3 Univariate Newton’s Interpolation

Newton’s interpolation algorithms can be used over any field to obtain the coefficients

ci of a univariate polynomial f(x) =
∑t−1

i=0 cix
i of degree t − 1 from the values at

arbitrary t points.

Let Gj−1(x) interpolate j − 1 points (xk, yk), 1 ≤ k < j, so that Gj−1(xk) = yk.

Also let

Dj−1(x) = (x− x1) · · · (x− xj−1) (5.1)

Then we can compute Gj(x) by the formula

Gj(x) = [yj −Gj−1(xj)]
Dj−1(x)

Dj−1(xj)
+ Gj−1(x) (5.2)
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Finite field polynomial interpolation is very computationally intense. As it hap-

pens with any other interpolation algorithm, in Newton’s algorithm the most fre-

quently used operation by far is multiplication, and furthermore, this operation tends

to be the slowest. In [37] we have exploited the bit-level representation of the field

elements in GF (2m) to develop a fast and space-saving architecture for finite field

multiplication on FPGAs. Our finite field multiplier has been successfully used for

achieving efficient computation of inverses of a finite field element, as well as finite

field polynomial multiplication and evaluation. In the next subsections we will depict

the design of the three aforementioned operations, which are used for implementing

the overall architecture of Newton’s interpolation.

5.3.1 Architecture of Newton’s Interpolation

In this section, we present an efficient architecture for computing univariate polyno-

mial interpolation. The idea is a natural extension of the formula 5.2, which operates

over accumulative results. By exploiting this feature, we have produced a compact

design that leads to an area-efficient architecture. This serial architecture computes

an interpolation polynomial P in n steps, where n is the number of input points

{(x1, y1) . . . (xn, yn)}.

The main functional units in the overall architecture are polynomial multiplica-

tion, evaluation and inversion. They work together in each cycle in order to update

values of D and G toward the interpolation polynomial P . This architecture is drawn

in the block diagram of figure 5.2.
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Figure 5.2: Block diagram for the general architecture of Newton’s interpolation
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5.3.2 Polynomial multiplication

In order to develop the Newton formula into an FPGA implementation, it is required

to carry out polynomial multiplications. However only two very simple special cases

of polynomial multiplication are necessary, which are:

1. The product of a polynomial with a finite field element (i.e. the product of an

i-degree polynomial with a 0-degree polynomial, 0 < i < n), which is used for

computing the products involved in the formula 5.2.

2. The product of a polynomial with a linear factor (i.e. the product of an i-degree

polynomial with a 1-degree monic polynomial, 0 < i < n), which is used for

computing the products involved in the formula 5.1.

5.3.3 Evaluation

In our interpolation architecture, the polynomial evaluation is addressed by using

Horner’s rule [23]. This is an algorithm for efficient polynomial evaluation which

reduces the number of necessary multiplications by simply factoring out powers of x,

giving

anxn + an−1x
n−1 + · · ·+ a0 = (· · · (anx + an−1)x + · · · )x + a0 (5.3)

The FPGA implementation of Horner’s rule develops into a simple design which

computes the evaluation of the finite field element X over an n-degree polynomial in

n cycles, given the sequence of n + 1 polynomial coefficients [cn, cn−1, . . . , c0]. This

logic is depicted in figure 5.3.
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Figure 5.3: Block diagram for polynomial evaluation using Horner’s algorithm

5.3.4 Inversion

In order to compute the finite field divisions involved in Newton’s formula (formula

5.2), we use the Itoh-Tsujii algorithm for inversion over finite fields in the standard

basis. This is an exponentiation-based inversion algorithm which reduces the com-

plexity of computing the inverse of non-zero elements in GF (2m) by computing binary

exponentiation through addition chains. Details of the construction of this inversion

algorithm are shown in [50].

An efficient FPGA implementation of the Itoh-Tsujii algorithm is presented by

Rodŕıguez et al. in [114]. They consider both the standard and parallel versions of

the algorithm where the dataflow is influenced by Finite State Machines (FSM). How-

ever, instead of using an FSM-based design, we use the straightforward architecture

described in figure 5.4, which reduces the area used, although it slightly affects the run
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time of inversion. For instance, on a Virtex 2 xc2v4000-6bf957, the design proposed

by Rodŕıguez et al. computes an inverse over GF (2193) in 0.76 µ-seconds and 2345

slices, while our architecture spends 1.03 µ-seconds and 613 slides. In the context

of Newton’s interpolation, our inversion design is a reasonable alternative, since the

number of inversions required for interpolation does not grow asymptotically. More

precisely, n inversions are required for interpolating n points.

5.4 Numerical experiments

This research is focused on accelerating interpolation over fields GF (2m) using FPGAs

for an efficient solution of the reverse engineering problem for genetic networks in a

hardware/software environment. Our target platform is a Cray XD1 system which

includes six FPGAs units tightly integrated to 12 2.2 GHz Opteron AMD processors

through a high bandwidth interconnection system. FPGA units are Xilinx Virtex

II-Pro xc2vp50-7.

The tools included in the Xilinx ISE Foundation 9.1i development toolset have

been used for the design, synthesis, implementation and verification of results. FPGA-

based designs are implemented in VHDL, while CPU-based algorithms are developed

using the C language, compiling on a single 2.2 GHz Opteron AMD.

The Cray XD1 is supplied with standard primitives for CPU-FPGA interaction

and they were used for setting, loading and running FPGA applications for the Cray

XD1’s CPU. Opterons communicate with the FPGA using API (Application Pro-

gramming Interface) calls across a proprietary bus called the RapidArray Transport



Caṕıtulo 5. Polynomial Interpolation over GF (2m) 71

A2 )(

= [0,1,...,HW(m−1)]i

X22
r

)(

j = [ko,...,kt]

m−bit register

m−bit register

A−1

MUX1

MUX2

MUX3

Control

Binary
Exponentiation

...

Finite Field
Multiplier

Am

ith−LSB(m−1) = 1?

Squarer

Figure 5.4: Block diagram for the GF (2m) Itoh-Tsujii inversion algorithm.
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Table 5.2: Performance comparison of interpolation algorithm

Field Points
Time (msec.) Space

CPU FPGA Utilization

GF (2193)
4 260.5 2.2 45.84 %
40 3452.8 25.8 54.33 %

GF (2210)
4 443.0 4.3 47.83 %
40 6140.6 49.9 56.69 %

GF (2233)
4 734.0 7.4 50.61 %
40 10815.5 96.1 59.98 %

GF (2239)
4 843.8 8.0 51.35 %
40 12508.1 107.9 60.86 %

GF (2303)
4 2702.1 21.9 59.73 %
40 46989.5 337.9 70.79 %

GF (2333)
4 4316.8 37.1 63.95 %
40 80650.0 605.6 75.79 %

GF (2441)
4 18915.2 179.3 80.79 %
40 448710.0 3640.4 95.75 %

GF (2471)
4 34995.2 3336.7 85.94 %
40 875627.0 7470.1 99.14 %

Core (RT-Core) [27].

Typically the communication model used in CPU-FPGA communication is a sim-

ple push-model in which the CPU pushes the input data to the FPGA’s registers,

and reads the output data from a destination register on the FPGA. In [36] we con-

cluded that this is a costly communication model. For this reason, we have used as

alternative the I/O subsystem developed by Ohio Supercomputer Center (OSC) [34].

This is an efficient general purpose I/O interface to the RTCore. Instead of pushing

data into the FPGA register, this subsystem is able to allocate shared memory space

for communication between the FPGA and CPU by using a dedicated memory space

in the host called the FPGA transfer region (ftrmem) [26]. Therefore, our implemen-

tation uses a pull communication model where the FPGA pulls the input data from
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the source, and finally stores the results in the destination. The overhead associated

with the CPU-FPGA communication is included in the time measurements presented

in the FPGA column of Table 5.2.

We have performed several measurements in order to evaluate the performance

of our architecture. A summary of various comparative results are shown in Table

5.2. These results are used for calculating the acceleration gained by the Virtex II

Pro over the 2.2 GHz Opteron processor. This metric is obtained from the rounded

quotient:

Acceleration Factor =
RuntimeCPU

RuntimeFPGA
(5.4)

The choice of values for our experiments was motivated by our intended applica-

tion to reverse engineering genetic networks. The input data in this application are

the result of time series microarray experiments. Microarrays allow researchers to

simultaneously measure the expression of thousands of genes. However, the number

of points in the time series of genes is much less than the number of genes due to the

high cost of microarray experiments. Typically, the number points in the time series

will be less than 20 and rarely more than 40 [8]. Thus, we would like to make the field

size m as large as possible, but maintain a range for the number of points between,

say 4 and 40.

It should be noted that problem size for interpolation over a fixed field is usually

measured in terms of the number of points n. However, for finite fields GF (2m) the
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Table 5.3: Acceleration factor of interpolation algorithm

Field
Irreducible

Points
Acceleration

Polynomial Factor

GF (2193) x193 + x15 + 1
4 118X
40 132X

GF (2210) x210 + x7 + 1
4 103X
40 122X

GF (2233) x233 + x74 + 1
4 99X
40 112X

GF (2239) x239 + x36 + 1
4 105X
40 115X

GF (2303) x303 + x + 1
4 123X
40 139X

GF (2333) x333 + x2 + 1
4 116X
40 133X

GF (2441) x441 + x7 + 1
4 105X
40 123X

GF (2471) x471 + x + 1
4 104X
40 117X

problem size depends on both n amd m. In our case, we hold n constant and vary

m. We note that execution times increase with field size. However, the acceleration

factor tends to be constant regardless of the field size. This makes it feasible to

scale the size of the problem as long as the area space allows. This means in our

application context, that the reverse engineering problem can be extended to larger

genetic networks without sacrificing performance. Although the acceleration factor

is independent of the field size, it is affected by the irreducible polynomial which

defines the finite field. This is because the Mastrovito-based multiplier [37] used in

this interpolation architecture defines the number of bit-level operations according

to a generating trinomial xm + xn + 1. More precisely, the number of operations

in the Mastrovito multiplier is in proportion to n. This can be noted in Table 5.4,
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where the execution time of multiplication is slightly affected by n, consequently the

acceleration factor is also affected since multiplication is the dominant operation in

any polynomial interpolation algorithm.

Table 5.4: Finite field multiplication over GF (2471).

Irreducible Time
Polynomial (µsec.)

x471 + x + 1 4.87

x471 + x119 + 1 5.39

x471 + x470 + 1 6.89



Chapter 6

Finite Field Multiplication in
GF (pm) with p 6= 2

Just because something doesn’t
do what you planned it to do
doesn’t mean it’s useless.

Thomas A. Edison

6.1 Introduction

In the preceding chapters we have developed fast finite field designs for fields GF (2m).

The question arises if similar designs could be developed for fields GF (pm) of arbitrary

prime characteristic p. Such results will be of benefit to finite field models for genetic

networks. In the characteristic 2 model, it is assumed that every gene is either is

on (active) of off (inactive). However, an arbitrary prime characteristic p model,

would allow for more flexibility in the discretizing microarray data. In this chapter

we present a new algorithm for multiplication in certain fields GF (pm) with p 6= 2.

Multiplication in the field GF (pm) can be regarded as multiplication of polynomi-

als over GF (p) modulo an irreducible polynomial over GF (p) that defines GF (pm).

This method requires O(m2) mod p operations. Our new algorithm, based on convo-

76
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lution requires only O(m log m) mod p operations. Several authors [7], [18] suggest

this method for the actual polynomial multiplication in GF (pm), but they ignore the

second step necessary, which consists of reducing the polynomial product modulo the

polynomial that defines the field.

In this chapter we show that for a certain family of finite fields GF (pm), multipli-

cation, including the reduction step, can be expressed in terms of convolution. This

result is achieved by showing that a variant of the Mostrovito matrix can be embedded

in a circulant matrix and then using the fact that the product of a circulant matrix

and a vector can be expressed as a convolution.

We use the following notation: A column (row) vector whose elements are ai,

i = 0, 1, 2, . . . , n−1 is denoted by [a0, a1, . . . , an−1] ([a0 a1 . . . an−1]). For any matrix

M , MT denotes the transponse of M . Thus, [a0, a1, . . . , an−1]
T = [a0 a1 . . . an−1].

For any two vectors a = [a0, a1, · · · , an−1] and b = [b0, b1, · · · , bn−1] over a ring R, we

denote the inner product a0b0 + a1b1 + · · · an−1bn−1 by a · b. For any matrix M, we

denote by Mi the i − th row of M, where the rows are numbered starting at zero.

Following [131], we use the notation V [→ i] to represent the (row) vector V shifted

right i positions and filling the vacated positions to the left with zeros.

6.2 The Mastrovito Matrix.

Although the Mastrovito matrix has been defined for fields of characteristic 2, the

same idea can be applied to a field of arbitrary characteric GF (pm). If a = a0 +a1α+

· · · am−1α
m−1 and b = b0 + b1α + · · · bm−1α

m−1 are elements of GF (pm), then the

vector of coefficients of the ordinary polynomial product d0 +d1α+ · · · d2m−2 of a and
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b can be expressed as follows:
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a0 0 0 · · · 0 0

a1 a0 0 · · · 0 0

...

am−2 am−3 am−4 · · · a0 0

am−1 am−2 am−3 · · · a1 a0

0 am−1 am−2 · · · a2 a1

0 0 am−1 · · · a3 a2

...

0 0 0 · · · am−1 am−2

0 0 0 · · · 0 am−1











































































































b0

b1

b2

...

bm−1

































We denote the 2m− 1×m matrix in the above equation by M.

Lemma 1. For any field GF (pm), let α,α2, · · · , αm−1 be a polynomial basis and for

each i = 0, 1, · · · , pm − 1, let αi = ci,0 + ci,1α + · · · ci,m−1α
m−1. Let a = a0 + a1α +

· · · am−1α
m−1 and b = b0 + b1α + · · · bm−1α

m−1 be elements of GF (pm). Then the

vector of coefficients of the product of a and b is given by Zb where

Z =

























M0 + cm,0Mm + cm+1,0Mm+1 + · · ·+ c2m−2,0M2m−2

M1 + cm,1Mm + cm+1,1Mm+1 + · · ·+ c2m−2,1M2m−2

...

Mm−1 + cm.m−1Mm + cm+1,m−1Mm+1 + · · ·+ c2m−2,m−1M2m−2

























Proof.
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a · b = d0 + d1α + d2α
2 + · · · d2m−2α

2m−2

= M0 · b + M1 · bα + M2 · bα
2 + · · ·+ Mm−1 · bα

m−1

+Mm · b(cm,0 + cm,1α + cm,2α
2 + · · ·+ cm,m−1α

m−1)

+Mm+1 · b(cm+1,0 + cm+1,1α + cm+1,2α
2 + · · · + cm+1,m−1α

m−1)

+Mm+2 · b(cm+2,0 + cm+2,1αcm+2,2α
2 + · · ·+ cm+2,m−1α

m−1)

+ · · ·+ M2m−2 · b(c2m−2,0 + c2m−2,1α + c2m−2,2α
2 + · · ·+ c2m−2,m−1α

m−1) = (M0 ·

b + Mm · bcm,0 + Mm+1 · bcm+1,0 + · · ·+ M2m−2 · bc2m−2,0)

+(M1 · b + Mm · bcm,1 + Mm+1 · bcm+1,1 + · · · + M2m−2 · bc2m−1,1)α

+ · · ·+ (Mm−1 · b + Mm · bcm,m−1 + + · · ·+ Mm2m−2 · bc2m−2,m−1)α
m−1 and so the

vector of coefficients of a · b can be expressed as

Z

























b0

b1

...

bm−1

























6.3 A Toeplitz variant of the Mastrovito matrix.

We call the matrix Z defined in Lemma 1, the Mastrovito matrix of the multiplication

by a.

The matrix Z depends on the irreducible polynomial that defines GF (pm) as well

as the rows Mi,m ≤ i ≤ 2m− 2. In the rest of this paper we assume that GF (pm) is

generated by a polynomial of the form xm−xn−1. We shall see that in this case, Z has

useful symmetries which for certain fields can be exploited to reduce the complexity
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of multiplication in GF (pm). For this, we make use of the “reduction matrix” defined

in [131] for the case p = 2, but which holds for arbitrary p as well.

The reduction matrix is produced by reducing higher ordered elements αm, αm+1, · · · , α2m−2

modulo αm−αn− 1, where α is a root of the irreducible polynomial xm−xn− 1 over

GF (p) that generates the field GF (pm). It is useful to partition the powers of α in

blocks of length m− n. There are q + 1 blocks where q and r are the unique integers

for which m− 2 = (m− n)q + r, 0 ≤ r < m− n. We have

αm = 1 + αn

αm+1 = αn+1 + α

...

α2m−n−1 = αm−n−1 + αm−1

α2m−n = αm−n + αm

= αm−n + 1 + αn

...

α3m−2n−1 = α2(m−n)−1 + α(m−n)−1 + αm−1

...

α(q+1)m−qn = αq(m−n) + α(q−1)(m−n) + · · ·+ α(m−n) + αm

= αq(m−n) + α(q−1)(m−n) + · · · + αm−n + 1 + αn

...

α(q+1)m−qn+r = αq(m−n)+r + α(q−1)(m−n)+r + · · · + αm−n+r + αr + αn+r

The reduction matrix tells us how to compute the Mostrovito matrix for the special

case where GF (pm) is defined by xm − xn − 1. The i− th equation is given by
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αm+i = α(m−n)qi+m+ri

= α(qi+1)m−nqi+ri

= αn+ri + αqi(m−n)+ri + α(qi−1)(m−n)+ri + · · ·+ α(m−n)+ri + αri

where qi and ri are the unique integers for which i = (m− n)qi + ri, 0 ≤ ri < m− n.

Thus, starting with

A =

























a0 0 0 0 0 0

a1 a0 0 0 0 0

...

am−1 am−2 am−3 · · · a1 a0

























,

the previous equation tells us that Mm+i must be added to rows n + ri, qi(m− n) +

ri, (qi − 1)(m− n) + ri, · · · , (m− n) + ri, ri of A.

Let us write

Z =









U

L









where U is the n × m matrix consisting of rows 0, 1, · · · , n − 1 of Z and L is the

m− n×m matrix consisting of rows n, n + 1, · · · ,m− 1 of Z. We define the modified

Mostrovito matrix by

Z ′

a,pm = Z ′ =









L

U









Lemma 2. If GF (pm) is defined by a trinomial of the form xm − xn − 1, then Z ′

a,pm

is Toeplitz.

Proof.
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For each i = 0, · · · q, define Ti to be the m×m matrix containing all zeros, except in

the upper triangle which contains rows (i + 1)m − in through 2m − 2 of M and let

Bi be the m − n ×m matrix consisting of the m − n rows of M starting with row

(i + 1)m − in. Then Z can be formed by adding X = B0 + B1 + · · · + Bq to rows n

through m − 1 of Y = A + T0 + T1 + · · · + Tq. Now the sum of Toeplitz matrices is

also Toeplitz and so both X and Y are Toeplitz and hence U and L are Toeplitz. In

order to show that Z ′ is Toeplitz it remains only to show that Lm−n−1, i.e., the last

row of L, shifted one position to the right differs from U0, i.e., the first row of U in

only the first position. We have

Lm−n−1 = Mm−1 + M2m−n−1 + M3m−2n−1 + · · ·+ M(q+1)m−qn−1

and

U0 = M0 + Mm + M2m−n + M3m−2n + · · ·+ M(q+1)−qn

Furthermore, M(i+1)m−in−1[→ 1] = M(i+1)m−in for each i = 0, 1, · · · , q. Furthermore,

M0 = [a0, 0, · · · , 0] and so Lm−n−1[→ 1] = U0 +[a0, 0, · · · , 0] and hence Z ′ is Toeplitz.

6.4 Multiplication and Number-Theoretic Transforms

Multiplication in GF (pm) is simply polynomial multiplication modulo an irreducible

polynomial over GF (p). One of the ways to speed up multiplication in fields of char-

acteristic zero is by use of the “Convolution Theorem.” It is thus natural to ask if

these same ideas can be applied to multiplication in a finite fields.

The cyclic convolution a ⊗ b of two vectors a = [a0, a1, · · · , am−1] and b =
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[b0, b1, · · · , bm−1] over a ring is a vector c = [c0, c1, · · · , cm−1] where ci =
∑m−1

j=0 ajbi−j

for each i = 0, 1, · · · ,m− 1 and where bj = bm−j for j = 0, 1, · · · ,m− 1. The convo-

lution theorem for the complex case states that for vectors a and b over the fields C

of complex numbers, a⊗ b = F−1(F (a)⊙F (b)) where F denotes the discrete Fourier

transform (DFT) and ⊙ denotes the pointwise product of the vectors F (a) and F (b).

Using the convolution theorem and a fast Fourier transform (FFT) to compute F and

F−1, the time to compute a⊗ b can be reduced from O(m2) to O(mlog m).

The DFT for vectors of length m over C is defined in terms of a primitive m− th

root of unity. Such a number exists for any integer m > 1. However, there are

restrictions on the corresponding concept defined on finite fields (or rings). A DFT

over a finite field or finite ring, called a “number-theoretic transform” is defined, for

our purposes, as follows. Let ZN be the ring of integers modulo an integer N > 1, let

d > 1 be an integer and let r be a primitive root of unity modulo N, i.e., rd = 1 mod N

and d is the least positive integer with this property. We define the number-theoretic

transform (NTT) of length d over ZN to be the linear transformation Fd = F : Zd
N →

Zd
n, represented by the matrix F = [rij], 0 ≤ i, j ≤ d−1. The inverse number-theoretic

transform of length d over ZN is defined by F−1 = d−1[r−ij], 0 ≤ i, j ≤ d− 1, where

d−1 is the inverse of the field element 1 + 1 + · · · 1 (d times).

An NTT over ZN of length d (and its inverse) exists if and only if there exists

a d − th root of unity in ZN . Furthermore, the convolution theorem holds in this

case. When N is prime, then ZN is a field and ZN − {0} is a cyclic group under

multiplication. Hence when N is prime, an NTT of length d exists if and only if d

divides N − 1.
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We have shown that the modified Mastrovito matrix is Toeplitz. A special type

of Toeplitz matrix that is of interest are the “circulant” matrices. An n × n matrix

is said to be (right) circulant if every row after the first can be obtained from the

previous row by a right circular shift.

Lemma 3 Let A be an m×m Toeplitz matrix and let r ≥ 2m − 1. Then A can be

embedded in an r × r circulant matrix.

Proof. Let [a1 a2 · · · am] and [a1, b1, b2, · · · , bm−1] be the first row and the first

column, respectively, of an m×m Toeplitz matrix and let C be the circulant matrix

whose first row is [a1 a2 · · · am 0 · · · 0 bm−1 bm−2 · · · b2 b1], where there are

r + 1− 2m zeros.

Lemma 4 Let C be a circulant n×n matrix and let x be a vector of length n. Then

Cx = c⊗ x

where c is the first column of C.

Proof. The proof follows from the definition of cyclic convolution.

Lemma 5 Let [a0, a1, · · · , am−1] and [b0, b1, · · · , bm−1] be the vectors of coeficients

of elements a and b, respectively, in GF (pm). Suppose xm− xn− 1 is irreducible over

GF (p) and let

a′ = [an, an+1, · · · , am−1, a0, a1, · · · , an−1, 0, · · · , 0, s1, s2, · · · , sm−1]
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be a vector of length r ≥ 2m− 1, where

























s1

s2

...

sm−1
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fm−1

fm−2

...

f1

























+

























cm,n cm+1,n · · · c2m−2,n

0 cm,n · · · c2m−3,n

...

0 0 · · · cm,n

















































a1

a2

...

am−1

























where each fj is an−j if j ≤ n and is zero otherwise. Let [d0, d1, · · · , dm−1] be the vec-

tor of coefficients of the product of a and b in GF (pm) and let b be the vector of length

r obtained by padding b with r−m zeros. Then [dn, dn+1, · · · , dm−1, d0, d1, · · · , dn−1]

consists of the first m components of a′ ⊗ b′.

Proof. By Lemma 2, the modified Mastrovito matrix Z ′ is Toeplitz. By Lemma

3, Z ′ can be embedded in an r × r circulant matrix Z̄ ′ and so the product ab can

be obtained from the matrix vector product Z̄ ′b′ where b′ is a vector of length r by

padding b with an appropriate number of zeros. Thus by Lemma 4, ab can be obtained

by computing the convolution a′⊗ b′, where a′ is the first column of Z̄ ′. By the proof

of Lemma 3, a′ consists of the first column of Z ′ followed by an appropriate number

of zeros, followed by last m − 1 elements written in reverse order of the first row of

Z ′. But the first row of Z ′ is the n-th row of Z, which is [sm−1, sm−2, · · · , s1] where

the si are given as above.

The proof of Lemma 5 gives us a method for computing products in terms of

convolution in fields GF (pm) that can be defined by irreducible trinomials of the

form xn − xn − 1. When the number-theoretic transform exists, this means that we

can asymptocally reduce the complexity of multiplication by applying the Convolution
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Theorem and using a fast method for computing the NTT. Pollard [109] has shown

that an NTT of length N over GF (p) can be computed with O(N(N1 + N2 + · · ·Nk)

mod p operations where N = N1N2 · · · ·Nk. Such an NTT is efficient when N is highly

composite. A case of particular interest is given by the following

Theorem. Let p be a prime of the form t2k +1 where t is odd and let m be such that

2k ≥ 2m− 1. If xm−xn− 1 is irreducible over GF (p) for some n, then multiplication

in GF (pm) can be performed with O(m log m) mod p operations.

Proof.

Since p = t2k + 1, we have p − 1 = t2k and so a NTT of length 2s exists for any

s ≤ k. So we can submerge the modified Mastrovito matrix in a circulant matrix

of size 2s where 2s is the smallest power of 2 which is greater than or equal to

2m − 1. Then we compute the first column a′ and use a fast algorithm to compute

a′ ⊗ b′ = F1(F (a′)⊙ F (b′)) where b′ is b padded with 2s −m + 1 zeros and then read

off the coefficients of the product ab. However, the computation of a′ requires the

computation of the matrix-vector product

C

























a1

a2

...

am−1
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where

C =

























cm,n cm+1,n · · · c2m−2,n

0 cm,n · · · c2m−3,n

...

0 0 · · · cm,n

























But since C is also Toeplitz, this matrix-vector product can also be computed by

the same method of submerging C in a 2s × 2s circulant matrix and computing the

convolution of the first column of the circulant with a padded form of the vector. The

complexity of each of the two convolutions is O(m log m) and thus multiplication can

be performed in time O(m log m).

Example. Let us consider multiplication in GF (2576). The above theorem applies

since 257 = 28 + 1 and the trinomial x6 − x − 1 is irreducible over GF (257). Let

[a0, a1, a2, a3, a4, a5] and [b0, b1, b2, b3, b4, b5] be the vectors of coefficients of two ele-

ments a and b of GF (2576) and let [c0, c1, c2, c3, c4, c5] be the vector of coefficients of

the product. Then [c1, c2, c3, c4, c5, c0] consists of the first six components of

F−1(F (Z̄(1))⊙ F (b̄))

where Z̄(1) is the column vector [a1, a2, a3, a4, a5, a0, 0, 0, 0, 0, 0, a1 + a2, a2 + a3, a3 +

a4, a4 + a5, a0 + a5] and b̄ = [b0, b1, b2, b3, b4, b5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and where F

denotes an NTT of length 16.

It is natural to ask how abundant are the cases that satisfy the hypotheses of the

above theorem.



Caṕıtulo 6. Finite Field Multiplication in GF (pm) with p 6= 2 88

There are an infinite number of primes of the given form. Indeed, it follows from

Dirchlet’s theorem that for any fixed k, there are infinitely many t for which t2k +1 is

prime. When t = 1, such a prime is a Fermat prime and in this case, it is known that

k must be a power of 2. Thus, every Fermat prime is of the form Fn = 22n

+1. There

are only five known Fermat primes, namely, F0 = 3, F1 = 5, F2 = 17, F3 = 257, and

F4 = 65537. There has been considerable effort expended in the search for additional

Fermat primes. In this regard, it is known that the only prime factors of a number

of the form 2m + 1 are of the form t2k + 1. In 1958 Robinson [?] published a table of

primes of the form t2k + 1 and there have been a number of publications since then

that are dedicated to extending Robinson’s table.

The second hypothesis concerning the existence of an irreducible trinomial xm −

xn − 1 over GF (p) is more elusive. Determining the irreducibility of polynomials

modulo a prime is a computationally intensive problem. For example, a program we

wrote in Mathematica took over two weeks to determine those values of m. 2 ≤ m ≤

525, for which there exists a trinomial xm − xn − 1 that is irreducible over GF (p)

where p = 12289 = 3 · 212 + 1. The number of such cases was 218.



Chapter 7

Ethical Issues

The intrusion of computers into
molecular biology shifted power
into the hands of those with
mathematical aptitudes and the
computer savvy.

Michio Kaku

Ethics is a major branch of philosophy. It involves systematizing, defending,

and recommending concepts of right and wrong behavior. It is significantly broader

than the common conception of analyzing right and wrong, the ethical theories have

been broadly studied by philosophers and, more recently, it have gained attention in

different subject areas related to the sciences. In consequence, the applied ethics has

emerged as an important branch in an attempt to apply ’theoretical’ ethics to real

world dilemmas in sciences.

Some controversial issues concerning the present research fall within two impor-

tant applied ethical topics: computer ethics and bioethics. Aside from the ethical

aspects considered and strictly held for developing this research in terms of proper

scientific work, knowledge production practices, and the scientific integrity, we will

examine some specific and controversial ethical issues related to the main themes in-

volved in the present work. In the following section we will analyze the ethical issues

89
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implied in the application problem (Reverse Engineering), the application field of this

thesis (Computational Biology), and the computing paradigm used (Reconfigurable

Computing).

7.1 Ethics and Reverse Engineering

As stated in Definition 8, reverse engineering is a general process for analyzing a

technology specifically to ascertain how it was designed. Reverse engineering has its

origins in the analysis of hardware for commercial or military advantage [19]. The

purpose is to deduce design decisions from end products with little or no additional

knowledge about the procedures involved in the original production.

Reverse engineering has been held as a legitimate form of discovery, but its correct

use can engender suspects. Using reverse engineering involves some ethical issues in

different applications.

Reverse engineering is applied for disassembly or decompilation of computer pro-

grams by reading the object or bin code of the program and translating them into

source code. By analyzing input and output data, reverse engineering can determine

some structures of the program and identify how it operates for presenting the infor-

mation in an understandable computer language. This practice could be considered

as the robbery of intellectual property. Dishonest competitors can steal a software

design using testing and analysis. Once the competitor obtains the design details,

they can improve upon the original product with minimal research and development

costs.

Some basic ideas about reverse engineering used in this research have been widely
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used for developing encoders and decoders for cryptosystems. It is possible to reverse-

engineer an encryption system by a simple input-output scan attack, so secure data

can be cracked.

Design of circuits in a semiconductor chip can be determined by reverse engineer-

ing. These chips are hardwired with circuits described by simple combinatorial logic

functions. In a logic function, a given input will always produce a predictable output.

An input-output analysis clearly allows one to reproduce the logical function that

describes the circuit. By a simple input-output scan attack, it is possible to reverse

engineer a design using a large number of possible inputs, and monitoring outputs to

determine the internal logic functions of the semiconductor chip.

The security and integrity of protected data, and the intellectual property in

hardware or software design can become vulnerable by using reverse engineering. As

a consequence, researchers and developers of reverse engineering technologies must

be seriously concerned about the ethical responsibility in their works.

7.2 Reconfigurable Computing and Ethics

The use of reconfigurable technologies implies some ethical issues that have to be

considered by computing professionals. This technology could be used for dishonest

purposes. For instance, FPGAs have been misused for cracking private data. On the

other hand, this technology could be exploited for a better quality of life through

integrity methods. In this sense FPGAs can be put to good use for green conserva-

tionism by substantially lowering power consumption of a supercomputing platform.

The potentialities of FPGA for accelerate reverse engineering on cryptosystem
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can be used for hacking secure or confidential codes, such as passwords or banking

information. Even when exhaustive key search is used, the advantage of FPGA per-

formance can be exploited for cracking secure codes. For example, in [24] the authors

designed an simple FPGA program in order to attack the IBM 4758 CCA, used in

retail banking to protect the ATM infrastructure, they developed a practical scheme

that extracted Data Encryption Standard keys from the system in a single 10-minute

session. In [77], Kumar et al. use an array of low-cost FPGAs for performing an

exhaustive key search of the Data Encryption Standard in less than nine days on

average.

The conservation ethic is an ethic of resource use, allocation, exploitation, and

protection. It is focused on maintaining the health of the natural world. The philoso-

phy of this ethic proposes the conservation of materials and energy, as an imperative

mean toward the protection of the natural world and its much needed and endangered

resources.

Kris Gaj, a George Mason University researcher, headed an investigation which de-

serves mention because of its pertinence and relevance in how reconfigurable comput-

ing can work in favor of the ethics of conservation. Even though Gaj never mentions

ethics, his work presents us with a determination to prove that, when put to good

use, FPGAs performance can be useful for reducing excessive energy and resource

consumption, versus the traditional high performance computers. His study [43]

compares the consumption power of an SRC-6E reconfigurable computer with a clus-
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ter of 100 processors 2.4 GHz Pentium IV 1, in a time span of five years 2. The

total power consumption of the reconfigurable computer over five years was 21900

kW-hour, while the cluster consumed 930833 kW-hour. Moreover, the total cost of

power of the reconfigurable computer over the five year period is $2,628, while the

total cost of power of the cluster is $111,700, which represents savings of $109,072 3.

7.3 Computational Biology and Ethics

A concern in bioethics has to do with misconduct in collecting and processing data

and publishing results of scientific research. Bioethicists have identified as unethical

practice to handle data with computer programs, and report it as experimental data.

Reverse engineering of genetic regulatory networks could be used for this ethical

transgression. So, from very few sampling data a genetic network can be inferred and

more gene expression data can be obtained from the inferred network.

The source of sampling data for reverse engineering gene networks is also an

important issue in bioethics. For example, when researchers deal with biological

data, they have to consider carefully the property rights in genetic information [127].

Nonetheless, the intended application of this research is not developed or thought

to be used as a threat; instead it pretends to be part of the cause for politically

correct practices in molecular biology research. Thus, it contemplates taking part

in a positive outcome, and more importantly, worthy benefits for the human race

1For a 100x acceleration it is assumed 100% cluster efficiency, i.e. the application can be perfectly
parallelized across 100 microprocessors, scaling the application linearly.

2It is assumed both systems used non-stop over a five year period.
3Cost of power estimation of $0.12 per kW-hour was calculated by the average commercial cost

of power in Los Angeles, New York, San Francisco and Washington DC.
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and biological species in general. For example, molecular biology experiments usually

involve the sacrifice of animals, and typically many experiments and repetitions are

required. In these cases the reverse engineering proposed in our research could help

minimize considerably the number of experiments with animals.

The biological application considered in this work can be associated to the ge-

netic manipulation controversy. The engineering of genetically modified organisms

for cloning species or transgenic creation has been an important issue in bioethics.

Even if these issues are concerned with biologists, the responsibility of computer sci-

entists and engineers is significant in bioinformatics [136]. This matter is clearly

described by Kaku in [68] (the quote is taken from [88]): “ The intrusion of comput-

ers into molecular biology shifted power into the hands of those with mathematical

aptitudes and the computer savvy”.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have introduced a novel approach for finite field multiplication over odd-prime

extension fields. A fast and space-saving design for a finite field multiplication over

GF (2m) was also introduced. This multiplier became essential for the design of an

efficient architecture for finite field inversion toward the ultimate and more challenging

problem of developing a new and efficient architecture for finite field interpolation.

The structure of our multiplication algorithm for GF (2m) allows us to enhance

performance by exploiting Mastrovito matrix symmetries, while avoiding modular re-

ductions in the multiplication process. The core operation in the algorithm loop is

the inner product which is accelerated by bit-level parallelism implemented through

a parallel FIR filter. This simple architecture uses a small amount of FPGA area,

delivering a low area implementation which makes possible to shift more of the com-

putational burden to FPGAs by embedding our multiplier into more complex tasks,

such as inversion and interpolation.
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A novel architecture for polynomial interpolation over fields GF (2m) was pre-

sented. The implementation results and the performance analysis show that FPGAs

have the potential for accelerating some resource demanding problems, such as our in-

tended application to reverse engineering large genetic networks. Significant speedups

of more than a hundred times over a 2.2 GHz Opteron processor were achieved. In

addition, our implementation has proved to use optimally the resources in the FPGA.

In this sense, interpolation over larger fields can be tackled without sacrificing per-

formance.

The symmetries in the Mastrovito matrix were also exploited in order to formu-

late a new approach for fast finite field multiplication over GF (pm), with p 6= 2.

We showed that the computational complexity of multiplication can be reduced by

using convolution properties of the Number Theoretic Transform. This approach

promises efficient solutions for applications that use expensive arithmetic operation

over GF (pm) with p 6= 2.

8.2 Future Work

Future work includes developing means for an efficient implementation of finite field

multiplication via number theoretic transform for fields GF (pm) of odd prime char-

acteristic. This multiplier could be used for the interpolation phase of reverse engi-

neering genetic networks with p levels of gene expression.

The interpolation and other applications of intensive arithmetic over finite fields

can be extended to larger problems beyond the capacity of a single FPGA. The
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problem size can be extended by implemented solutions based on partitioning the

problem in pieces that can be processed via parallelism with FPGAs or by using

dynamically reconfigurable computing.
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[131] B. Sunar, E. Savas, and Ç. K. Koç, “Constructing Composite Field Represen-
tations for Efficient Conversion”, IEEE Transactions on Computers, Volume 52,
Number 11, pp. 1391-1398, 2003.
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