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In this dissertation the mathematical modeling of Cosserat elastic plates and

their Finite Element computation are presented. The mathematical model for bend-

ing of Cosserat elastic plates, which assumes physically and mathematically moti-

vated approximations over the plate thickness for stress, couple stress, displacement,

and microrotation is developed. The approximations are consistent with the three-

dimensional Cosserat elasticity equilibrium equations, boundary conditions and the

constitutive relationships. The Generalized Hellinger-Prange-Reissner Principle al-

lows to obtain the equilibrium equations, constitutive relations and optimal value

for the minimization of the elastic energy with respect to the splitting parameter.

On of the main contributions of this dissertation is the comparison of the max-

imum vertical deflection for simply supported square plate with the analytical solu-

tion of the three-dimensional Cosserat elasticity. It confirms the high order of ap-

proximation of the three-dimensional (exact) solution. The computations produce

a relative error of the order 1% in comparison with the exact three-dimensional so-

lution that is stable with respect to the standard range of the plate thickness. The
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results are compatible with the precision of the well-known Reissner model used for

bending of simple elastic plates.

For the Finite Element formulation, the Cosserat plate field equations are pre-

sented as an elliptic system of nine differential equations in terms of the kinematic

variables. The system includes an optimal value of the splitting parameter, which is

the minimizer of the Cosserat plate stress energy. The Finite Element Method for

Cosserat elastic plates based on the efficient numerical algorithm for the calculation

of the optimal value of the splitting parameter and the computation of the corre-

sponding unique solution of the weak problem is proposed. The numerical validation

of the Finite Element Method shows its convergence to the analytical solution with

optimal linear rate of convergence in H1-norm.

The Finite Element computation of bending of clamped Cosserat elastic plates

of arbitrary shapes under different loads is provided. The numerical results are

obtained for the elastic plates made of dense polyurethane foam used in structural

insulated panels.
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Resumen de Disertación Presentado a Escuela Graduada
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Modelado Matemático y Computación por medio

del Elemento Finito de Placas Elásticas de

Cosserat

por

Roman Kvasov

Abril 2013

Consejero: Lev Steinberg
COMPUTACIÓN Y CIENCIA DE INFORMACIÓN E INGENIERIA

En esta disertación se presenta el modelo matemático para las placas elásticas de

Cosserat y su computación utilizando el método del elemento finito. En la misma se

desarrolla un modelo matemático para la flexión de las placas elásticas de Cosserat,

que asume aproximaciones de tensión, momento tensional, desplazamiento y micro-

rotación, las cuales están f́ısica y matemáticamente motivadas. Estas aproximaciones

son consistentes con las ecuaciones de equilibrio de la elasticidad tridimensional de

Cosserat, condiciones de frontera y las ecuaciones constitutivas. El Principio Gen-

eralizado de Hellinger Prange-Reissner permite obtener las ecuaciones de equilibrio,

ecuaciones constitutivas y el valor óptimo del parámetro de separación para la min-

imización de la enerǵıa elástica.

Una de las contribuciones de esta disertación es la comparación de la deflexión

vertical máxima de las placas simplemente apoyadas con la solución anaĺıtica de

la elasticidad de Cosserat, la cual confirma el alto orden de la aproximación de la

solución tridimensional exacta. Los cómputos producen el error relativo de orden de
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1% en comparación con la solución exacta. Este error es estable en el rango estándar

del espesor de la placa. Los resultados son compatibles con la precisión del modelo

de Reissner utilizado para las placas elásticas clásicas.

Para la formulación del método del elemento finito, se presentan las ecua-

ciones de campo como un sistema eĺıptico de nueve ecuaciones diferenciales par-

ciales en términos de las variables cinemáticas. El sistema incluye el valor óptimo

del parámetro de separación. Se propone el método del elemento finito para las

placas elásticas de Cosserat basado en un algoritmo eficiente para calcular el valor

óptimo del parámetro de separación y computar la solución correspondiente de la

formulación débil. Se muestra que el método del elemento finito propuesto, converge

a la solución anaĺıtica con la razón de convergencia óptima (lineal).

Se provee el método modelado por el método del elemento finito de las placas

elásticas de Cosserat de forma arbitraria bajo la acción de diferentes cargas. Se

obtuvieron resultados numéricos para las placas hechas de la espuma densa de poli-

uretano, las cuales se utilizan en los paneles de sándwich de poliuretano inyectado.
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Preface

This work is divided into five chapters.

The first chapter discusses the importance of the Cosserat materials in modern

engineering, the historical survey of the mathematical descriptions of elastic plates

and the development of Finite Element Method and its importance for the numerical

modeling of physical systems in a variety of engineering disciplines.

The second chapter is dedicated to the development of the mathematical model

for Cosserat elastic plates. We obtain the complete theory of Cosserat elastic plates.

Based on the Generalized Hellinger-Prange-Reissner Principle we obtain the equi-

librium equations, constitutive relations and the optimal value for the minimization

of the elastic energy with respect to the splitting parameter in the approximation

of the σ33 stress component. We also obtain the Cosserat plate field equation and

represent them as a system of nine partial differential equations in terms of the

kinematic variables. We prove the ellipticity of the obtained system and derive an

explicit expression for the optimal value of the splitting parameter minimizing the

elastic energy.

The third chapter contains the validation of the proposed mathematical model

for Cosserat elastic plates. We obtain the analytical solution for the square Cosserat

plate and compare it with the analytical (exact) solution for the three-dimensional

Cosserat Elasticity.

The fourth chapter contains the Finite Element computation of the bending of

Cosserat elastic plates of arbitrary shape. We develop the Finite Element Method

ix



for Cosserat elastic plates based on the efficient numerical algorithm for the calcu-

lation of the optimal value of the splitting parameter and the computation of the

corresponding unique solution of the weak problem. We discuss the validation of the

proposed FEM and its convergence. We also provide the Finite Element modeling

of the bending of clamped Cosserat elastic plates of arbitrary shapes under different

loads.

The fifth chapter consists of the conclusion and the discussion of the future

work.
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Chapter 1

Introduction

1.1 Scope of the Chapter

In this chapter we make a brief survey of the topics that will be discussed in

the dissertation: Cosserat materials, elastic plates and Finite Element Method. We

discuss the constitution of modern materials with microstructure (Cosserat materi-

als) and their importance in the modern engineering. We provide a brief historical

survey of the mathematical descriptions of plates and give several examples of the

applications of plates in different areas of technology. We finish this chapter with

the discussion of the development of an effective numerical technique for solving

partial differential equations – Finite Element Method.
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1.2. COSSERAT MATERIALS IN MODERN ENGINEERING

1.2 Cosserat Materials in Modern Engineering

The Classical Theory of Elasticity is based on the idealized model of elastic

continuum, where the body forces acting on the surface element are described by

the force vector. This assumption leads to symmetric stress and strain tensors. The

theory gives accurate description of the behavior of such construction materials as

steel, aluminum and concrete when the strains lie in the elastic limits. However

some significant difference between the theory and the experiment can be observed

when the gradient of the strain is large enough, as in cases of the concentration

of strain around holes. The microstructure of the material has a large impact on

the experimental results when dealing with small wavelengths and high frequency

oscillations. Finally the Classical Theory of Elasticity does not give a fair description

of the processes in granular media and when acoustic waves travel through crystals,

polymers and polycrystal structures.

Many modern materials possess certain microstructure (cellular solids, pores,

macromolecules, fibers, grains, voids, etc.) and exhibit experimental behavior that

cannot be adequately described by the Classical Elasticity. Cosserat Elasticity de-

scribes the influence of the microstructure on the deformation of the material and

is a very useful framework for modeling solid composites (fiber, platelet, or particu-

late), porous media (including solids with fissures or microcracks) and suspensions

(containing isometric or anisometric particles) [5], [6].

Cosserat Theory of Elasticity assumes that the transmission of forces through

an area element is carried out by means of force and moment vectors. This leads to

the asymmetry of the stress tensor and the introduction of the couple stress tensor.

The introduction of three additional degrees of freedom for microrotations results

in the asymmetric micropolar strain. The symmetric part of the micropolar strain

corresponds to the classic strain [40], [7].

2



1.2. COSSERAT MATERIALS IN MODERN ENGINEERING

The examples of Cosserat solids include rocks, concrete, polymers and different

composites [6], [8]. The experimental observation of coupled rotational-translational

modes in a noncohesive granular phononic crystal is reported in [9]. These elastic

wave modes are predicted by the Cosserat theory and are not described by the

Classical Elasticity [9].

Figure 1–1: Closed-cell polymer foam, polypropylene-based particulate composite, syntactic foam
[1], [2]

Figure 1–2: Polyurethane foam, sand-aerated concrete, human bone [1], [3], [4]

Aluminum-epoxy composites being used in aircraft and aerospace industries

[10], [11], were found to be micropolar materials. The values of the relevant pa-

rameters based on specimen of an aluminum-epoxy composite were investigated in

[12], [13]. Grained composites and closed-cell polymenthacrylimide foams were in-

vestigated and shown to be micropolar materials [13]. The micropolar moments and

rotations, in addition to forces and displacements, were included in the model of the

3



1.3. HISTORICAL OVERVIEW OF PLATE THEORIES

behavior of reinforced concrete in [14]. The engineering properties of lightweight ag-

gregate were investigated in [15]. The human bones were reported to be micropolar

materials [16]. The micropolar elasticity model was used for the stress analysis of

human bones [17].

In this dissertation we will make numerical computations for the plates made

of dense polyurethane foam reported to be Cosserat material [16]. Insulation mate-

rials made from polyurethane foam are used in the construction of large industrial

buildings and therefore the prediction of the behavior of the polyurethane foam un-

der bending stress is extremely important [18]. Polyurethane foam is also used in

structural insulated panels widely used in walls, floor slabs and roofs [19].

1.3 Historical Overview of Plate Theories

Elastic plates are flat solids bounded by two parallel planes (faces) and an or-

thogonal surface called boundary. The distance between the faces of the plate is

called thickness. The dimensions of the faces are assumed to be much larger than

the thickness of the plate: the width to thickness ratio of a plate is considered to be

greater than 10 [20], [21]. The mathematical descriptions of the deformation of the

elastic plates are called plate theories. Plate theories reduce the problem of deter-

mining displacements and stresses of the plate under load from three dimensional

problem to two-dimensional [22].

Nowadays plates play a crucial part in a variety of branches of modern technol-

ogy. Such a widespread use of thin-walled structures arises from their fundamental

properties: light weight, high load-carrying capacity and technological effectiveness

[20]. For this reason plates are widely used in aeronautical and aerospace indus-

try where light weight is essential (aluminum alloy plates) [23]. Marine engineering

makes use of elastic plates for the design of the hull in shipbuilding: floor and sealing

4



1.3. HISTORICAL OVERVIEW OF PLATE THEORIES

plates, frames, side girders, keel and margin plates (made of steel). Plates are being

increasingly utilized in chemical engineering (plate type heat exchangers), steam

systems (orifice plate steam traps), plant and process design, powerplants (water-

walls, boilers, superheaters, steam pipes, columns), civil, structural and mechani-

cal engineering, construction and industrial machinery, transportation and mining

equipment, heat exchangers, reaction vessels, evaporators, transfer piping systems

(nickel plates) and many other practical applications [24], [25].

The interest in the theory of deformed surfaces and the first appearance of

the mathematical description of plates can be traced back to late 18th century.

In 1776 Euler performed a free vibration analysis of certain plate problems. In his

“Discoveries in the Theory of Sound” in 1787, Chladni described the experiments on

various modes of free vibrations of plates [26], [27]. J. Bernoulli developed theoretical

justification of Chladni experiments in 1789 and used the direct approach for the

derivation of the governing differential equation, considering the plate being a two-

dimensional deformable continuum [27], [28], [20], [29].

The beginning of the 19th century was marked by the development of the gen-

eral plate equation based on the direct approach. In 1813 Lagrange added a missing

warping term to the equilibrium equation in the work of Germain and thus produced

what is now known as Germain-Lagrange bending equation [20]. In 1821 Navier pro-

posed the Newtonian conception that let him for the first time formulate the general

theory of elasticity: elastic reaction arises from variation in intermolecular forces

which result from shifts in the unchangeable structure of molecular configuration

[30].

Not long after the three-dimensional elasticity equations were developed, Cauchy

(1828) and Poisson (1829) used it to formulate the plate bending problem. The

new technique, essentially different from the direct approach used in the previous
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1.3. HISTORICAL OVERVIEW OF PLATE THEORIES

works, was based on the splitting of the unknown stress components and thus re-

ducing the three-dimensional equations to a two-dimensional problem. Even though

the obtained governing differential equation coincided with the Germain-Lagrange

bending equation, the Poisson approach and the introduced boundary conditions

became a subject for much debate and were widely criticized [28], [20].

In 1850 the revolutionary contribution was made by Kirchhoff. In his thesis,

he presented the basis of the classical bending theory of thin elastic plates and

triggered the future widespread use of the theory in practice. The energy functional

of the three-dimensional elasticity theory was successfully simplified thus reducing

the three-dimensional theory to a two-dimensional plate bending problem [20].

In order to derive the bi-harmonic Germain-Lagrange differential equation,

Kirchhoff came up with the following assumptions: straight lines normal to the mid-

surface remain straight after deformation, straight lines normal to the mid-surface

remain normal to the mid-surface after deformation and the thickness of the plate

does not change during deformation [31]. In 1888 based on these assumptions, Love

developed what is now called Kirchhoff - Love theory of plates – two-dimensional

model describing the deformation of thin elastic plates [32], [33]. Saint-Venant pro-

posed an extension to Kirchhoffs plate which takes into account both stretching

and bending. In 1899, Levy obtained the first solution of the Kirchhoffs differential

equation for the case of rectangular plate [31].

The development of the aircraft industry, nuclear physics and chemical industry

invoked a lot of analytical research of plates. This lead to many extensive studies

in the area of plate bending theory such as contributions to the theory of large de-

formations and the general theory of elastic stability of thin plates, theoretical and

experimental investigations associated with the accuracy of Kirchhoffs plate theory,

simplification of the general equations for the large deflections of very thin plates and

the development of the final form of the differential equation of the large-deflection

6



1.3. HISTORICAL OVERVIEW OF PLATE THEORIES

theory, investigation of the postbuckling behavior of plates, solution of plates sub-

jected to nonsymmetrical distributed loads and edge moments, development of the

bases of the general theory of anisotropic plates and nonlinear plate analysis [20].

Since Kirchhoff plate theory assumes the normal to the middle plane remaining

normal during deformation, it automatically neglects transverse shear strain effects.

A rigorous system of equations, which takes into account the transverse shear de-

formation, has been developed only in the middle of 20th century by Reissner [34],

[35], [36].

One of the main advantages of Reissner model is that it is able to determine the

reactions along the edges of a simply supported rectangular plate, where classical

theory leads to a concentrated reaction at the corners of the plate [31]. The study of

the relationships between the classical theory and Reissner model has proved that

the solution of the clamped Reissner plate approaches the solution of the Kirchhoff

plate as the thickness approaches zero and that the maximum bending can reach up

to 20% for moderate plate thickness [37], [38]. In addition, the numerical calculations

of bending behavior of the plate of moderate thickness, show high level of agreement

between three-dimensional and Reissner models [39], [37].

The theory of Cosserat Elasticity takes into account the effect of microstructure

on the deformation of the body and gives a more precise description than the Clas-

sical Elasticity. In 1967 Eringen was the first to propose a theory of plates in the

framework of Cosserat Elasticity [40]. Eringen based his theory on the assumption

of no variation of microrotations in the thickness direction and a technique that is

very similar to the one used for Kirchhoff plate – integration of the three-dimensional

equations [40], [37]. More remarks on the development of other theories of Cosserat

plates and shells can be found in [41], [42], [43].
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1.4. DEVELOPMENT OF THE FINITE ELEMENT METHOD

In 2010 Steinberg proposed to use Reissner plate theory in the framework of

Cosserat Elasticity [36]. The developed mathematical model described the deforma-

tion of thin Cosserat elastic plates and took into account the transverse variation of

microrotation. The analytical solution for simple rectangular plate was developed

in [44]. The numerical simulation of bending of Cosserat elastic plates of different

shapes according to Steinberg model is presented in [45].

In this dissertation we develop the mathematical model for Cosserat elastic

plates, which is an enhanced version of the bending plate model presented in [36].

The new plate theory includes the assumptions of both Eringen [40] and Steinberg

[36] models. One of the main contributions of this work is the comparison of the

proposed mathematical model and the three-dimensional Cosserat Elasticty. The

numerical computations for a plate bending produce a relative error of the order 1%

in comparison with the exact three-dimensional solution, which is compatible with

the precision of the Reissner model for classical plates [46].

1.4 Development of the Finite Element Method

Finite Element Method (FEM) is a numerical method for finding an approx-

imate solution of both ordinary and partial differential equations. FEM is based

on the weak formulation of the differential equation and the discretization of the

domain into finite elements. Nowadays FEM is used in almost every area of engi-

neering that employs models of nature given by partial differential equations (PDE).

Some of the important features that make FEM very attractive technique include

treatment of complex geometries, handling of a wide variety of engineering prob-

lems, robustness and stability (in contrast to finite difference methods) and solid

mathematical foundation [47].
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It is difficult to name one single work from which all the concepts behind FEM

originated. The idea of approximating the solution of PDE in the weak form as a

linear combination of the linearly independent functions was developed by Galerkin

(1915), which he applied to the plates analysis problems [48], [49]. Since Bubnov

(1913) independently developed a similar approach for the solution of the variational

problems, the method is sometimes called Bubnov-Galerkin. The development of

the modern FEM concepts can be traced to the work of Courant (1943), who was

the first to propose the piecewise polynomial approximation of the Dirichlet problem

over a set of triangles [50], [47]. Similar technique of the discretization of the domain

into sub-domains were used earlier by Hrennikoff (1941) and McHenry (1943), when

solving one-dimensional elasticity problems [51], [52]. Finite Element techniques of

local approximations and the stiffness matrix assembly strategies were first employed

in the work of Turner, Clough, Martin and Topp in 1956 [53]. The term “Finite

Element Method” was introduced for the first time by Clough (1960) in the analysis

of the linear plane elasticity using triangular and rectangular elements [54].

Since 1960s FEM started to receive general acceptance in civil and mechani-

cal engineering: many papers and books were written on the subject and countless

developments of finite element techniques were made. The range of applications of

FEM was extended to many engineering disciplines such as heat transfer, fluid me-

chanics, aerospace engineering, electromagnetism, biomechanics and acoustics [55].

During 1970s some significant advances in the mathematical foundation and the

establishment of the main results on stability, error estimation and convergence for

different problems were made by Babuŝka, Aziz, Brezzi, Nitsche, Strang, Ciarlet,

Oden, Reddy, Douglas, among many others [56], [57], [58]. For a detailed devel-

opment of FEM we will refer to [47] where the history of FEM is given in much

detail.
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1.4. DEVELOPMENT OF THE FINITE ELEMENT METHOD

Nowadays, Finite Element Method is successfully used in almost every field

of engineering analysis. It provides the solution to complex problems and helps

reach a safe and cost-effective design. There is a variety of both opensource and

commercial software packages, that implement the Finite Element algorithms for

solving partial differential equations or aid in the pre-processing and post-processing

of Finite Element models. Among the most powerful ones are ABAQUS, ANSYS,

NASTRAN, PATRAN, LS DYNA, etc.
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Chapter 2

Mathematical Model for
Cosserat Elastic Plates

2.1 Scope of the Chapter

In this chapter we develop the mathematical model for Cosserat elastic plates.

We obtain the corresponding equilibrium equations and constitutive relations for

Cosserat elastic plates. We develop the algorithm for the minimization of the elas-

tic energy with respect to the splitting parameter in the approximation of the σ33

stress component. The obtained solution is proved to be unique. We also obtain

the Cosserat plate field equations and represent them as a system of nine partial

differential equations in terms of the kinematic variables. We prove the ellipticity of

the obtained system and derive an explicit expression for the optimal value of the

splitting parameter.
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2.2 Cosserat Linear Elasticity

2.2.1 Fundamental Equations

Let us consider a Cosserat elastic body B0 and recall the main equations of

the Cosserat elasticity satisfied for all points of the body B0: equilibrium equations,

strain-displacement relations and the constitutive equations.

Let ui be the displacement vector, ϕi – rotation vector, σji – stress tensor, µji–

couple stress tensor, γji – strain tensor and χji – torsion tensor.

Equilibrium equations without body forces and body moments represent the

balance of linear and angular momentums and have the following form

σji,j = 0, (2.1)

εijkσjk + µji,j = 0, (2.2)

where εijk is the Levi-Civita symbol.

The strain-displacement and torsion-rotation relations are given as [40]

γji = ui,j + εijkϕk (2.3)

χji = ϕi,j . (2.4)

The constitutive equations are given as [59]:

σji = (µ+ α)γji + (µ− α)γij + λγkkδij, (2.5)

µji = (γ + ǫ)χji + (γ − ǫ)χij + βχkkδij, (2.6)

where λ and µ are the Lamé constants and α, β, γ and ǫ are asymmetric constants.

The constitutive equations (2.5) - (2.6) can be also written in the reverse form:

γji = (µ′ + α′)σji + (µ′ − α′)σij + λ′σkkδij , (2.7)

χji = (γ′ + ǫ′)µji + (γ′ − ǫ′)µij + β′µkkδij, (2.8)
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where

µ′ =
1

4µ
,

α′ =
1

4α
,

γ′ =
1

4γ
,

ǫ′ =
1

4ǫ
,

λ′ =
−λ

6µ(λ+ 2µ
3
)

β′ =
−β

6µ(β + 2γ
3
)
.

The equilibrium equations (2.1) - (2.2) with constitutive formulas (2.5) - (2.6)

and kinematic formulas (2.3) - (2.4) are accompanied by the following mixed bound-

ary conditions

û = û0, ϕ̂ = ϕ̂0 on G1 = ∂B0\∂Bσ, (2.9)

σ̂n̂ = σ · û = σ̂0 on G2 = ∂Bσ, (2.10)

µ̂n̂ = µ · n̂ = µ̂0 on G2 = ∂Bσ, (2.11)

where û0, ϕ̂0 are prescribed on G1, σ̂0 and µ̂0 on G2, and n̂ denotes the outward

unit normal vector to ∂B0 [37].

2.2.2 Cosserat Elastic Energy

The strain stored energy UC of the body B0 is defined by the integral [59]:

UC =

∫

B0

W {γ,χ} dv, (2.12)
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where

W {γ,χ} =
µ+ α

2
γijγij +

µ− α

2
γijγji +

λ

2
γkkγnn (2.13)

+
γ + ǫ

2
χijχij +

γ − ǫ

2
χijχji +

β

2
χkkχnn,

then the constitutive relations (2.5) - (2.6) can be written in the form:

σ = Cσ [W] = ∇γW and µ = Cµ [W] = ∇χW. (2.14)

The function W is non-negative if and only if [59], [60]

µ > 0, 3λ+ 2µ > 0,

γ > 0, 3β + 2γ > 0, (2.15)

α > 0, µ+ α > 0,

ǫ > 0, γ + ǫ > 0.

For future convenience, we present the stress energy

UK =

∫

B0

Φ {σ,µ} dv,

where

Φ {σ,µ} =
µ′ + α′

2
σijσij +

µ′ − α′

2
σijσji +

λ′

2
σkkσnn

+
γ′ + ǫ′

2
µijµij +

γ′ − ǫ′

2
µijµji +

β′

2
µkkµnn. (2.16)

The reversed constitutive relations (2.7) - (2.8) can be also written in form:

γ= Kγ [σ] =
∂Φ

∂σ
, χ = Kχ [µ] =

∂Φ

∂µ
. (2.17)

The total internal work done by the stresses σ and µ over the strains γ and χ

for the body B0 [59] is

U =

∫

B0

[σ · γ + µ · χ] dv (2.18)
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and

U = UK = UC

provided the constitutive relations (2.5) - (2.6) hold.

2.2.3 The Generalized Hellinger-Prange-Reissner Principle

The HPR principle [61] in the case of Cosserat elasticity states, that for any set

A of all admissible states s = [û, ϕ̂,γ,χ,σ,µ] that satisfy the strain-displacement

and torsion-rotation relations (2.3) - (2.4), the zero variation

δΘ(s) = 0

of the functional

Θ(s) = UK −
∫

B0

[σ · γ + µ · χ] dv (2.19)

+

∫

G1

[σ̂n̂ · (û− û0) + µ̂n̂ (ϕ̂− ϕ̂0)] da+

∫

G2

[σ̂0 · û+ µ̂0 · ϕ̂] da

at s ∈A is equivalent of s to be a solution of the system of equilibrium equations

(2.1) - (2.2), constitutive relations (2.7) - (2.8), which satisfies the mixed boundary

conditions (2.9) - (2.11). The proof is similar to the proof for HPR principle for

classic linear elasticity [61].

2.3 The Cosserat Plate Assumptions

In this section we formulate our stress, couple stress and kinematic assumptions

of the Cosserat plate. We consider the thin plate P where h is the thickness of the

plate and x3 = 0 contains its middle plane. The sets T and B are the top and

bottom surfaces contained in the planes x3 = h/2, x3 = −h/2 respectively and the

curve Γ is the boundary of the middle plane of the plate.
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The set of points P =
(
Γ× [−h

2
, h
2
]
)
∪ T ∪ B forms the entire surface of the

plate and Γu × [−h
2
, h
2
] is the lateral part of the boundary where displacements and

microrotations are prescribed. The notation Γσ = Γ\Γu of the remainder we use to

describe the lateral part of the boundary edge Γσ × [−h
2
, h
2
] where stress and couple

stress are prescribed. We also use notation P0 for the middle plane internal domain

of the plate.

In our case we consider the vertical load and pure twisting momentum boundary

conditions at the top and bottom of the plate, which can be written in the form:

σ33(x1, x2, h/2) = σt(x1, x2), σ33(x1, x2,−h/2) = σb(x1, x2), (2.20)

σ3β(x1, x2,±h/2) = 0, (2.21)

µ33(x1, x2, h/2) = µt(x1, x2), µ33(x1, x2,−h/2) = µb(x1, x2), (2.22)

µ3β(x1, x2,±h/2) = 0, (2.23)

where (x1, x2) ∈ P0.

2.3.1 Stress and Couple Stress Assumptions

Our approach, which is a generalization of the theories of plates [35] and [36],

assumes that the variation of stress σkl and couple stress µkl components across the

thickness can be represented by means of polynomials of x3 in such way that it will

be consistent with the equilibrium equations (2.1) and (2.2).

First, as it is assumed in the standard theory of plates, we use expressions for

the stress components in the following form [37]:

σαβ =
h

2
ζmαβ(x1, x2), (2.24)
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where ζ = 2
h
x3, and α, β ∈ {1, 2}. Based on (2.24) and by means of the first two

equations of stress equilibrium (2.1) written in the component form

σjβ,j = 0

we obtain for the shear stress components

σ3β = qβ(x1, x2)
(
1− ζ2

)
, (2.25)

We use expression for the stress components [37]:

σβ3 = q∗β(x1, x2)
(
1− ζ2

)
+ q̂β(x1, x2). (2.26)

Substituting equations (2.26) in the remaining equilibrium differential equation

for stress

σj3,j = 0

we obtain the expression for the transverse normal stress

σ33 = ζ

(
1

3
ζ2 − 1

)
k∗(x1, x2) + ζl∗(x1, x2) +m∗(x1, x2). (2.27)

The next step is to accommodate approximations (2.27) to the boundary con-

ditions (2.20). By direct substitution to (2.20) it easy to obtain that

σ33 = −3

4

(
1

3
ζ3 − ζ

)
p1(x1, x2) + ζp2(x1, x2) + σ0(x1, x2), (2.28)

where

p1(x1, x2) + 2p2(x1, x2) = p(x1, x2)

We consider the parametric solution of the last equation in the form:

p1(x1, x2) = ηp(x1, x2),

p2(x1, x2) =
(1− η)

2
p(x1, x2)
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and η is a parameter, which we call the splitting parameter. This allows us

to split the bending pressure on the plate p(x1, x2) into two parts corresponding to

different orders of stress approximation. The optimal value of the splitting parameter

shows the contribution of different types of approximation in the plate bending.

This approach gives a more accurate description of the mechanical phenomenon of

bending.

Note that for

p(x1, x2) = σt(x1, x2)− σb(x1, x2)

σ0(x1, x2) =
1

2

(
σt(x1, x2) + σb(x1, x2)

)

the expression (2.28) satisfies the boundary condition requirements. Note that in

the case of η = 1 expression (2.28) is identical to the expression of σ33 given in [36].

We use the following approximation for the couple stress components [37]:

µαβ =
(
1− ζ2

)
rαβ(x1, x2) + r∗αβ(x1, x2). (2.29)

and couple stress:

µβ3 = ζs∗β(x1, x2). (2.30)

Note that the first two equations of (2.2) can be written in the form

ǫβjkσjk + µjβ,j = 0, (2.31)

and substituting the couple stress (2.29) in (2.31) and taking into account (2.25)

and (2.26) we obtain the expression for the transverse shear couple stress:

µ3β =

(
1

3
ζ3 − ζ

)
sβ(x1, x2). (2.32)

Substituting (2.32) to boundary conditions (2.23) we obtain that

sβ(x1, x2) = 0,
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i.e. the transverse shear couple stress [36]:

µ3β = 0. (2.33)

We use the assumption from [36], i.e. µ33 is a first order polynomial:

µ33 = ζb∗(x1, x2) + c∗(x1, x2). (2.34)

which satisfies the remaining differential equation of the equilibrium of angular mo-

mentum (2.2)

ǫ3jkσjk + µj3,j = 0. (2.35)

This assumption is also consistent with the equilibrium equation (2.35) and

allows us to proceed as we did for the determination of transverse loading stress

(2.28) from the stress boundary conditions. The boundary conditions (2.22) are

sufficient to determine µ33, which must be of the form [36]

µ33 = ζv + t, (2.36)

where the functions v(x1, x2) and t(x1, x2) are given as

v(x1, x2) =
1

2

(
µt(x1, x2)− µb(x1, x2)

)
,

t(x1, x2) =
1

2

(
µt(x1, x2) + µb(x1, x2)

)
.

2.3.2 Kinematic Assumptions

The choice of kinematic assumptions is based on simplicity and their compat-

ibility with the constitutive relationships of stress and couple stress assumptions
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[37]:

uα = ζVα(x1, x2), (2.37)

u3 = w(x1, x2) +
(
1− ζ2

)
w∗(x1, x2), (2.38)

We also use the microrotation ϕα in the following form [37]:

ϕα = Θ0
α(x1, x2)

(
1− ζ2

)
+ Θ̂α(x1, x2), (2.39)

ϕ3 = ζ

(
1− 1

3
ζ2
)
Θ3(x1, x2). (2.40)

The constitutive formulas motivate us to chose the forms (2.39) and (2.40),

which produce expressions for ϕα,β and ϕ3,3 similar to what we have for couple

stress approximations (2.29).

2.4 HPR Variational Principle for Cosserat Plate

The HPR variational principle for a Cosserat plate is most appropriately ex-

pressed in terms of corresponding integrands calculated across the whole thickness.

We also introduce the weighted characteristics of displacements, microrotations,

strains and stresses of the plate, which will be used to produce the explicit forms of

these integrands.

2.4.1 The Cosserat plate stress energy density

We define the plate stress energy density by the formula

Φ(S ) =
h

2

∫ 1

−1

Φ {σ, µ} dζ3. (2.41)

Taking into account the stress and couple stress assumptions (2.24) - (2.36)

and by the integrating Φ {σ, µ} with respect ζ3 in [−1, 1] we obtain the explicit
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plate stress energy density expression in the form:

Φ(S , η) = − 3λ

h3µ(3λ+ 2µ)

(
MααMββ +

α + µ

2h3αµ
3M2

αβ

)

+
3 (α + µ)

160h3αµ

[
8Q̂αQ̂α + 15QαQ̂α + 20Q̂αQ

∗
α + 8Q∗

αQ
∗
α

]

+
α− µ

2h3αµ
3M2

αβ +
α− µ

280h3αµ

[
21Qα

(
5Q̂α + 4Q∗

α

)]

− γ − ǫ

160hγǫ

[
24R2

αα + 45R∗
αα + 60RαβR

∗
αβ + 48R12R21

]

+
γ + ǫ

2h3γǫ
3S∗

αS
∗
α +

λ

560hµ(3λ+ 2µ)

5 + 3η

(1 + η)
pMαα

+
γ + ǫ

160h3γǫ

[
8R2

αβ + 15R∗
αβR

∗
αβ + 20RαβR

∗
αβ

]

+
3β

80hγ(3β + 2γ)

[
8RααRββ + 15R∗

ααR
∗
ββ + 20RααR

∗
αα

]

− β

4γ(3β + 2γ)

[
(2Rαα + 3R∗

αα)t− h
(
v2 + t2

)]

+
(λ+ µ)h

840µ(3λ+ 2µ)

(
140 + 168η + 51η2

4(1 + η)2

)
p2

+
(λ+ µ)h

2µ(3λ+ 2µ)
σ2
0 +

ǫh

12hγǫ

(
3t2 + v2

)
(2.42)

where S the Cosserat stress set

S =
[
Mαβ, Qα, Q

∗
α, Q̂α, Rαβ, R

∗
αβ, S

∗
β

]
(2.43)
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Here we define the variables

Mαβ =

(
h

2

)2 ∫ 1

−1

ζ3σαβdζ3 =
h3

12
mαβ,

Qα =
h

2

∫ 1

−1

σ3αdζ3 =
2h

3
qα,

Q∗
α =

h

2

∫ 1

−1

q∗α
(
1− ζ2

)
dζ3 =

2h

3
q∗α,

Q̂α =
h

2

∫ 1

−1

q̂α
(
1− ζ2

)
dζ3 =

2h

3
q̂α

Rαβ =
h

2

∫ 1

−1

rαβ
(
1− ζ2

)
dζ3 =

2h

3
rαβ,

R∗
αβ =

h

2

∫ 1

−1

r∗αβ
(
1− ζ2

)
dζ3 =

2h

3
r∗αβ,

S∗
α =

(
h

2

)2 ∫ 1

−1

ζ3µα3dζ3 =
h3

12
s∗α.

Here M11 and M22 are the bending moments, M12 and M21 – twisting moments,

Qα – shear forces, Q∗
α, Q̂α – transverse shear forces, R11, R22, R

∗
11, R

∗
22 – microp-

olar bending moments, R12, R21, R
∗
12 ,R∗

21 – micropolar twisting moments, S∗
α –

micropolar couple moments, all defined per unit length.

Then the stress energy of the plate P

US

K =

∫

P0

Φ(S , η)da, (2.44)

where P0 is the internal domain of the middle plane of the plate P.

2.4.2 The density of the work over the plate boundary

In the following consideration we also assume that the proposed stress, couple

stress, and kinematic assumptions are valid for the lateral boundary of the plate P

as well.
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We evaluate the density of the work over the boundary Γu × [−h/2, h/2]

W1 =
h

2

∫ 1

−1

[σn · u+ µn · ϕ] dζ3. (2.45)

Taking into account the stress and couple stress assumptions (2.24) - (2.36) and

kinematic assumptions (2.37) - (2.40) we are able to represent W1 by the following

expression:

W1 = Sn·U =M̌αΨα + Q̌∗
αW + Q̌ˆ

αW
∗ + ŘαΩ

0
α + Ř∗

αΩ̂
0
α + Š∗Ω3, (2.46)

where the set Sn is defined as

Sn =
[
M̌α, Q̌

∗, Q̌ˆ
α, Řα, Ř

∗
α, Š

∗
]
,

and

M̌α = Mαβnβ, Q̌∗ = Q∗
βnβ, Řα = Rαβnβ,

Š∗ = S∗
βnβ, Q̌

ˆ = Q̌ˆ
βnβ, Ř∗

α = Ř∗
αβnβ.

In the above nβ is the outward unit normal vector to Γu and

Ψα =
3

h

∫ 1

−1

ζ3uαdζ3,

W =
3

4

∫ 1

−1

(
1− ζ2

)
wdζ3,

W ∗ =
3

4

(
1− ζ2

)2
w∗dζ3,

Ω0
α =

3

4

∫ 1

−1

(
1− ζ2

)
Θ0

αdζ3,

Ω̂α =
3

4

∫ 1

−1

(
1− ζ2

)
Θ̂0

αdζ3,

Ω3 =
3

h

∫ 1

−1

ζ3ϕ3dζ3,

Here Ψα are the rotations of the middle plane around xα axis, W +W ∗ the vertical

deflection of the middle plate, Ω0
k+Ω̂α the microrotations in the middle plate around
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xk axis, Uα is the in-plane displacements of the middle plane along xa axis, Ω3 the

rate of change of the microrotation ϕ3 along x3.

Therefore we can introduce the set of kinematic variables defined as

U =
[
Ψα,W,Θ3,Θ

0
α,W

∗, Θ̂α

]T
,

We also obtain the correspondence between the weighted displacements and the

microrotations and the kinematic variables:

Ψα = Vα(x1, x2),W = w(x1, x2), W ∗ = w∗(x1, x2),

Ω0
α = k1Θ

0
α(x1, x2), Ω̂α = Θ̂α(x1, x2), Ω3 =

k2
h
Θ3(x1, x2),

Uα = Uα(x1, x2), Ω0
3 = Θ0

3(x1, x2),

where coefficients k1 and k2 depend on the variation of microrotations. Under the

conditions (2.40) we have that k1 =
4
5
and k2 =

8
5
.

The density of the work over the boundary Γσ × [−h/2, h/2]

W2 =
h

2

∫ 1

−1

(σoαuα +moαϕα)nαdζ3

can be presented in the form

W2 = So·U =ΠoαΨα +Πo3W +Π∗
o3W

∗ +MoαΩ
0
α +M∗

oαΩ̂α +M∗
o3Ω3,

where

Mαβnβ = Πoα, Rαβnβ = Moα,

Q∗
αnα = Πo3, S∗

αnα = M∗
o3,

Q̂αnα = Π∗
o3, R∗

αβnβ = M∗
oα.
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Now nβ is the outward unit normal vector to Γσ, and

Πoα =

(
h

2

)2 ∫ 1

−1

ζ3σoαdζ3, Moα =
h

2

∫ 1

−1

µoαdζ3,

Πo3 =
h

2

∫ 1

−1

(σo3 − σ0) dζ3, M∗
o3 =

h

2

∫ 1

−1

(µo3 − tn3)dζ3,

Π∗
o3 =

h

2

∫ 1

−1

(σo3 − σ0) dζ3, M∗
oα =

h

2

∫ 1

−1

µoαdζ3. (2.47)

We are able to evaluate the work done at the top and bottom of the Cosserat

plate by using boundary conditions (2.20) and (2.22)

∫

T∪B

(σo3u3 +mo3ϕo3)n3da =

∫

P0

(pW + vΩ0
3)da.

2.4.3 The Cosserat plate internal work density

Here we define the density of the work done by the stress and couple stress over

the Cosserat strain field:

W3 =
h

2

∫ 1

−1

(σ · γ + µ · χ) dζ3. (2.48)

Substituting stress and couple stress assumptions (2.24) - (2.36) and integrating

expression (2.48) we obtain the following expression:

W3 = S · E = Mαβeαβ +Qαωα +Q∗
3αω

∗
α + Q̂αω̂α +Rαβταβ +R∗

αβτ
∗
αβ + S∗

ατ3α,

where E is the Cosserat plate strain set of the the weighted averages of strain and

torsion tensors

E =
[
eαβ, ωβ, ω

∗
α, ω̂α, τ3α, ταβ, τ

∗
αβ

]
.
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Here the components of E are

eαβ =
3

h

∫ 1

−1

ζ3γαβdζ3, (2.49)

ωα =
3

4

∫ 1

−1

γ3α
(
1− ζ2

)
dζ3, (2.50)

ω∗
α =

3

4

∫ 1

−1

γα3
(
1− ζ2

)
dζ3, (2.51)

ω̂α =
3

4

∫ 1

−1

γα3dζ3, (2.52)

τ3α =
3

h

∫ 1

−1

ζ3χ3αdζ3, (2.53)

ταβ =
3

4

∫ 1

−1

χαβ

(
1− ζ2

)
dζ3, (2.54)

τ ∗αβ =
3

4

∫ 1

−1

χαβdζ3. (2.55)

The components of Cosserat plate strain (2.49)-(2.55) can also be represented

in terms of the components of set U by the following formulas:

eαβ = Ψβ,α + ε3αβΩ3, (2.56)

ωα = Ψα + ε3αβ

(
Ω0

β + Ω̂β

)
, (2.57)

ω∗
α = W,α +

4

5
W ∗

,α + ε3αβ

(
Ω0

β + Ω̂β

)
, (2.58)

ω̂α =
3

2
W,α +W ∗

,α + ε3αβ

(
5

4
Ω0

β +
3

2
Ω̂β

)
, (2.59)

τ3α = Ω3,α, (2.60)

ταβ = Ω0
β,α + Ω̂β,α, (2.61)

τ ∗αβ =
5

4
Ω0

β,α +
3

2
Ω̂β,α, (2.62)

We call the relations (2.56) - (2.62) the Cosserat plate strain-displacement re-

lation.
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2.5. COSSERAT PLATE HPR PRINCIPLE

2.5 Cosserat Plate HPR Principle

It is natural now to reformulate HPR variational principle for the Cosserat

plate.

Theorem 1. Let A denote the set of all admissible states that satisfy the Cosserat

plate strain-displacement relations (2.56) - (2.62) and let Θ be a HPR functional on

A defined by

Θ(s, η) = US
K(η)−

∫

P0

(S · E − P · W + vΩ0
3)da

+

∫

Γσ

So· (U − U o) ds+

∫

Γu

Sn·U ds, (2.63)

for every s = [U ,E ,S ] ∈ A . Here P = (p̂1, p̂2) and W = (W,W ∗).

The optimization

δΘ(s, η) = 0

is equivalent to the following [37]:

A. The equilibrium system of equations for the plate bending

Mαβ,α −Qβ = 0, (2.64)

Q∗
α,α + p̂1 = 0, (2.65)

Rαβ,α + ε3βγ
(
Q∗

γ −Qγ

)
= 0, (2.66)

ε3βγMβγ + S∗
α,α = 0, (2.67)

Q̂α,α + p̂2 = 0, (2.68)

R∗
αβ,α + ε3βγQ̂γ = 0, (2.69)

where p̂1 = ηp, p̂2 = 2
3
(1− η) p and η is the splitting parameter, with the resultant

traction boundary conditions :
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2.5. COSSERAT PLATE HPR PRINCIPLE

Mαβnβ = Πoα, Rαβnβ = Moα, (2.70)

Q∗
αnα = Πo3, S∗

αnα = Υo3, (2.71)

at the part Γσ and he resultant displacement boundary conditions

Ψα = Ψoα, W = Wo, Ω0
α = Ω0

oα, Ω3 = Ωo3, (2.72)

at the part Γu.

B. The zero variation of the stress energy with respect to the splitting parameter

δUS
K(η) = 0;

C: The constitutive formulas:

eαα =
∂Φ

∂Mαα

=
12(λ+ µ)

h3µ(3λ+ 2µ)
Mαα −

|εαβ3|
6λ

h3µ(3λ+ 2µ)
Mββ −

λ (3p1 + 5p2)

5hµ(3λ+ 2µ)
, (2.73)

eαβ =
∂Φ

∂Mαβ

=
3(α + µ)

h3αµ
Mαβ +

3(α− µ)

h3αµ
Mβα, α 6= β (2.74)

ωα =
∂Φ

∂Qα

=
3(α− µ)

10hαµ
Q∗

α +
3(α + µ)

10hαµ
Qα +

3(α− µ)

8hαµ
Q̂α, (2.75)

ω∗
α =

∂Φ

∂Q∗
α

=
3(α− µ)

10hαµ
Qα +

3(α + µ)

10hαµ
Q∗

α +
3(α + µ)

8hαµ
Q̂α, (2.76)
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2.5. COSSERAT PLATE HPR PRINCIPLE

τ 0αα =
∂Φ

∂Rαα

=
6(β + γ)

5hγ(3β + 2γ)
Rαα − |εαβ3|

3β

5hγ(3β + 2γ)
R∗

ββ

+
3(β + γ)

2hγ(3β + 2γ)
R∗

αα − |εαβ3|
3β

4hγ(3β + 2γ)
Rββ, (2.77)

τ 0αβ =
∂Φ

∂Rβα

=
3(ǫ+ γ)

10hγǫ
Rαβ −

3(γ − ǫ)

10hγǫ
Rβα

+
3(ǫ+ γ)

8hγǫ
R∗

αβ −
3(γ − ǫ)

8hγǫ
R∗

βα, α 6= β (2.78)

ω̂∗
α =

∂Φ

∂Q̂α

=
3(α− µ)

8hαµ
Qα +

3(α + µ)

8hαµ
Q∗

α +
9(α + µ)

16hαµ
Q̂α, (2.79)

τ ∗αα =
∂Φ

∂R∗
αα

=
3(β + γ)

2hγ(3β + 2γ)
Rαα − |εαβ3|

9β

8hγ(3β + 2γ)
R∗

ββ

+
3(β + γ)

4hγ(3β + 2γ)
R∗

αα |εαβ3|
3β

4hγ(3β + 2γ)
Rββ, (2.80)

τ ∗αβ =
∂Φ

∂R∗
αβ

=
3(ǫ+ γ)

8hγǫ
Rαβ −

3(γ − ǫ)

8hγǫ
Rβα

+
3(ǫ+ γ)

16hγǫ
R∗

αβ −
3(γ − ǫ)

16hγǫ
R∗

βα, α 6= β (2.81)

τ3α =
∂Φ

∂S∗
α

=
3(γ + ǫ)

h3γǫ
S∗
α. (2.82)

Proof 1. The variation of Θ(s)

δΘ(s) = δUS
K(η) +

∫

P0

{
(K [S ]− E ) · δS − S δE+pδW + vδΩ0

3

}
da

+

∫

Γσ

{δSo· (U − U o) + So·δU } ds+
∫

Γu

Sn·δU ds.
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We apply Green’s theorem and integration by parts for S and δU [61] to the

expression:

∫

P0

S · δE da =

∫

∂P0

Soδ·U ds−
∫

P0

{(Mαβ,α −Qβ) δΨβ +Q∗
α,αδW

+
(
Rαβ,α + ε3βγ

(
Q∗

γ −Qγ

)
Rαβ,α

)
δΩ0

β

+
(
S∗
α,α + ǫ3βγMβγ

)
δΩ3}da.

Then based on the fact that δU and δE satisfy the Cosserat plate strain-

displacement relation, we obtain

δΘ(s, η) = δUS
K(η) +

∫

P0

{(K [S ]− E ) · δS − S δE } da

+

∫

P0

{(Mαβ,α −Qβ) δΨβ +
(
Q∗

α,α + p̂1
)
δW +

(
Q̂α,α + p̂2

)
δW

+
(
Rαβ,α + ε3βγ

(
Q∗

γ −Qγ

)
Rαβ,α

)
δΩ0

β

+
(
R∗

αβ,α + ε3βγQ̂γ

)
δΩ0

β

+
(
S∗
α,α + ǫ3βγMβγ

)
δΩ3}da

+

∫

Γσ

δSo· (U − U o) ds+

∫

Γu

(So − Sn)·δU ds.

If s is a solution of the mixed problem, then

δΘ(s, η) = 0.

On the other hand, some extensions of the fundamental lemma of calculus of

variations [61] together with the fact that U and E satisfy the Cosserat plate strain-

displacement relations (2.56) - (2.62) imply that S is a solution of the A and B

mixed problems. �

Remark. The above equilibrium equations and boundary conditions for the

Cosserat plate can also be obtained by substituting polynomial approximations of
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stress and couple stress directly to the elastic equilibrium (2.1) - (2.2) and the

boundary conditions (2.20) - (2.23) and collecting and equating to zero all coefficients

of the resulting polynomials with respect to variable x3.

The constitutive formulas can also be given in the following reverse form1

Mαα =
h3µ(λ+ µ)

3(λ+ 2µ)
Ψα,α +

λµh3

6(λ+ 2µ)
Ψβ,β +

(3p1 + 5p2)λh
2

30(λ+ 2µ)
, (2.83)

Mβα =
(µ− α)h3

12
Ψα,β +

h3(α + µ)

12
Ψβ,α + (−1)β

αh3

6
Ω3, (2.84)

Rβα =
5 (γ − ǫ)h

6
Ω0

β,α +
5h (γ + ǫ)

6
Ω0

α,β, (2.85)

Rαα =
10hγ (β + γ)

3 (β + 2γ)
Ω0

α,α +
5hβγ

3(β + 2γ)
Ω0

β,β, (2.86)

R∗
βα =

2 (γ − ǫ)h

3
Ω̂β,α +

2 (γ + ǫ)h

3
Ω̂α,β, (2.87)

R∗
αα =

8γ (γ + β)h

3(β + 2γ)
Ω̂α,α +

4γβh

3(β + 2γ)
Ω̂β,β, (2.88)

Qα =
5h(α + µ)

6
Ψα +

5 (µ− α)h

6
W,α +

2 (µ− α)h

3
W ∗

,α

+(−1)β
5hα

3

(
Ω0

β + Ω̂β

)
, (2.89)

Q∗
α =

5 (µ− α)h

6
Ψα +

5 (µ− α)2 h

6 (µ+ α)
W,α +

2 (µ+ α)h

3
W ∗

,α

+(−1)α
5hα

3

(
Ω0

β +
(µ− α)

(µ+ α)
Ω̂β

)
, (2.90)

Q̂α =
8αµh

3 (µ+ α)
W,α + (−1)α

8αµh

3 (µ+ α)
Ω̂β, (2.91)

S∗
α =

5γǫh3

3 (γ + ǫ)
Ω3,α. (2.92)

1 In the following formulas a subindex β = 1 iff α = 2 and β = 2 iff α = 1
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2.6 Solution Uniqueness

Here we prove that if there is a solution for the deformation of a Cosserat elastic

plate, which satisfies the equilibrium equations (2.64) - (2.69), constitutive (2.73)

- (2.82), and kinematics formulas (2.56) - (2.62) with boundary conditions (2.70),

(2.71) at Γσ and (2.72) at Γu then this elastic solution must be unique. We also

assume that all functions and the plate middle plane region P0 satisfy Green - Gauss

theorem requirements.

We present a proof by contradiction. Let us assume that the solution of the

Cosserat plate is not unique in terms of the stresses and strains, i.e. there would be

two different solutions of (2.64) - (2.69), both of which satisfy the same boundary

conditions (2.70), (2.71) at Γσ and (2.72) at Γu. Due to linearity of the proposed

model, the difference between these two different solutions is also a solution of the

same system of equations with the following zero boundary conditions:

Mαβnβ = 0, Rαβnβ = 0, (2.93)

R∗
αβnβ = 0, Q̂αnα = 0, (2.94)

Q∗
αnα = 0, S∗

αnα = 0, (2.95)

It can be shown that for zero loads, the internal work U can be expressed by

applying integration by parts as follows:

U =

∫

P0

S · E da =

∫

P0

((M̌αβΨα + Q̌∗
βW + Q̌ˆ

βW
∗

+ŘαβΩ
0
α + Ř∗

αβΩ̂
0
α + Š∗

βΩ3 + ŇαβUα + M̌∗
βΩ

0
3),β

− (Mαβ,α −Qβ)Ψβ −Q∗
α,αW − Q̂α,αW

∗

−
(
Rαβ,α + ε3βγ

(
Q∗

γ −Qγ

)
Rαβ,α

)
Ω0

β

−(R∗
αβ,α + ε3βγQ̂γ)Ω̂

0
α

−
(
S∗
α,α + ǫ3βγMβγ

)
Ω3)da.
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Taking into account Green’s theorem, the equilibrium equations (2.64) - (2.69),

the upper expression is reduced to the following line integral:

U =

∮

Γ

Sn·U ds =

∮

Γ

(M̌αβαβΨα + Q̌∗
βW + Q̌ˆ

βW
∗

+ŘαβΩ
0
α + Ř∗

αβΩ̂
0
α + Š∗

βΩ3)ds = 0, (2.96)

which vanishes because of the zero boundary conditions (2.93) - (2.95).

Using the constitutive equations in the reversible form (2.83) - (2.92), the posi-

tive definite quadratic form strain energy density (2.42) can be represented in terms

of the Cosserat plate strain set E , which components in this case should be zeros.

Thus the difference between any two deformations and microrotations of the plate,

having the same boundary conditions, represents changes of the plate as a rigid

body. So the solutions are identical in terms of stress and strain components. This

contradiction completes the proof of uniqueness.

2.7 Cosserat Plate Field Equations

In order to obtain the micropolar plate bending field equations in terms of

the kinematic variables, we substitute the constitutive formulas in the reverse form

(2.83) - (2.92) into the bending system of equations (2.64) - (2.69). The micropolar

plate bending field equations can be written in the following form [46]:

LU = f (η) (2.97)
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where

L =




L11 L12 L13 L14 0 L16 k1L13 0 L16

L12 L22 L23 L24 L16 0 k1L23 L16 0

−L13 −L23 L33 0 L35 L36 k1L77 L38 L39

L41 L42 0 L44 0 0 0 0 0

0 −L16 −L38 0 L55 L56 −k1L35 L58 0

L16 0 −L39 0 L56 L66 −k1L36 0 L58

−L13 −L14 L73 0 L35 L36 k1L77 L78 L79

0 −L16 −L78 0 L85 L56 −k1L35 k1L88 k1L56

L16 0 −L79 0 L56 L55 −k1L36 k1L56 k1L99




,

U =

[
Ψ1, Ψ2, W, Ω3, Ω0

1, Ω0
2, W ∗, Ω0

1, Ω0
2

]T
,

f (η) =

[
−h2λ(3p1,1+5p2,1)

30(λ+2µ)
, −h2λ(3p1,2+5p2,2)

30(λ+2µ)
, −p1, 0, 0, 0, h2(3p1+4p2)

24
, 0, 0

]T
.

(2.98)

The operators Lij are defined as follows L11 = c1
∂2

∂x2
1
+ c2

∂2

∂x2
2
− c3, L12 =

(c1 − c2)
∂2

∂x1x2
, L13 = c11

∂
∂x1

, L14 = c12
∂

∂x2
, L16 = c13, L17 = k1c11

∂
∂x1

, L22 = c2
∂2

∂x2
1
+

c1
∂2

∂x2
2
− c3, L23 = c11

∂
∂x2

, L24 = −c12
∂

∂x1
, L33 = c3(

∂2

∂x2
1
+ ∂2

∂x2
2
), L35 = −c13

∂
∂x2

, L36 =

c13
∂

∂x1
, L38 = −c10

∂
∂x2

, L39 = c10
∂

∂x1
, L41 = −c12

∂
∂x2

, L42 = c12
∂

∂x1
, L44 = c6

(
∂2

∂x2
1
+ ∂2

∂x2
2

)
−

2c12, L55 = c7
∂2

∂x2
1
+c8

∂2

∂x2
2
−2c13, L56 = (c7−c8)

∂2

∂x1x2
, L58 = −c9, L66 = c8

∂2

∂x2
1
+c7

∂2

∂x2
2
−

2c13, L73 = c5(
∂2

∂x2
1
+ ∂2

∂x2
2
), L77 = c4(

∂2

∂x2
1
+ ∂2

∂x2
2
), L78 = −c14

∂
∂x2

, L79 = c14
∂

∂x1
, L85 =

c7
∂2

∂x2
1
+ c8

∂2

∂x2
2
− 2c13, L88 = c7

∂2

∂x2
1
+ c8

∂2

∂x2
2
− c15, L99 = c8

∂2

∂x2
1
+ c7

∂2

∂x2
2
− c15
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where

c1 =
h3µ(λ+ µ)

3(λ+ 2µ)
, c2 =

h3(α + µ)

12
, c3 =

5h(α + µ)

6
, c4 =

5h(α− µ)2

6(α + µ)
,

c5 =
h(5α2 + 6αµ+ 5µ2)

6(α + µ)
, c6 =

h3γǫ

3(γ + ǫ)
, c7 =

10hγ (β + γ)

3 (β + 2γ)
,

c8 =
5h (γ + ǫ)

6
c9 =

10hα2

3(α + µ)
, c10 =

5hα(α− µ)

3(α + µ)
, c11 =

5h(α− µ)

6
,

c12 =
h3α

6
, c13 =

5hα

3
, c14 =

hα(5α + 3µ)

3(α + µ)
, c15 =

2hα(5α + 4µ)

3(α + µ)
.

The parametric system (2.97) is an elliptic order two system of nine partial

differential equations, where L is a linear differential operator acting on the set of

kinematic variables U .

The ellipticity of the operator L follows from the invertibility of its principle

symbol L(ξ) for all ξ 6= 0 (ξ ∈ R
2) [62] and since

detL (ξ) =
256αµ

375(α + µ)
c1c2c3c6c

2
7 |ξ|2

the operator L is elliptic for positive elastic constants.

2.8 Optimal Value of the Splitting Parameter

The equlibrium systems of partial differential equations correspond to a state

of the system (2.97) where the minimum of the energy is reached. The optimization

of the splitting parameter appears as a result of the Generalized Hellinger-Prange-

Reissner (HPR) principle for the Cosserat elastic plate (2.63). The bending system of

equations depends on the splitting parameter and therefore its solution is parametric.

The minimization procedure for the elastic energy allows us to find the optimal value

of this parameter, which corresponds to the unique solution of the bending problem

[46].
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2.8. OPTIMAL VALUE OF THE SPLITTING PARAMETER

Let us find an explicit expression for the optimal value of the splitting parameter

η that minimizes the micropolar plate stress energy density. Taking advantage of

the linearity of the system (2.97) we consider two cases:

LU0 = f (0) , (2.99)

LU1 = f (1) , (2.100)

where U0 is a solution of the bending system of equations (2.97) when η = 0, and

U1 when η = 1.

Let us define Uη as a linear combination of U0 and U1:

Uη = (1− η)U0 + ηU1 (2.101)

Notice that since p1(x1, x2) = ηp(x1, x2) and p2(x1, x2) =
(1−η)

2
p(x1, x2)

f (η) = (1− η) f (0) + ηf (1)

and therefore due to the linearity of system (2.97)

LUη = L ((1− η)U0 + ηU1) = (1− η)LU0 + ηLU1 =

= (1− η) f (0) + ηf (1) = f (η)

The set of kinematic variables Uη defined as (2.101) is a solution of the microp-

olar plate bending system of equations (2.97).

The optimal value of the splitting parameter η is a minimizer of the density of

the work W (η) done by the stress and couple stress over the micropolar strain field.

Let us obtain an explicit expression for the optimal value of the parameter η.

Let us represent each component of the stress set S (η) and strain set E (η) as

a linear combinations of the stress sets S (0) and S (1), and the strain sets E (0) and
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E (1) respectively:

S
(η) = (1− η)S

(0) + ηS (1)

E
(η) = (1− η)E

(0) + ηE (1)

Therefore

W
(η) = S

(η) · E (η) =
(
(1− η)S

(0) + ηS (1)
)
·
(
(1− η)E

(0) + ηE (1)
)

The zero of the derivation ∂W (η)

∂η
gives the optimal value η0 of the splitting

parameter η [46]:

∂W (η)

∂η
=

(
−S

(0) + S
(1)
)
·
(
(1− η)E

(0) + ηE (1)
)
+
(
(1− η)S

(0) + ηS (1)
)
·
(
E

(1) − E
(0)
)

and the optimal value

η0 =
2W (00) − W (10) − W (01)

2 (W (11) + W (00) − W (10) − W (01))
, (2.102)

where

W
(00) = S

(0)·E (0) (2.103)

W
(01) = S

(0)·E (1) (2.104)

W
(10) = S

(1)·E (0) (2.105)

W
(11) = S

(1)·E (1) (2.106)

This result allow us to use in our numerical modeling the following effective

algorithm for the optimal value of the splitting parameter η, which will be used for

the plates of different shapes in Chapters 3 and 4.

Algorithm 1. Optimal Value of the Splitting Parameter

1. Solve the systems (2.99) and (2.100) for U0 and U1 respectively.
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2. Calculate the components of the micropolar plate stress sets S (0) and S (1)

from the sets of kinematic variables U0 and U1, using the constitutive formulas in

the reverse form (2.83) - (2.92).

3. Calculate the components of the micropolar plate strain sets E (0) and E (1)

from the sets of kinematic variables U0 and U1, using the strain-displacement rela-

tions (2.56) - (2.62).

4. Find the work densities W (00), W (11), W (10) and W (01) by substituting the

micropolar plate stress and strain sets S (0), S (1), E (0) and E (1) into the definitions

(2.103) - (2.106).

5. Substitute the values of the work densities W (00), W (11), W (10) and W (01)

into the expression for the optimal value of the splitting parameter η0 (4.19).

The above algorithm can be efficiently used to find the solution of the system

of equations (2.97). Indeed, once the optimal value of the splitting parameter η0

is found, the solution Uη0 of the bending system of equations (2.97) is found from

(2.101) as a linear combination of the sets of kinematic variables U0 and U1:

Uη0 = (1− η0)U0 + η0U1 (2.107)
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Chapter 3

Validation of the Mathematical
Model for Cosserat Elastic Plates

3.1 Scope of the Chapter

In this chapter we present the validation of the proposed mathematical model

for Cosserat elastic plates. We provide the three-dimensional analytical solution

for the simply supported Cosserat square plate and compare it with the analytical

solution based on the mathematical model for Cosserat elastic plates. We present

the numerical comparison of the displacements, microrotations, stresses and couple

stresses. We also provide the numerical results of the minimization of the total plate

energy with respect to the splitting parameter η. The comparison between Cosserat

and classical elasticity plates and the convergence of the solution of the proposed

mathematical model to the corresponding Reissner solution, and such important

feature of the Cosserat plate theory as size effect are also discussed.
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3.2. THREE-DIMENSIONAL ANALYTICAL SOLUTION

3.2 Three-Dimensional Analytical Solution for Cosserat Elas-

tic Square Plate

Let us consider the plate B0 being a rectangular cuboid [0, a]× [0, a]× [−h
2
, h
2
].

Let the sets T and B be the top and the bottom surfaces contained in the planes

x3 =
h
2
and x3 = −h

2
respectively, and the curve Γ = Γ1 ∪ Γ2 be the lateral part of

the boundary:

Γ1 =

{
(x1, x2, x3) : x1 ∈ {0, a} , x2 ∈ [0, a] , x3 ∈

[
−h

2
,
h

2

]}
,

Γ2 =

{
(x1, x2, x3) : x1 ∈ [0, a] , x2 ∈ {0, a} , x3 ∈

[
−h

2
,
h

2

]}
,

We solve the three-dimensional Cosserat equilibrium equations without body

forces and body moments (2.1) - (2.2) accompanied by the constitutive equations

(2.5) - (2.6) and strain-displacement and torsion-rotation relations (2.3) - (2.4) com-

plemented by the following boundary conditions:

Γ1 : u2 = 0, u3 = 0, ϕ1 = 0, (3.1)

Γ1 : σ11 = 0, µ12 = 0, µ13 = 0; (3.2)

Γ2 : u1 = 0, u3 = 0, ϕ2 = 0, (3.3)

Γ2 : σ22 = 0, µ21 = 0, µ23 = 0; (3.4)

T : σ33 = p (x1, x2) , µ33 = 0; (3.5)

B : σ33 = 0, µ33 = 0. (3.6)

where the initial distribution of the pressure is given as

p (x1, x2) = sin
(πx1

a

)
sin

(πx2

a

)
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Using the method of separation of variables and taking into account the bound-

ary conditions (3.1) - (3.4), we express the kinematic variables in the form:

u1 = cos
(πx1

a

)
sin

(πx2

a

)
z1 (x3) , (3.7)

u2 = sin
(πx1

a

)
cos

(πx2

a

)
z1 (x3) , (3.8)

u3 = sin
(πx1

a

)
sin

(πx2

a

)
z2 (x3) , (3.9)

ϕ1 = sin
(πx1

a

)
cos

(πx2

a

)
z3 (x3) , (3.10)

ϕ2 = − cos
(πx1

a

)
sin

(πx2

a

)
z3 (x3) (3.11)

ϕ3 = 0, (3.12)

where the functions z1 (x3), z2 (x3) and z3 (x3) represent the transverse variations of

the kinematic variables.

If we substitute the expressions (3.7) - (3.12) into (2.3) - (2.4) and then into

(2.5) - (2.6) and (2.1) - (2.2) we will obtain the following second order linear system

of three ordinary differential equations in terms of z1, z2 and z3:

a2 (µ+ α) z′′1 + a (µ− α + λ) z′2 + 2a2αz′3 − 2π2 (λ+ 2µ) z1 = 0 (3.13)

a2 (λ+ 2µ) z′′2 − 2aπ (µ− α + λ) z′1 − 2π (µ+ α) z2 + 4aπz3 = 0 (3.14)

a2 (ǫ+ γ) z′′3 − 2a2αz′1 + 2aαπz2 − 2
(
2a2α + (ǫ+ γ) π2

)
z3 = 0 (3.15)

complemented by the boundary conditions

x3 =
h

2
: a (µ+ α) z′1 + (µ− α) πz2 = 0,

a (λ+ 2µ) z′2 − 2πλz1 = a,

z3 = 0;

x3 = −h

2
: a (µ+ α) z′1 + (µ− α) πz2 = 0,

a (λ+ 2µ) z′2 − 2πλz1 = 0,

z3 = 0,

41



3.2. THREE-DIMENSIONAL ANALYTICAL SOLUTION

Now let us make the following substitution:

κ1 (x3) = z1 (x3)

κ2 (x3) = z2 (x3)

κ3 (x3) = z3 (x3)

κ4 (x3) = z′1 (x3)

κ5 (x3) = z′2 (x3)

κ6 (x3) = z′3 (x3)

The system of equations (3.13) - (3.15) can be therefore rewritten as a first

order linear system of six ordinary differential equations in terms of κi (i = 1, ..., 6):

κ̂′ (x3) = K · κ̂ (x3) (3.16)

or equivalently in the matrix form:




κ′
1

κ′
2

κ′
3

κ′
4

κ′
5

κ′
6




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

K41 0 0 0 K45 K46

0 K52 K53 K54 0 0

0 K62 K63 K64 0 0







κ1

κ2

κ3

κ4

κ5

κ6




where K41 = 2π2(λ+2µ)
a2(α+µ)

, K45 = π(α−λ−µ)
a(α+µ)

, K46 = − 2a
(α+µ)

, K52 = 2π2(α+µ)
a2(λ+2µ)

, K53 =

− 4πα
a(λ+2µ)

, K54 =
2π(−α+λ+µ)

a(λ+2µ)
, K62 = − 2πα

a(γ+ǫ)
, K63 =

2(2a2α+π2(γ+ǫ))
a2(γ+ǫ)

, K64 =
2α
γ+ǫ

.

The system is complemented by the boundary conditions at x3 = ±h
2
:

a (µ+ α)κ4 + (µ− α) πκ2 = 0, (3.17)

a (λ+ 2µ)κ5 − 2πλκ1 = a, (3.18)

κ3 = 0; (3.19)
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3.2. THREE-DIMENSIONAL ANALYTICAL SOLUTION

The general solution of the system of six ordinary differential equations given

above is found as

κ̂ (x3) = cie
rix3θ̂T

i , (3.20)

where ri are the eigenvalues of the matrixK, θi are the corresponding eigenvectors of

the matrix K and ci are some constants that can be determined from the boundary

conditions (3.17) - (3.19). Note that since zi = κi for (i = 1, 2, 3), therefore the

general solution for the variables zi is also of the form (3.20) (see [63], [64] for

details).

The eigenvalues ri of the matrix K are given as

r1 = −
√
2π

a
,

r2 =

√
2π

a
,

r3 = −
√

4αµ

(γ + ǫ)(α + µ)
+

2π2

a2
,

r4 =

√
4αµ

(γ + ǫ)(α + µ)
+

2π2

a2
.

The corresponding eigenvectors θi of the matrix K are given as

θ1 =

[
a

2π
,− a√

2π
, 0,− 1√

2
, 1, 0

]
,

θ2 =

[
a

2π
,

a√
2π

, 0,
1√
2
, 1, 0

]
,

θ3 =

[
−γ + ǫ

2µ
,
π(γ + ǫ)

aµr4
,− 1

r4
,
(γ + ǫ)r4

µ
,−π(γ + ǫ)

aµ
, 1

]
,

θ4 =

[
−γ + ǫ

2µ
,−π(γ + ǫ)

aµr4
,
1

r4
,−(γ + ǫ)r4

µ
,−π(γ + ǫ)

aµ
, 1

]
,

We will provide the numerical values of the variables zj (j = 1, 2, 3) for the

square plate made of polyurethane foam in the comparison section.
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3.3 Analytical Solution for Cosserat Elastic Square Plate

Based on the Proposed Mathematical Model

The body B0 can viewed as a square plate of size [0, a]× [0, a], having thickness

h and x3 = 0 containing its middle plane (see Figure 3–1). The boundary G =

G1 ∪G2 ∪G3 ∪G4 is given by

G1 = {(x1, x2) : x1 = 0, x2 ∈ [0, a]} ,

G2 = {(x1, x2) : x1 = a, x2 ∈ [0, a]} ,

G3 = {(x1, x2) : x1 ∈ [0, a] , x2 = 0} ,

G4 = {(x1, x2) : x1 ∈ [0, a] , x2 = a} ,

Let us consider the following hard simply supported boundary conditions similar

to [65] and [66]:

W = 0,W ∗ = 0,Ψ · ŝ = 0, n̂ ·Mn̂ = 0, ŝ ·Rn̂ = 0, (3.21)

ŝ ·R∗n̂ = 0,S∗ · n̂ = 0, Q̂ · ŝ = 0,Q∗ · ŝ = 0, (3.22)

where n̂ and ŝ are the normal and the tangent vectors to the boundary G.

The initial distribution of the pressure is sinusoidal and given as

p (x1, x2) = sin
(πx1

a

)
sin

(πx2

a

)

Let us rewrite the boundary conditions (3.21) - (3.22) in terms of the kinematic

variables. Let us show how it can be done for one part of the boundary, for example

G2. The other parts of the boundary can be analyzed in a similar manner.
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a

a

0

s
n

x1

x2

G3

G2
G1

G4

Figure 3–1: Square plate of size [0, a]× [0, a] (top view)

The normal and tangent vectors to G2 are n̂ = 〈1, 0〉 and ŝ = 〈0, 1〉 respectively.

Note that the boundary conditions W = 0 and W ∗ = 0 are already written in terms

of the kinematic variables and therefore

W = 0 on G2

W ∗ = 0 on G2

The boundary condition Ψ · ŝ = 0 implies Ψ · 〈0, 1〉 = 0 and therefore:

Ψ2 = 0 on G2

The boundary condition S∗ · n̂ = 0 implies S∗ · 〈1, 0〉 = 0 and therefore:

S∗
1 = 0
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From the constitutive formulas in the reverse form (2.92) S∗
1 = 0 is equivalent

to

Ω3,1 = 0 on G2

The boundary condition n̂ ·Mn̂ = 0 implies 〈1, 0〉 ·M 〈1, 0〉T = 0 and therefore:

M11 = 0

From the constitutive formulas in the reverse form (2.83) M11 = 0 is equivalent

to

h3µ(λ+ µ)

3(λ+ 2µ)
Ψ1,1 +

λµh3

6(λ+ 2µ)
Ψ2,2 +

(3p1 + 5p2)λh
2

30(λ+ 2µ)
= 0

Note that p(x1, x2) is zero on the boundary and that p1(x1, x2) = ηp(x1, x2) and

therefore so are p2(x1, x2) =
(1−η)

2
p(x1, x2) and thus

(3p1 + 5p2)λh
2

30(λ+ 2µ)
= 0

and since Ψ2 = 0 and then Ψ2,2 = 0 we have that M11 = 0 is equivalent to

Ψ1,1 = 0 on G2

The boundary condition Q̂ · ŝ = 0 implies Q̂ · 〈0, 1〉 = 0 and therefore:

Q̂2 = 0

From the constitutive formulas in the reverse form (2.91) Q̂2 = 0 is equivalent

to

8αµh

3 (µ+ α)
W,2 + (−1)2

8αµh

3 (µ+ α)
Ω̂1 = 0

and since W = 0 and then also W,2 = 0, we have that Q̂2 = 0 is equivalent to

Ω̂1 = 0 on G2
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The boundary condition ŝ ·R∗n̂ = 0, implies 〈0, 1〉·R∗ 〈1, 0〉T = 0 and therefore:

R∗
21 = 0

From the constitutive formulas in the reverse form (2.87) R̂21 = 0 is equivalent

to

2 (γ − ǫ)h

3
Ω̂2,1 +

2 (γ + ǫ)h

3
Ω̂1,2 = 0

and since Ω̂1 = 0 and then also Ω̂1,2 = 0, we have that R∗
21 = 0 is equivalent to

Ω̂2,1 = 0 on G2

The boundary condition Q∗ · ŝ = 0 implies Q∗ · 〈0, 1〉 = 0 and therefore:

Q∗
2 = 0

From the constitutive formulas in the reverse form (2.90) Q∗
2 = 0 is equivalent

to

5 (µ− α)h

6
Ψ2 +

5 (µ− α)2 h

6 (µ+ α)
W,2 +

2 (µ+ α)h

3
W ∗

,2

+ (−1)α
5hα

3

(
Ω0

1 +
(µ− α)

(µ+ α)
Ω̂1

)
= 0

and since Ψ2 = 0, W,2 = 0, W ∗
,2 = 0 and Ω̂1 = 0 we have that Q∗

2 = 0 is equivalent

to

Ω0
1 = 0 on G2

The boundary condition ŝ ·Rn̂ = 0, implies 〈0, 1〉 ·R 〈1, 0〉T = 0 and therefore:

R21 = 0

From the constitutive formulas in the reverse form (2.85) R21 = 0 is equivalent

to

5 (γ − ǫ)h

6
Ω0

2,1 +
5h (γ + ǫ)

6
Ω0

1,2 = 0
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and since Ω0
1 = 0 and then Ω0

1,2 = 0 we have that R21 = 0 is equivalent to

Ω0
2,1 = 0 on G2

The analysis of other parts of the boundary is similar to the one provided

above. The hard simply supported boundary conditions therefore can be written in

the mixed Dirichlet-Neumann form:

G1 ∪G2 : W = 0, W ∗ = 0, Ψ2 = 0, Ω0
1 = 0, Ω̂0

1 = 0,

∂Ω3

∂n
= 0,

∂Ψ1

∂n
= 0,

∂Ω0
2

∂n
= 0,

∂Ω̂0
2

∂n
= 0; (3.23)

G3 ∪G4 : W = 0, W ∗ = 0, Ψ1 = 0, Ω0
2 = 0, , Ω̂0

2 = 0

∂Ω3

∂n
= 0,

∂Ψ2

∂n
= 0,

∂Ω0
1

∂n
= 0,

∂Ω̂0
1

∂n
= 0. (3.24)

We solve the two-dimensional bending equilibrium system of equations (2.97)

by applying the method of separation of variables similar to how it was performed

in detail in [44]. Taking into account the boundary conditions (3.23) - (3.24) we

obtain the kinematic variables in the following form:

Ψ1 = A1 cos
(πx1

a

)
sin

(πx2

a

)
, (3.25)

Ψ2 = A2 sin
(πx1

a

)
cos

(πx2

a

)
, (3.26)

W = A3 sin
(πx1

a

)
sin

(πx2

a

)
, (3.27)

Ω3 = A4 cos
(πx1

a

)
cos

(πx2

a

)
, (3.28)

Ω0
1 = A5 sin

(πx1

a

)
cos

(πx2

a

)
, (3.29)

Ω0
2 = A6 cos

(πx1

a

)
sin

(πx2

a

)
, (3.30)

W ∗ = A7 sin
(πx1

a

)
sin

(πx2

a

)
, (3.31)

Ω̂0
1 = A8 sin

(πx1

a

)
cos

(πx2

a

)
, (3.32)

Ω̂0
2 = A9 cos

(πx1

a

)
sin

(πx2

a

)
. (3.33)

where Ai ∈ R are some constants.
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We find Ai by substituting the expressions (3.25) - (3.33) into the system of

equations (2.97) and solving the obtained system of 9 linear equations for Ai.

Note that since the right-hand side of the system of equations (2.97) depends

on the splitting parameter η therefore Ai will also in general depend on the splitting

parameter η (i = 1, ..., 9). The numerical values for Ai correspond to the optimal

value of the splitting parameter η, which minimizes the free stress energy (2.16).

We obtain its value by applying the algorithm for the optimal value of the splitting

parameter described in the Chapter 3. We find the solution for the two-dimensional

problem by solving the field equations (2.97) for η = 0 and η = 1 and then calculate

the optimal solution as their linear combination (2.107). We will provide the nu-

merical values of the kinematic variables for the square plate made of polyurethane

foam in the comparison section.

3.4 Comparison of the Analytical Solutions

In this section we provide the results of the validation of the proposed mathe-

matical model. The validation is given for the case of square Cosserat elastic plate,

which is compared to the analytical solution of the three-dimensional Cosserat Elas-

ticity.

In our calculations we will use the following technical parameters: the Young’s

modulus E, the Poisson’s ratio ν, the characteristic length for bending lb, the char-

acteristic length for torsion lt and the coupling number N .
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The conversion formulas between the technical constants and elastic parameters

are given as in [12]

E =
µ(3λ+ 2µ)

λ+ µ
,

ν =
λ

2(λ+ µ)
,

lb =
1

2

√
γ + ǫ

µ
,

lt =

√
γ

µ
,

N =

√
α

µ+ α
,

and imply the following inverse conversion formulas

λ =
Eν

2ν2 + ν − 1
,

µ =
E

2 (ν + 1)
,

α =
EN2

2 (ν + 1) (N2 − 1)
,

β =
Elt

2 (ν + 1)
,

γ =
El2t

2 (ν + 1)
,

ǫ =
E (4l2b − l2t )

2 (ν + 1)
.

In our computations we consider plates made of polyurethane foam – a material

reported in the literature to be Cosserat and the values of the technical elastic
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parameters are presented in [16]:

E = 299.5 MPa,

ν = 0.44,

lt = 0.62 mm,

lb = 0.327,

N2 = 0.04.

Taking into account that the ratio β/γ is equal to 1 for bending [16], these

values of the technical constants correspond to the following values of Lamé and

asymmetric parameters:

λ = 762.616 MPa,

µ = 103.993 MPa,

α = 4.333 MPa,

β = 39.975 MPa,

γ = 39.975 MPa,

ǫ = 4.505 MPa,

Since the typical thickness to width ratio of a plate structure is less than 0.1,

we will consider the thickness of the plate h = 0.1m and the ratio a/h varying from

10 to 30.

We provide the numerical values for the kinematic variables obtained by solv-

ing the proposed two-dimensional Cosserat plate bending problem and the three-

dimensional Cosserat Elasticity for a plate made of polyurethane foam. Because

of the symmetry of the square plate the values of the displacements u1 and u2 are

identical, and the absolute values of the microrotations ϕ1 and ϕ2 are identical. Ta-

bles 3–1, 3–2 and 3–3 represents the numerical comparisons of the maximum values
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3.4. COMPARISON OF THE ANALYTICAL SOLUTIONS

Table 3–1: Comparison of the Maximum Vertical Deflection u3 of the Polyurethane Foam Square
Plate

a/h 10 15 20 25 30

Optimal value of η 0.238315 0.128047 0.079566 0.054878 0.040799

Cosserat Plate Model (m) 0.023630 0.062281 0.120595 0.201153 0.307674

Cosserat 3D Elasticity (m) 0.023744 0.062428 0.120762 0.201336 0.307870

Relative Error (%) 0.47 0.23 0.13 0.09 0.06

Table 3–2: Comparison of the Maximum Microrotation ϕ1 of the Polyurethane Foam Square Plate

a/h 10 15 20 25 30

Optimal value of η 0.238315 0.128047 0.079566 0.054878 0.040799

Cosserat Plate Model 0.001336 0.005256 0.013236 0.026625 0.046770

Cosserat 3D Elasticity 0.001343 0.005268 0.013254 0.026649 0.046799

Relative Error (%) 0.48 0.23 0.14 0.09 0.06

of the main kinematic variables obtained by solving the proposed two-dimensional

Cosserat plate bending problem and the three-dimensional Cosserat Elasticity –

vertical deflection u3, microrotation ϕ1 and shear displacement u1 respectively.

The qualitative comparisons of the transverse variations of the displacement and

microrotation for the proposed model and the three-dimensional Cosserat Elasticity,

are given in the Figures 3–2 and 3–3, where the ratio a/h is equal to 30.
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3.4. COMPARISON OF THE ANALYTICAL SOLUTIONS

Table 3–3: Comparison of the Maximum Displacement u1 of the Polyurethane Foam Square Plate

a/h 10 15 20 25 30

Optimal value of η 0.238315 0.128047 0.079566 0.054878 0.040799

Cosserat Plate Model (m) 0.003192 0.005837 0.008615 0.011604 0.014892

Cosserat 3D Elasticity (m) 0.003063 0.005617 0.008305 0.011206 0.014407

Relative Error (%) 4.21 3.93 3.74 3.55 3.36
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Figure 3–2: The comparison of the transverse variation of the displacement components: solid line
- the proposed model, dashed line - three-dimensional Cosserat Elasticity (a/h = 30)
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Figure 3–3: The comparison of the transverse variation of the microrotation components: solid
line - the proposed model, dashed line - three-dimensional Cosserat Elasticity (a/h = 30)
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3.4. COMPARISON OF THE ANALYTICAL SOLUTIONS

The qualitative comparisons of the transverse variations of the stress and couple–

stress components for the proposed model and the three-dimensional Cosserat Elas-

ticity, are given in the Figures 3–4 and 3–5, where the ratio a/h is equal to 30.
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Figure 3–4: The comparison of the transverse variation of the stress components: solid line - the
proposed model, dashed line - three-dimensional Cosserat Elasticity (a/h = 30)
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Figure 3–5: The comparison of the transverse variation of the couple stress components: solid line
- the proposed model, dashed line - three-dimensional Cosserat Elasticity (a/h = 30)

The comparison of the numerical values of the kinematic variables for the square

plate made of dense polyurethane foam with the analytical solution of the three-

dimensional Cosserat elasticity confirms the high order of approximation of three-

dimensional (exact) solution. The relative error of order 1% for the maximum verti-

cal deflection is compatible with the precision of the Reissner plate theory [38] (see

Figure 3–6).
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Figure 3–6: Comparison of the vertical deflection for the square plate made of dense polyurethane
foam: analytical solution of the proposed plate theory WP and the analytical solution of the three-
dimensional Cosserat elasticity WE

The graph in Figure 3–7 represents the total plate energy depending on the

splitting parameter η. The figure shows the optimal value of η which minimizes the

plate stress energy and the relative error for the vertical deflection calculated using

three-dimensional Cosserat elasticity (a/h = 30 ).
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Figure 3–7: Elastic energy approximation (left) and the vertical deflection relative error (right)
depending on the values of the splitting parameter η (a/h = 10): Optimal value of the splitting
parameter corresponds to the minimum of the elastic energy (η = 0.25)
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3.4. COMPARISON OF THE ANALYTICAL SOLUTIONS

Figure 3–8 provides information for comparison between Cosserat and classical

elasticity. The energy of microrotation becomes a part of the total elastic energy.

This causes the redistribution of the elastic energy depending on the value of the

asymmetric part. We perform computations for different levels of the asymmetric

microstructure by reducing the values of the elastic asymmetric parameters. In

the case when 0.1% of real values of asymmetric parameters are used, i.e. the

microstructure is almost irrelevant, the solution of the proposed model converges to

the corresponding Reissner solution.

Figure 3–8 also illustrates such important feature of the Cosserat plate theory

as the size effect. The Cosserat elasticity predicts that plates of smaller thickness

will be more rigid than would be expected on the basis of the Reissner plate theory.

This can be clearly seen as the relative deflection declines with thickness of the

plate. Similar experimental behavior was reported in [16] for torsion and bending

of cylindrical Cosserat rods.
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Figure 3–8: Comparison of the vertical deflections of the Cosserat plate WM and Reissner plate
WR, which illustrates the influence of the microstructure of the Cosserat plate
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Chapter 4

Finite Element Computation of
Cosserat Elastic Plates

4.1 Scope of the Chapter

In this chapter we develop the Finite Element Method for Cosserat elastic plates

based on the calculation of the optimal value of the splitting parameter. We discuss

the existence and uniqueness of the weak solution and the convergence of the pro-

posed FEM. We present the Finite Element analysis of the clamped Cosserat plates

of different shapes under different loads. We also provide the numerical validation

of the proposed FEM by estimating the order of convergence, when comparing the

main kinematic variables with the analytical solution developed in the Chapter 3

for simply supported square plate.
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4.2 Formulation of the Clamped Cosserat Plate Bending

Problem

The field equations (2.97) can be represented as an elliptic system of nine partial

differential equations:

Lu = f (η) ,

where L is a linear differential operator acting on the vector of nine kinematic

variables u and f (η) is the right-hand side vector defined as (2.98), that in general

depends on η.

Let us consider the following hard clamped boundary conditions similar to [65]:

W = 0,W ∗ = 0,Ψ · ŝ = 0,Ψ · n̂ = 0,Ω3 = 0, (4.1)

Ω0 · ŝ = 0,Ω0 · n̂ = 0, Ω̂ · ŝ = 0, Ω̂ · n̂ = 0, (4.2)

where n̂ and ŝ are the normal and the tangent vectors to the boundary. These con-

ditions represent homogeneous Dirichlet type boundary conditions for the kinematic

variables:

W = 0, W ∗ = 0, Ψ1 = 0, Ψ2 = 0, Ω3 = 0, (4.3)

Ω̂0
1 = 0, Ω̂0

2 = 0, Ω̂0
1 = 0, Ω̂0

2 = 0. (4.4)

Clamped plate boundary conditions correspond to the boundary conditions

(2.9) for the three-dimensional Cosserat solid introduced in the Chapter 3.

4.3 Finite Element Algorithm for Cosserat Elastic Plates

The right-hand side of the system (4.2) depends on the splitting parameter

η and so does the solution. Therefore the solution of the Cosserat elastic plate

bending problem requires not only solving the system (2.97), but also an additonal
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4.3. FINITE ELEMENT ALGORITHM FOR COSSERAT ELASTIC PLATES

technique for the calculation of the value of the splitting parameter, that corresponds

to the unique solution. Considering that the elliptic systems of partial differential

equations correspond to a state where the minimum of the energy is reached, the

optimal value of the splitting parameter should minimize the elastic plate energy

(2.63) [67].

We propose the Finite Element Method for Cosserat elastic plates based on the

algorithm for the optimal value of the splitting parameter presented in the Chapter

3. This algorithm requires solving the system (2.97) for two different values of the

splitting parameter η, numerical calculation of stresses, strains and the correspond-

ing work densities.

The proposed Finite Element Method for Cosserat elastic plates consists of the

following phases:

1. Use classic Galerkin FEM to solve two elliptic systems:

Lu0 = f (0)

Lu1 = f (1)

for u0 and u1 respectively.

2. Calculate numerically the stress sets S (0) and S (1) from the solutions u0

and u1 respectively, using (2.83) - (2.92).

3. Calculate numerically the strain sets E (0) and E (1) from the solutions u0 and

u1 respectively, using (2.56) - (2.62).

4. Calculate numerically the work densities W (ij) as S (i) · E (j).

5. Calculate the optimal value of the splitting parameter η0 using (4.19).

6. Calculate the optimal solution uη0 of the Cosserat plate bending problem

from (2.107)
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4.4 Weak Formulation of the Clamped Cosserat Plate Bend-

ing Problem

Let us denote by L2 (B0) the standard space of square-integrable functions

defined everywhere on B0:

L2 (B0) =

{
v :

∫

B0

v2ds < ∞
}

and by H1 (B0) the Hilbert space of functions that are square-integrable together

with their first partial derivatives:

H1 (B0) =
{
v : v ∈ L2 (B0) , ∂iv ∈ L2 (B0)

}

Let us denote the Hilbert space of functions from H1 (B0) that vanish on the

boundary as in [68]:

H1
0 (B0) =

{
v ∈ H1 (B0) , v = 0 on ∂B0

}

The space H1
0 (B0) is equipped with the inner product:

〈u, v〉
H1

0
=

∫

B0

(uv + ∂iu∂iv) ds for u, v ∈ H1
0 (B0)

Taking into account that the boundary conditions for all variables are of the

same homogeneous Dirichlet type, we look for the solution in the function space

H (B0) defined as

H = H1
0 (B0)

9 . (4.5)

The space H is equipped with the inner product 〈u, v〉
H
:

〈u, v〉
H

=
9∑

i=1

〈ui, vi〉H1
0
for u, v ∈ H

and relative to the metric

d (u, v) = ‖u− v‖
H

for u, v ∈ H ,
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4.4. WEAK FORMULATION OF THE CLAMPED COSSERAT PLATE BENDING PROBLEM

induced by the norm ‖x‖ =
√
〈x, x〉

H
, the space H is a complete metric space and

therefore is a Hilbert space [69].

Let us consider a dot product of both sides of the system of the field equations

(4.2) and an arbitrary function v ∈ H :

v · Lu = v · f (η)

and then integrate both sides of the obtained scalar equation over the plate B0:

∫

B0

(v · Lu) ds =
∫

B0

(v · f (η)) ds.

Let us introduce a bilinear form a (u, v) : H × H → R and a linear form

b(η) (v) : H → R defined as

a (u, v) =

∫

B0

(v · Lu) ds, (4.6)

b(η) (v) =

∫

B0

(v · f (η)) ds.

The expression for a (u, v)

a (v, u) =

∫

B0

(viLijuj) ds

is a summation over the terms of the form

aij (vm, un) =

∫

B0

(
vmL̂un

)
ds,

where vm ∈ Hm, un ∈ Hn and L̂ is a scalar differential operator.

There are 3 types of linear operators present in the field equations (2.97) –

operators of order zero, one and two, which are constant multiples of the following
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differential operators:

L(0) = 1, (4.7)

L(1) =
∂

∂xα

, (4.8)

L(2) = −∇ · A∇, (4.9)

These operators act on the components of the vector u and are multiplied by

the components of the vector v and the obtained expressions are then integrated

over B0:

∫

B0

(
vmL

(0)un

)
ds =

∫

B0

(vmun) ds (4.10)

∫

B0

(
vmL

(1)un

)
ds =

∫

B0

(
vm

∂un

∂xα

)
ds (4.11)

∫

B0

(
vmL

(2)un

)
ds = −

∫

B0

(vm(∇ · A∇)un) ds

where vm ∈ Hm and un ∈ Hn.

The weak form of the second order operator is obtained by performing the

corresponding integration by parts and taking into account that the test functions

vm vanish on the boundary ∂B0:

∫

B0

(
vmL

(2)un

)
ds = −

∫

B0

(vm(∇ · A∇un)) ds

= −
∫

∂B0

(A∇un · n) vmdτ +

∫

B0

(A∇un · ∇vm) ds

=

∫

B0

(A∇un · ∇vm) ds (4.12)

The expression for b(η) (v):

b(η) (v) =

∫

B0

vifi (η) ds

represents a summation over the terms of the form:

∫

B0

vmf̂ (η) ds,
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Taking into account that the optimal solution of the field equations (4.2) min-

imizes the stress plate energy (2.44), we can give the weak formulation for the

clamped Cosserat plate bending problem.

Weak Formulation of the Clamped Cosserat Plate Bending Problem

Find all u ∈ H and η ∈ R that minimize the stress plate energy US

K (u, η)

defined as (2.44) subject to

a (v, u) = b(η) (v) for all v ∈ H (4.13)

4.5 Construction of the Finite Element Spaces

Let us construct the finite element space, i.e. finite-dimensional subspace Hh of

the space H , where we will be looking for an approximate Finite Element solution

of the weak formulation (4.13).

Let us assume that the boundary ∂B0 is a polygonal curve. Let us make a

triangulation of the domain B0 by subdividing B0 into l non-overlapping triangles

Ki with m vertices Nj:

B0 =
l⋃

i=1

Ki = K1 ∪K2 ∪ ... ∪Kl

such that no vertex of the triangular element lies on the edge of another triangle

(see Figure 4–1).
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Ki

Figure 4–1: Example of the Finite Element triangulation of the domain B0

Let us introduce the mesh parameter h as the greatest diameter among the

elements Ki:

h = max
i=1,l

d (Ki) ,

which for the triangular elements corresponds to the length of the longest side of

the triangle.

We now define the finite dimensional space Ĥh as a space of all continuous

functions that are linear on each element Kj and vanish on the boundary:

Ĥh = H
h
i = {v : v ∈ C (B0) , v is linear on every Kj, v = 0 on ∂B0} .

By definition H h
i ⊂ Hi, and the finite element space Hh is then defined as:

Hh = Ĥ
9
h (4.14)

The approximate weak solution uh can be found from the Galerkin formulation

of the clamped Cosserat plate bending problem [70], [71].
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Galerkin Formulation of the Clamped Cosserat Plate Bending Prob-

lem

Find all uh ∈ Hh and η ∈ R that minimize the stress plate energy US

K

(
uh, η

)

defined as (2.44) subject to

a
(
vh, uh

)
= b(η)

(
vh
)
for all vh ∈ Hh (4.15)

The description of the function vhi ∈ H h
i is provided by the values vhi (Nk) at

the nodes Nk (k = 1,m).

Let us define the set of basis functions {φ1, φ2, ..., φm} of each space H h
i as

φj (Nk) = δjk, j, k = 1,m

excluding the points Nk on the boundary ∂B0.

Therefore

H
h
i = span {φ1, φ2, ..., φm} =

{
v : v =

m∑

j=1

α
(i)
j φj

}

and the functions φj is non-zero only at the node Nj and those that belong to

the specified boundary and the support of φj consists of all triangles Ki with the

common node Nj (see the Figure 4–2).

Φ j

Figure 4–2: Example of the Finite Element basis function
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Since the spaces H h
i are identical they will also have identical sets of basis

functions φj (j = 1,m). Sometimes we will need to distinguish between the basis

functions of different spaces assigning the superscript of the functions space to the

basis function, i.e. the basis functions for the space H h
i are φi

j. For computational

purposes these superscripts will be droped.

4.6 Calculation of the Stiffness Matrix and the Load Vector

The bilinear form of the Galerkin formulation (4.15) is given as

a
(
vh, uh

)
= aij

(
vhi , u

h
j

)
=

∫

B0

vhi Liju
h
j ds (4.16)

Since uh
j ∈ H h

j then there exist such constants α
(j)
p ∈ R that

uh
j = α(j)

p φ(i)
p

Since the equation (4.16) is satisfied for all vhi ∈ H h
i then it is also satisfied for

all basis functions φ
(i)
k (k = 1,m):

aij
(
vhi , u

h
j

)
= aij

(
φ
(i)
k , α(j)

p φ(j)
p

)
= α(j)

p aij
(
φ
(i)
k , φ(j)

p

)

where

aij (v, u) =

∫

B0

vLijuds (4.17)

Following [71] we define the block stiffness matrices Kij (i, j = 1, 9):

Kij =




aij
(
φ
(i)
1 , φ

(j)
1

)
. . . aij

(
φ
(i)
1 , φ

(j)
m

)

...
. . .

...

aij
(
φ
(i)
m , φ

(j)
1

)
. . . aij

(
φ
(i)
m , φ

(j)
m

)
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For computational purposes the superscripts of the basis functions can be

droped and the block stiffness matrices Kij can be calculated as

Kij =




aij (φ1, φ1) . . . aij (φ1, φm)

...
. . .

...

aij (φm, φ1) . . . aij (φm, φm)




Let us define the block load vectors F i(η) (i = 1, 9):

F i(η) =




bi(η) (φ1)

...

bi(η) (φm)




and the solution block vectors αi corresponding to the variable uh
i (i = 1, 9):

αi =




αi
1

...

αi
m




The equation (4.15) of the Galerkin formulation can be rewritten as

(
Kij

)
αi = F j(η) (4.18)

The global stiffness matrix consists of 81 block stiffness matrices Kij, the global

load vector consists of 9 block load vectors F i(η) and the global displacement vector

is represented by the 9 blocks of coefficients αi. The entries of the block matrices

Kij and the block vectors F i(η) can be calculated as

Kij
mn =

∫

B0

φmLijφnds

F i
m(η) =

∫

B0

φmfi (η) ds

The block matrix form of the equation (4.15) is given as
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K11 K12 . . . K19

K21 K22 . . . K29

...
...

. . .
...

K91 K92 . . . K99







α1

α2

...

α9




=




F 1(η)

F 2(η)

...

F 9(η)




4.7 Existence and Uniqueness of the Weak Solution

We will follow [72] and [73], where the analysis of the analytic regularity for the

linear elliptic systems and their general treatment were recently presented.

Let us consider the bilinear form a(·, ·) defined in (4.6):

a (u, v) =

∫

B0

viLijujds

where Lij are linear differential operators of at most second order. Employing inte-

gration by parts for the second order operators Lij the bilinear form a(·, ·) can be

rewritten in the following form:

a (u, v) =
∑

|β|,|γ|≤1

∫

B0

cij∂
βvi∂

γujds

where β and γ are multi-indices.
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4.7. EXISTENCE AND UNIQUENESS OF THE WEAK SOLUTION

Since coefficients cij are constant and therefore bounded on B0, the bilinear

form a(·, ·) is continuous over H [72], i.e. there exists a constant C > 0 such that

|a(v, u)| ≤ C ‖v‖
H

‖u‖
H

∀u, v ∈ H .

Since the operator L is strong elliptic on B0 the bilinear form a(·, ·) is V-elliptic

on H [72], [67], i.e. there exists a constant α > 0 such that

a(u, u) ≥ α ‖u‖2
H

∀v ∈ H

The strong ellipticity of the operator L follows from the positive definiteness of its

principal symbol L(ξ) for all ξ ∈ R
2 [74], [75]:

τTL (ξ) τ = c1 (ξ1τ1 + ξ2τ2)
2 + c2 (ξ1τ2 − ξ2τ1)

2 +
(
ξ21 + ξ22

) (
c3τ

2
3 + c5τ

2
4 + c4τ

2
7

)

+(c7 + c8) (ξ1τ5 + ξ2τ6)
2 + (c7 + c8) (ξ1τ5 + ξ2τ6) (ξ1τ9 − ξ2τ8)

+
4

5
(c7 + c8) (ξ1τ9 − ξ2τ8)

2 + (c7 + c8) (ξ1τ5 − ξ2τ6)
2

+(c7 + c8) (ξ1τ5 − ξ2τ6) (ξ1τ9 + ξ2τ8) +
4

5
(c7 + c8) (ξ1τ9 + ξ2τ8)

2 > 0

The existence of the solution of the weak problem (4.13) and its uniqueness are

the consequences of the Lax-Milgram Theorem [76], [47].

Lax-Milgram Theorem

Given a Hilbert space V , a bilinear form a(·, ·) : V × V → R that is continuous

and V-elliptic, and a continuous linear form f : V → R, then there exists a unique

u ∈ V such that

a(v, u) = f(v) ∀v ∈ V

and the solution u depends continuously on the data f :

‖u‖V ≤ 1

α
‖f‖V ′

where α is the V-ellipticity constant and V ′ is the dual space of V .
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4.8. CONVERGENCE OF THE GALERKIN METHOD

Note that the existence and uniqueness of the Galerkin weak problem (4.15)

is also a consequence of the Lax-Milgram theorem, since the bilinear form a(·, ·)

restricted on H h obviously remains bilinear, continuous and V-elliptic [67]. Lax-

Milgram theorem also states that the solution is bounded by the right hand side

which represents the stability condition for the Galerkin method.

4.8 Convergence of the Galerkin Method

The convergence of the Galerkin approximation follows from Céa’s lemma and

an additional convergence theorem [77], [67].

Céa’s Lemma

Let u ∈ V be the solution of the weak problem

a(v, u) = F (v) ∀v ∈ V

and uh ∈ V h be the solution of the corresponding Galerkin weak problem

a(vh, uh) = F (vh) ∀vh ∈ V h

where V and V h are Hilbert spaces such that V h ⊂ V , and a bilinear form a(·, ·) is

continuous and coercive on V , then

∥∥u− uh
∥∥
V
≤ C

α
infv∈V h ‖u− v‖V

where C and α are the continuity and the coercivity constants.

The inequality in the Céa’s lemma will imply convergence of the approximate

Galerkin solution uh to the weak solution u if the finite element spaces V h approxi-

mate the space V [67].

Galerkin Method Convergence Theorem
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4.8. CONVERGENCE OF THE GALERKIN METHOD

Let V be a Hilbert space and V1 ⊂ V2 ⊂ ... ⊂ V a sequence of its finite-

dimensional subspaces such that

∞⋃

n=1

Vn = V

Let a(·, ·) be a continuous and coercive on V and let u ∈ V be the solution of the

weak problem

a(v, u) = F (v) ∀v ∈ V

and un ∈ V n be the solution of the corresponding Galerkin weak problem

a(vn, un) = F (vn) ∀vn ∈ V n

then

limn→∞‖u− un‖V = 0

i.e. the Galerkin method converges.

On the polygonal domains the sequence of subspaces of H = H1
0 (B0)

9 can be

obtained by the successive uniform refinement of the initial mesh using the midpoints

as new nodes thus subdividing every triangle into 4 congruent triangles. Therefore

Hn ⊂ Hn+1 for every n ∈ N and the sequence of spaces H n is dense in H [78],

and thus
∞⋃

n=1

Hn = H

and un converges to u as n → ∞ [67], [79].

It was shown that there exists a sequence of triangulations that ensures op-

timal rates of convergence in H1-norm for the FEM approximation of the second

order strongly elliptic system with zero Dirichlet boundary condition on polyhedron

domain with continuous, piecewise polynomials of degree m [80].
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4.9. CALCULATION OF THE OPTIMAL VALUE OF THE SPLITTING PARAMETER

4.9 Calculation of the Optimal Value of the Splitting Pa-

rameter

We perform the calculation of the optimal value of the splitting parameter

according to the algorithm presented in the Chapter 3. The optimal value of the

splitting parameter is given as

η0 =
2W (00) − W (10) − W (01)

2 (W (11) + W (00) − W (10) − W (01))
, (4.19)

where W (ij) = S (i) · E (j).

It requires the calculation of the stress and strain sets S (i) and E (i), and the

Cosserat plate internal work densities done by the stress and couple stress over the

Cosserat strain field W (ij) for two different solutions of the system (2.97).

The calculation of the stress and strain components from the solution vector

can be done using the constitutive formulas in reverse form (2.83) - (2.92). These

formulas imply the necessity of the approximation of the partial derivatives of the

kinematic variables. Since the kinematic variables are piecewise linear, first we

calculate the vector n̂ = niêi normal to the solution at each element and then

calculate the tangent plane. The approximate value of the partial derivative at the

particular element is the negative of the quotient of the corresponding components

of the normal vector:

−n1

n3

for the derivative by x1

−n2

n3

for the derivative by x2

Once the partial derivatives are approximated we can calculate the components

of stresses and strains on each element by adding the corresponding approximation

sets of values at each node.
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4.10. IMPLEMENTATION

4.10 Implementation

In our implementation of the Finite Element method to solve the Galerkin

formulation (4.18), we use the MATLAB environment to carry out the following

procedure.

1. Implement the class mesh

We implement the class mesh, whose objects will contain such information as

the list of vertices and their coordinates, indices of the vertices in the triangular

element, boundary edges, mappings to the reference element, etc.

The class mesh contains the following properties:

• obj.nvertices – number of vertices

• obj.x – array of x-coordinates of the vertices

• obj.y – array of y-coordinates of the vertices

• obj.nelements – number of triangular elements

• obj.vertex1 – array of the indices of the first vertices of each element

• obj.vertex2 – array of the indices of the second vertices of each element

• obj.vertex3 – array of the indices of the third vertices of each element

• obj.nedges – number of boundary edges

• obj.start – list of the start vertex indices of the boundary edges

• obj.finish – list of the finish vertex indices of the boundary edges

• obj.condition – list of the boundary types of the boundary edges

The class mesh also contains the following methods:

• display(obj) – draws given triangulation

• adjelements(obj,vertexindex) – returns the list of indices of the elements

containing the given vertex vertexindex
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4.10. IMPLEMENTATION

• obj.adjvertices(obj,vertexindex) – returns the list of indices of the vertices

adjacent to the given vertex vertexindex

• obj.mapping1d(obj,edgeindex,iks) – mapping between the segment [0, 1] and

the boundary edge edgeindex

• obj.mapping2d(obj,elementindex,iks,igrek) – mapping between the refer-

ence element and the element elementindex

• obj.jacobianmatrix(obj,elementindex,localvertexindex) – returns the ja-

cobian of the transformation of the reference element to the element cellindex

2. Generate the triangulation of the plate B0.

We implement the function meshrecognizer responsible for the generation of

the triangular mesh on the specified domain and its recognition into the object of

the class mesh.

We start by specifying the domain in the function domain in terms of the

inequalities. The output of domain is the set formula sf and the name space matrix

ns. The function ortdomain returns the parameter gd – the Constructive Solid

Geometry model (CSG model) specified in domain. Now the parameters gd, sf and

ns are used as the input for the standard MATLAB function decsg(gd,sf,ns).

It analyzes the CSG model gd, constructs a set of disjoint minimal regions that

evaluate to true for the set formula sf, bounded by boundary segments and border

segments, and decomposes gd into the decomposed geometry dl. The name space

matrix ns is a text matrix that relates the columns in gd to variable names in sf.

In order to obtain the triangular mesh for the specified domain we call the

standard MATLAB function

[p,e,t] = initmesh(dl)
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4.10. IMPLEMENTATION

using the geometry specification function dl as an input. The function initmesh(dl)

uses a Delaunay triangulation algorithm. The size of the triangles, the mesh growth

rate and the jiggling of the mesh can be controlled. The output parameters are: the

point matrix p, the edge matrix e and the triangle matrix t are the mesh data. In

the point matrix p, the first and second columns x-coordinates and y-coordinates of

the points in the mesh. In the edge matrix e, the first and second columns contain

indices of the starting and ending point. In the triangle matrix t, the first three

columns contain indices to the corner points, given in counter clockwise order.

In order to refine the initial triangular mesh we call the standard MATLAB

function

[ p, e, t] = refinemesh ( dl, p, e, t, ’regular’ )

which returns a refined version of the triangular mesh specified by the geometry g,

point matrix p, edge matrix e, and triangle matrix t, performing a regular refine-

ment, where all of the specified triangles are divided into four triangles of the same

shape.

3. Implement Numerical Integration.

We implement the function quadrature responsible for the numerical integra-

tion on the reference domain by employing a Gauss quadrature [81].

Let us define the triangle Kref with the vertices (0, 0), (0, 1) and (1, 0) to be a

reference element. We need to perform the following integration:

∫

Kref

f(x, y)dxdy

We use the function

[x,y,wx,wy] = triquad(n,v)
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4.10. IMPLEMENTATION

which computes the n2 nodes with coordinates provided in x and y, and weights

provided in wx and wy for a triangle with vertices given by the 3× 2 vector v. The

nodes are produced by collapsing the square to a triangle.

Since the basis functions are linear, then the choice of n = 2 is sufficient for the

numerical integration to be exact.

The numerical integration of

∫

Kref

f(x, y)dxdy

therefore is performed as

wx’ * F * wy

where the matrix F is given as

F =




f(x11, y11) f(x12, y12)

f(x21, y21) f(x22, y22)


 .

4. Generate the stiffness matrix.

We implement the function stiffnessmatrix responsible for the calculation of

the global stiffness matrix.

The stiffness matrix consists of 81 block stiffness matrices (ǎij). Each block

matrix is defines as

ǎij =




aij
(
φ
(i)
1 , φ

(j)
1

)
. . . aij

(
φ
(i)
1 , φ

(j)
m

)

...
. . .

...

aij
(
φ
(i)
m , φ

(j)
1

)
. . . aij

(
φ
(i)
m , φ

(j)
m

)




where each entry is of the form

aij
(
φ
(i)
k , φ(j)

p

)
=

∫

B0

φ
(i)
k Lijφ

(j)
p ds

77



4.10. IMPLEMENTATION

We define the stiffness matrix as sparse using the MATLAB function sparse.

We note that there are three types of operators among Lij : order zero, order one and

order two. Since many of these operators differ only on a constant we will calculate

the stiffness block matrices for each of the operators only once and then fill the block

multiplies by the corresponding constants. In order to calculate the stiffness block

matrices we employ the functions phi and phider which return the values of the

basis function and its gradient.

The entry of the block stiffness matrix of the operator of order zero is calculated

as:

1/det ( phiinv ) * ( wx’ * F * wy )

where det(phiinv) is the inverse of the jacobian of the transformation to the ref-

erence element and

F(i,j) = phi(ver1,x(i,j),y(i,j)) * phi(ver2,x(i,j),y(i,j))

The entry of the block stiffness matrix of the operators of order one ∂
∂x

and ∂
∂y

are calculated in the same manner and the matrix F given as

F(i,j) = phider(ver2) * phiinv * m * phi(ver1,x(i,j),y(i,j))

where m = [1, 0]T for the operator ∂
∂x

and m = [0, 1]T for the operator ∂
∂y
.

The entry of the block stiffness matrix of the operators of order two ∇·A∇ are

calculated in the same manner and the matrix F is given as

F(i,j) = phider(ver1) * phiinv * A * phiinv’ * phider(ver2)’

5. Generate the load vectors.
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4.10. IMPLEMENTATION

We implement the function loadvector responsible for the calculation of the

global load vector.

The load vector consists of 9 load block vectors (ǎij). Each block vector is

defines as

b̌iη =




biη (φ1)

...

biη (φm)




where each entry is of the form

biη (φk) =

∫

B0

φkfids

The entry of the block load vector is calculated as:

1/det ( phiinv ) * ( wx’ * F * wy )

where det(phiinv) is the inverse of the jacobian of the transformation to the ref-

erence element and

F(i,j) = f(t,eta,x(i,j),y(i,j)) * phi(1,x(i,j),y(i,j))

where f returns the value of the right-hand side function ft.

6. Impose the boundary values.

We implement the function boundaryfix responsible for imposing the values

at the boundary. It employs the function blockboundaryfix, which treats stiffness

block matrices. For the diagonal block-matrix the cycle consists of substituting the

entries of the row that corresponds to the edge-vertex i of the stiffness matrix for 1

if the entry is diagonal and 0 otherwise. We also substitute the entries of the load

vector that correspond to the edge-vertex i by the value prescribed by the Dirichlet

boundary condition . For the non-diagonal block matrix the cycle consists only of
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substituting the row that corresponds to the edge-vertex i of the stiffness matrix for

0.

The implementation of the weak formulation of the clamped Cosserat plate is

similar to the implementation of the Cosserat simply supported plate. The treatment

is different when the boundary conditions are taken into account. This is done

on the stage of evaluating the boundaryfix function. For the clamped plate we

employ the same technique used for the block matrices corresponding to the Dirichlet

boundary conditions. The diagonal block matrices are treated differently than the

non-diagonal ones.

For the diagonal block matrices the cycle consists of two parts:

for i = 1:obj.nedges

matrix (obj.start(i),1:obj.npoints) = 0;

matrix (obj.start(i),obj.start(i)) = 1;

matrix (obj.finish(i),1:obj.npoints) = 0;

matrix (obj.finish(i),obj.finish(i)) = 1;

xs = obj.x(obj.start(i))

ys = obj.y(obj.start(i))

xf = obj.x(obj.finish(i))

yf = obj.y(obj.finish(i))

vector(obj.start(i)) = f(s,xs,ys);

vector(obj.finish(i)) = f(s,xf,yf);

end

which substitutes the edge-vertex i entries of the matrix for 1 if they are diagonal

and 0 otherwise, and substitutes the elements of the vector for the value of the

right-hand side function fi evaluated in the coordinates of the edge vertex. For the
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Figure 4–3: Stiffness matrix before and after imposing the boundary values

non-diagonal block matrices the cycle consists only of substituting

for i = 1:obj.nedges

matrix ( obj.start(i), 1:obj.npoints ) = 0;

matrix ( obj.finish(i), 1:obj.npoints ) = 0;

end

7. Solve the systems of linear equations.

We implement the function systemsolve responsible for solving the system of

linear equations.

We solve the systems of linear equations using the standard MATLAB function

mldivide, which employs different algorithms to handle different kinds of coefficient

matrices. For the case of the nonsymmetric matrices it performs a general triangular

factorization using LU decomposition with partial pivoting. We also calculate the
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relative residual as

norm(b-A*z)/norm(b)

8. Calculate the optimal value of the splitting parameter η.

We implement the function eta responsible for the calculation of the optimal

value etaoptimal of the splitting parameter η. The function imploys the Algo-

rithm for the Optimal Value of the Splitting Parameter discussed in the Chapter 3.

Function eta imploys the functions strainset and stressset, which calculate the

stress and strain sets respectively. The stress and strain sets are calculated from the

solution sets for a specific value of the parameter η. After the stress and strain sets

are calculated the optimal value of the splitting parameter η0 is calculated using the

formula (4.19).

9. Calculate the optimal solution.

The optimal solution is calculated as a linear combination of the 9 blocks of

solution vectors α̌i
(0) and α̌i

(1) represented by veta0 and veta1:

v = veta0*(1-etaoptimal) + veta1*(etaoptimal)

10. Visualize the results.

We implement the function graphsolution responsible for the visualization of

the results. The function uses the MATLAB function plot3 that displays a three-

dimensional plot of a set of data points. It also has an option for creating a density

plot and generating the output for Mathematica computation system.

11. Estimate the Error.
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We implement the function errorestimation responsible for the estimation of

the error in both H1 and L2 norms. It calculates the error of the approximation

performing the numerical integration over each triangular element and then adding

the results of the integration.

4.11 Numerical Validation of the Proposed Finite Element

Method

Since the proposed FEM is based on the classical FEM we will estimate the rate

of its convergence for Dirichlet and mixed Neumann-Dirichlet boundary conditions

and the rate of convergence of the proposed FEM for simply supported plates.

4.11.1 Validation of the FEM for Different Boundary Conditions

Let us consider the plate B0 to be a square plate of size [0, a] × [0, a] with the

boundary G = G1∪G2∪G3∪G4 and the hard simply supported boundary conditions

written in terms of the kinematic variables in the mixed Dirichlet-Neumann:

G1 ∪G2 : W = 0, W ∗ = 0, Ψ2 = 0, Ω0
1 = 0, Ω̂0

1 = 0,

∂Ω3

∂n
= 0,

∂Ψ1

∂n
= 0,

∂Ω0
2

∂n
= 0,

∂Ω̂0
2

∂n
= 0;

G3 ∪G4 : W = 0, W ∗ = 0, Ψ1 = 0, Ω0
2 = 0, , Ω̂0

2 = 0,

∂Ω3

∂n
= 0,

∂Ψ2

∂n
= 0,

∂Ω0
1

∂n
= 0,

∂Ω̂0
1

∂n
= 0.

where

G1 = {(x1, x2) : x1 = 0, x2 ∈ [0, a]} ,

G2 = {(x1, x2) : x1 = a, x2 ∈ [0, a]} ,

G3 = {(x1, x2) : x1 ∈ [0, a] , x2 = 0} ,

G4 = {(x1, x2) : x1 ∈ [0, a] , x2 = a} ,
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The existence of a sequence of triangulations that ensures the optimal rates

of convergence for the Finite Element approximation of the solution of a second

order strongly elliptic system with homogeneous Dirichlet boundary condition on

polyhedron domain with continuous piecewise polynomials was shown in [80]. For

the case of piecewise linear polynomials the optimal rate of convergence in H1-norm

is linear.

We propose to use the uniform refinement to form the sequence of triangulations

and estimate the order of the error of approximation of the proposed FEM in H1-

norm and L2-norm.

Let us consider homogeneous Dirichlet boundary conditions. We will assume

the solution u of the form:

ui = Ui sin
(πx1

a

)
sin

(πx2

a

)
, Ui ∈ R, i = 1, 9, (4.20)

which automatically satisfies homogeneous Dirichlet boundary conditions. Substi-

tuting the solution (4.20) into the system of field equations (4.2) we can find the

corresponding right-hand side function f . The results of the error estimation of

the FEM approximation in H1 and L2 norms performed for the elastic parame-

ters corresponding to the polyurethane foam are given in the Tables 4–1 and 4–2

respectively.

Let us consider mixed Neumann-Dirichlet boundary conditions. Simply sup-

ported boundary conditions (3.23) - (3.24) represent this type of boundary condi-

tions and therefore the FEM approximation can be compared with the analytical

solution developed in the Chapter 3 for some fixed value of the parameter η. The

results of the error estimation of the FEM approximation in H1 and L2 norms per-

formed for the elastic parameters corresponding to the polyurethane foam are given

in the Tables 4–3 and 4–4 respectively.
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Table 4–1: Order of Convergence in H
1-norm for Homogeneous Dirichlet BC

Refinements Number of Nodes Diameter Error in H1-norm Convergence Rate

0 177 0.302456 1.620369

1 663 0.151228 0.711098 1.19

2 2565 0.075614 0.322016 1.14

3 10089 0.037807 0.150149 1.10

4 40017 0.018903 0.073481 1.03

5 159393 0.009451 0.036512 1.01

Table 4–2: Order of Convergence in L2-norm for Homogeneous Dirichlet BC

Refinements Number of Nodes Diameter Error in L2-norm Convergence Rate

0 177 0.302456 0.279484

1 663 0.151228 0.069632 2.00

2 2565 0.075614 0.018175 1.94

3 10089 0.037807 0.004598 1.98

4 40017 0.018903 0.001153 2.00

5 159393 0.009451 0.000288 2.00
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Table 4–3: Order of Convergence in H
1-norm for Mixed Neumann-Dirichlet BC

Refinements Number of Nodes Diameter Error in H1-norm Convergence Rate

0 177 0.302456 0.236791

1 663 0.151228 0.115809 1.03

2 2565 0.075614 0.054195 1.09

3 10089 0.037807 0.026233 1.05

4 40017 0.018903 0.012986 1.01

5 159393 0.009451 0.006475 1.00

Table 4–4: Order of Convergence in L2-norm for Mixed Neumann-Dirichlet BC

Refinements Number of Nodes Diameter Error in L2-norm Convergence Rate

0 177 0.302456 6.214× 10−2

1 663 0.151228 1.638× 10−2 1.92

2 2565 0.075614 4.219× 10−3 1.96

3 10089 0.037807 1.065× 10−3 1.99

4 40017 0.018903 2.678× 10−4 1.99

5 159393 0.009451 6.772× 10−5 1.98

4.11.2 Validation of the proposed FEM for Simply Supported Cosserat

Elastic Plate

The boundary condition for the variable Ω3 is a Neumann-type boundary con-

dition:

∂Ω3

∂n
= 0 on G
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4.11. NUMERICAL VALIDATION OF THE PROPOSED FINITE ELEMENT METHOD

and thus we will look for Ω3 in the space H1 (∆, B0), where.

H1 (∆, B0) =
{
u ∈ H1 (B0) : ∆u ∈ L2(B0)

}

The boundary condition for the variables W and W ∗ is a Dirichlet-type bound-

ary condition:

W = 0 on G

W ∗ = 0 on G

and thus we will look for W and W ∗ in the space H1
0 (B0) defined as [68]:

H1
0 (B0) =

{
v ∈ H1 (B0) , v = 0 on G

}

The boundary condition for the variables Ψ1, Ω
0
2 and Ω̂0

2 is of mixed Dirichlet-

Neumann type:

∂Ψ1

∂n
= 0,

∂Ω0
2

∂n
= 0,

∂Ω̂0
2

∂n
= 0 on G1 ∪G2

Ψ1 = 0,Ω0
2 = 0, Ω̂0

2 = 0 on G3 ∪G4

and thus we will look for Ψ1, Ω
0
2 and Ω̂0

2 in the following space [68]:

H1
V =

{
v ∈ H1 (∆, B0) , v = 0 on G3 ∪G4

}

The boundary condition for the variables Ψ2, Ω
0
1 and Ω̂0

1 is of mixed Dirichlet-

Neumann type:

Ψ2 = 0,Ω0
1 = 0, Ω̂0

1 = 0 on G1 ∪G2

∂Ψ2

∂n
= 0,

∂Ω0
1

∂n
= 0,

∂Ω̂0
1

∂n
= 0 on G3 ∪G4

and thus we will look for Ψ2, Ω
0
1 and Ω̂0

1 in the following space [68]:

H1
H =

{
v ∈ H1 (∆, B0) , v = 0 on G1 ∪G2

}
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4.11. NUMERICAL VALIDATION OF THE PROPOSED FINITE ELEMENT METHOD

Therefore we will look for the solution

[
Ψ1,Ψ2,W,Ω3,Ω

0
1,Ω

0
2,W

∗, Ω̂1, Ω̂2

]T

of the Cosserat plate field equations (2.97) in the space H defined as

H = H1 × H2 × H3 × H4 × H5 × H6 × H7 × H8 × H9 (4.21)

where

H1 = H6 = H9 = H1
V (B0) ,

H2 = H5 = H8 = H1
H (B0) ,

H3 = H7 = H1
0 (B0) ,

H4 = H1 (∆, B0) .

The space H is a Hilbert space equipped with the inner product 〈u, v〉
H

on

defined on H as follows:

〈u, v〉
H

=
9∑

i=1

〈ui, vi〉Hi
for u, v ∈ H

where 〈u, v〉
Hi

is an inner product defined on the Hilbert space Hi respectively.

Taking into account the essential boundary conditions we define the finite ele-

ment spaces H h
i as follows:

H
h
1 = H

h
6 = H

h
9 = {v : v ∈ C (B0) , v is linear on every Kj, v = 0 on G1 ∪G2} ,

H
h
2 = H

h
5 = H

h
8 = {v : v ∈ C (B0) , v is linear on every Kj, v = 0 on G3 ∪G4} ,

H
h
3 = H

h
7 = {v : v ∈ C (B0) , v is linear on every Kj, v = 0 on G} ,

H
h
4 = {v : v ∈ C (B0) , v is linear on every Kj} .

The finite dimensional space H h is then defined as

H
h = H

h
1 × H

h
2 × H

h
3 × H

h
4 × H

h
5 × H

h
6 × H

h
7 × H

h
8 × H

h
9 (4.22)
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4.11. NUMERICAL VALIDATION OF THE PROPOSED FINITE ELEMENT METHOD

Table 4–5: Order of Convergence in H
1-norm for Simply Supported Plate

Refinements Nodes Number Diameter Error in H1-norm Convergence Rate

0 177 0.302456 0.256965

1 663 0.151228 0.119234 1.11

2 2565 0.075614 0.054701 1.12

3 10089 0.037807 0.026301 1.05

4 40017 0.018903 0.012994 1.01

5 159393 0.009451 0.006476 1.00

Table 4–6: Order of Convergence in L2-norm for Simply Supported Plate

Refinements Nodes Number Diameter Error in L2-norm Convergence Rate

0 177 0.302456 8.253× 10−2

1 663 0.151228 2.260× 10−2 1.87

2 2565 0.075614 5.860× 10−3 1.95

3 10089 0.037807 1.482× 10−3 1.98

4 40017 0.018903 3.720× 10−4 1.99

5 159393 0.009451 9.355× 10−5 1.99

We solve the field equations using described Finite Element method and com-

pare the obtained results with the analytical solution for the square plate made of

polyurethane foam derived in the Chapter 3.

The initial distribution of the pressure, as in the Chapter 4, is assumed sinu-

soidal:

p (x1, x2) = sin
(πx1

a

)
sin

(πx2

a

)
(4.23)

The estimation of the error in H1 norms shows that the order of the error is op-

timal (linear) in H1-norm for the piecewise linear elements for the simply supported
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4.11. NUMERICAL VALIDATION OF THE PROPOSED FINITE ELEMENT METHOD

Table 4–7: Relative Error of the Maximum Values of the Displacement and Microrotations

Optimal η u1 u2 u3 ϕ1 ϕ2

Finite Element Solution 0.040760 -0.014891 -0.014891 0.307641 0.046767 -0.046767

Analytical Solution 0.040799 -0.014892 -0.014892 0.307674 0.046770 -0.046770

Relative Error (%) 0.09 0.03 0.03 0.04 0.03 0.03

Figure 4–4: Hard simply supported square plate 2.0m×2.0m×0.1m made of polyurethane foam: the
initial mesh and the isometric view of the resulting vertical deflection of the plate

plate. The results of the error estimation of the FEM approximation in H1 and L2

norms performed for the elastic parameters corresponding to the polyurethane foam

are given in the Tables 4–5 and 4–6 respectively.

The comparison of the maximum of the displacements ui and microrotations

ϕi calculated using Finite Element method with 320 thousand elements and the

analytical solution for the micropolar plate theory is provided in the Table 4–7. The

relative error of the approximation of the optimal value of the splitting parameter

is 0.09%.

The Figure 4–4 represents the Finite Element modeling of the bending of the

simply supported square plate made of polyurethane foam.
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4.12. FINITE ELEMENT MODELING OF CLAMPED COSSERAT ELASTIC PLATES
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Figure 4–5: The cross section that contains the center of the micropolar square plate
3.0m×3.0m×0.1m made of polyurethane foam under the sinusoidal load: Cosserat clamped plate –
solid blue line, Cosserat simply supported plate – solid orange line, initial sinusoidal load – dashed
black line.

4.12 Finite Element Modeling of Clamped Cosserat Elastic

Plates of Arbitrary Shape

The comparison of the distribution of the vertical deflection of the clamped and

simply supported plates is given in the Figure 4–5.
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4.12. FINITE ELEMENT MODELING OF CLAMPED COSSERAT ELASTIC PLATES

Figure 4–6: The circular Cosserat clamped plate of radius R = 1.0m and thickness h = 0.1m
made of polyurethane foam under the uniform load: the initial mesh and the isometric view of the
resulting vertical deflection of the plate.

Figure 4–7: The circular Cosserat clamped plate of radius R = 1.0m and thickness h = 0.1m made
of polyurethane foam with circular clamped holes under the uniform load: the initial mesh and the
isometric view of the resulting vertical deflection of the plate.
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4.12. FINITE ELEMENT MODELING OF CLAMPED COSSERAT ELASTIC PLATES

Figure 4–8: The clamped plate of size 10.0m×6.0m×0.1m made of polyurethane foam under the
uniform load: the initial mesh and the isometric view of the resulting vertical deflection of the
plate.

Figure 4–9: The clamped polyurethane gasket under the uniform load: the initial mesh and the
isometric view of the resulting vertical deflection of the plate.
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Chapter 5

Conclusion and Future Work

In this dissertation we presened the mathematical modeling of Cosserat elas-

tic plates and their Finite Element computation. We developed the mathematical

model for bending of Cosserat elastic plates, which assumes physically and mathe-

matically motivated approximations over the plate thickness for stress, couple stress,

displacement, and microrotation. The Generalized Hellinger-Prange-Reissner Prin-

ciple allowed us to obtain the equilibrium equations, constitutive relations and op-

timal value for the minimization of the elastic energy with respect to the splitting

parameter in the approximation of the σ33 stress component.

The comparison of the maximum vertical deflection for simply supported square

plate with the analytical solution of the three-dimensional Cosserat elasticity con-

firmed the high order of approximation of the three-dimensional (exact) solution.

The computations produced a relative error of the order 1% in comparison with the

exact three-dimensional solution that is stable with respect to the standard range

of the plate thickness. The results were shown to be compatible with the precision

of the well-known Reissner model used for bending of simple elastic plates. Apart
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CONCLUSIONS AND FUTURE WORK

from the computational modeling and comparison, the experimental validation of

the proposed mathematical model is needed.

We presented the Cosserat plate field equations as an elliptic system of nine

differential equations in terms of the kinematic variables. We proposed the Fi-

nite Element Method for Cosserat elastic plates based on the efficient numerical

algorithm for the calculation of the optimal value of the splitting parameter and the

computation of the corresponding unique solution of the weak problem. We provided

the numerical vaidation of the proposed FEM and showed that it converges to the

analytical solution with optimal (quadratic) rate of convergence. The asymptotic

order of the computational complexity of the proposed Finite Element algorithm

was shown to be the same as of the classical Finite Element method. We provided

the Finite Element modeling of the bending of clamped Cosserat elastic plates of

arbitrary shapes under different loads.

The future work will include application of the developed micropolar plate the-

ory to other engineering materials that were reported to be micropolar, numerical

analysis of the plates under different loads with other boundary conditions (soft

clamped, soft simply supported, free, etc), comparison of the existing plate mod-

els and the developed micropolar plate theory, dynamics model of thin micropolar

elastic plates, the effect of material defects on the stress-strain characteristic of the

plate and numerical analysis of the propagation of the dislocation and the interaction

between the geometry and holes of the plate and the dislocation.
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laries et libres. Nova Acta Acad Petropolit, 5:197–219, 1789.

[30] Steinberg L. Mesoelastic deformation with strain singularities. Mathematics

and Mechanics of Solids, 11(4):385–400, 2006.

[31] Reddy J. Theory and analysis of elastic plates and shells. CRC Press, Taylor

and Francis, 2007.

[32] Love A. E. H. On the small free vibrations and deformations of elastic shells.

Philosophical trans. of the Royal Society (London), A(17):491–549, 1888.

[33] Love A. E. H. A Treatise on the Mathematical Theory of Elasticity. Cambridge

University Press, 1892.

98



CONCLUSIONS AND FUTURE WORK

[34] Reissner E. On the theory of elastic plates. Journal of Mathematics and Physics,

23:184–191, 1944.

[35] Reissner E. The effect of transverse shear deformation on the bending of elastic

plates. Journal of Applied Mechanics, 12:69–77, 1945.

[36] Steinberg L. Deformation of micropolar plates of moderate thickness. Interna-

tional Journal Applied Mathematics and Mechanics, 6(17):1–24, 2010.

[37] Steinberg L. and Kvasov R. Enhanced mathematical model for Cosserat plate

bending. Thin-Walled Structures, 63:51–62, 2013.

[38] Donnell L. Beams, Plates and Shells (Engineering societies monographs).

McGraw-Hill Inc, 1976.

[39] Rossle A., Bischoff M., Wendland W., and Ramm E. On the mathematical foun-

dation of the (1,1,2)-plate model. International Journal of Solids and Struc-

tures, 36:2143–2168, 1999.

[40] Eringen A. C. Theory of micropolar plates. Journal of Applied Mathematics

and Physics, 18:12–31, 1967.

[41] Altenbach H. and Eremeyev V. On the linear theory of micropolar plates.

Journal of Applied Mathematics and Mechanics, 2009.

[42] Sargsyan S. and Vardanyan S. Some problems of thermoelasticity of micropolar

thin bars and plates. IEEE, 0-7803-9524-7/06(7):892–899, 2006.

[43] Sargsyan S. General theory of elastic micropolar thin shells. AMIM, 13(1):385–

400, 2008.

[44] Reyes R. Comparison of elastic plate theories for micropolar materials. Thesis,

2010.

[45] Kvasov R. and Steinberg L. Numerical modeling of bending of Cosserat elastic

plates. Proceedings of the 5th Computing Alliance of Hispanic–Serving Institu-

tions Annual Meeting, pages 67–70, 2011.

99



CONCLUSIONS AND FUTURE WORK

[46] Kvasov R. and Steinberg L. Numerical modeling of bending of micropolar

plates. Thin-Walled Structures, 2013.

[47] Ciarlet P. and Lions J. Handbook of Numerical Analysis - Finite Element Meth-

ods (Part1), volume 2. Elsevier, 1991.

[48] Galerkin B. On electrical circuits for the approximate solution of the Laplace

equation. Engineering Bulletin, 19:897–908, 1915.

[49] Hazewinkel M. Encyclopaedia of Mathematics. 1989.

[50] Courant R. Variational methods for the solution of problems of equilibrium

and vibration. Bull. Amer. Math. Soc., 49:1315–1332, 1943.

[51] Hrennikoff H. Solutions of problems in elasticity by the framework method.

Journal of Applied Mechanics, pages 169–175, 1941.

[52] McHenry D. A lattice analogy for the solution of plane stress problems. Journal

of Civil Engineering, 21:59–82, 1943.

[53] Turner M., Clough R., Martin H., and Topp L. Stiffness and deflection analysis

of complex structures. Journal of Aeronautical Science, 23:805–824, 1956.

[54] Clough R. The finite element method in plane stress analysis. Proceedings of

2nd ASCE Conference on Electronic Computation, 1960.

[55] Huebner K., Dewhirst D., Smith D., and Byrom T. The Finite Element Method

for Engineers. 2001.

[56] Strang W. and Fix G. An Analysis of The Finite Element Method. 1973.
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