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ABSTRACT 

The information society needs to process massive volumes of data in automated ways. 

The data is more meaningful if it is considered as sequences of patterns rather than isolated 

patterns. A trained human brain has outstanding capabilities for pattern recognition tasks, 

which could be very advantageous for automated pattern recognition systems. 

This thesis proposes a generic pattern recognition model. This model is mainly based 

on the known operation of the neocortex and is oriented to deal with sequences of patterns or 

data streams. 

The theoretical part of the model is formally stated and an implementation is outlined. 

The theoretical model also establishes a more general framework for treatment of space time 

data through a dimensionality reduction process. For a given instance of space time data, the 

process characterizes a space time region that might be called an invariant semantic 

representation. 

The model exhibits desirable properties for a pattern recognition system, such as 

spatial and temporal autoassociativity, spatial and temporal noise tolerance, recognition 

under sequence contextualization, and input prediction. 
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RESUMEN 

La sociedad de la información necesita procesar volúmenes masivos de datos de 

forma automatizada. Estos datos son más significativos si son considerados como secuencias 

de patrones en vez de datos aislados. Un cerebro humano entrenado tiene capacidades 

sobresalientes para tareas de reconocimiento de patrones, lo cual podría ser muy ventajoso 

para sistemas automatizados de reconocimiento de patrones. 

Esta tesis propone un modelo de reconocimiento de patrones genérico. Este modelo 

está basado fuertemente  en la operación conocida de la neocorteza y está orientado a tratar 

con secuencias de patrones o flujos de datos. 

La parte teórica del modelo es planteada formalmente y una implementación es 

esbozada. El modelo teórico también establece un marco más general para tratar datos de 

espacio tiempo a través de un proceso de reducción de dimensionalidad. Para una instancia 

dada de datos de espacio tiempo, el proceso caracteriza una región de espacio tiempo que 

podría ser llamada una representación semántica invariante. 

El modelo exhibe propiedades deseables para un sistema de reconocimiento de 

patrones, tales como autoasociatividad espacial y temporal, tolerancia al ruido espacial y 

temporal, reconocimiento bajo contextualización de una secuencia, y predicción de entrada. 
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1 INTRODUCTION 

 

Humans are well known for their remarkable abilities to recognize patterns; the 

generalization and invariance capabilities of the human brain enable us to recognize 

successfully new patterns just after exposure to few new samples. 

The human brain has a lot in common with the rest of the mammalian brains, which 

in turn have an almost unique feature compared to other species, the outermost layer known 

as neocortex; this part is believed to be the source of the superior intelligence of mammals 

enabling the ability to deal with complex patterns of information and to do so in a 

hierarchical fashion [1]. Humans, in proportion, have one of the biggest neocortex among 

mammals. The progress in neurosciences has revealed a lot of facts about the structure and 

operation of the neocortex [2] and [3]; the current knowledge is good enough to formulate 

computational models that could capture the abilities to recognize patterns successfully [4], 

[5] and [6]. The appealing characteristics that this kind of model is expected to capture are: 

Handling of space and space-time patterns, noise resistance, fault-tolerance and real-time 

response. Other previous attempts to produce pattern recognition models based on the 

neocortex or neural networks are: Neocognitron [7], HMAX [8], and Deep Learning models 

[9]. 
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In our times, the information society needs to process massive volumes of data, the 

pattern recognition task is ubiquitous; humans can no longer extract information from this 

data without computational aid [10] and [11]. The need for new pattern recognition models 

with characteristics like the ones mentioned for a neocortex-based model is undeniable. 

The understanding of human brain and human intelligence is a formidable task that 

could bring a new class of intelligent machines capable of extracting information from the 

colossal volume of data generated at every moment.  

 

1.1 Motivation 

This work aims to develop a neocortex-based model and use it for pattern recognition 

tasks. The pattern recognition domain in our case is restricted to the supervised classification 

problem; the model should be suitable, but not restricted, to identifying space and space-time 

patterns in images. 

 

1.2 Problem Statement 

Provide a formal model and an implementation of a classifier. This classifier should 

exploit the characteristic features of the human neocortex in order to assist the pattern 

recognition task of complex spatio-temporal patterns. 
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To overcome the challenges, the model has to be based on recent findings about the 

structure and operation of the neocortex, capturing the essence of its functionality. 

 

1.3 Contributions 

The primary contribution of this thesis is the development of a robust model for 

classification capable of: 

 Spatial and temporal autoassociativity. 

 Spatial and temporal noise tolerance. 

 Recognition under sequence contextualization. 

 Input prediction. 

Secondary contributions are improvements in the understanding of: 

 How the brain works. 

 What the neocortex might store. 

 How abstractions arise in the brain. 

 How the brain stores and retrieves information. 

The secondary contributions are a consequence of the proposed model from a high 

level functional point of view. This model, as well as other similar models, provide a partial 

functional perspective on how the neural networks in the brain, learn and store (complex) 

information. The coding scheme proposed for the model is motivated by neurological 
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evidence on how individual neurons in the neocortex process a specific information 

subdomain. At running time, an instance of input data learned by the model produces an 

internal representation that might be considered the equivalent of an abstraction in the brain. 

Finally, input data triggers a sequential process in the model that learns and stores the 

incoming pattern and prepares retrieval of the next pattern by means of predictions. 

  

1.4 Summary of Following Chapters 

Chapter 2 introduces the necessary theoretical background for this study. Chapter 3 

deals with the neocortex-based model and model implementation. Chapter 4 presents 

experiments and data analysis. In Chapter 5 conclusions are presented and future work is 

proposed. Chapter 6 presents the ethical considerations relative to this thesis. 
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2 THEORETICAL BACKGROUND 

There are two important sections in this chapter, and. The first section, neuroscience 

concepts, gives a brief physiological overview about the main components of the neocortex 

and how learning occurs in it. The second section on mathematical and computational 

concepts, presents relevant concepts to establish a mathematical formulation and to propose 

computational operation. In particular, Section 2.2.2 presents a brief explanation on what 

coding schemes to store information are known. Section 2.2.3 presents a view on how the 

brain might store information. Sections 2.2.5 and 2.2.6 present a framework that attempts to 

explain how the neocortex handles incoming and stored information. Section 2.2.7 introduces 

a formal model for the input data. Finally, Section 2.2.8 shows how the model can handle 

input data once it is transformed into the internal format of the model. 

 

2.1 Neuroscience Concepts 

2.1.1 Neuron 

A cell with two kinds of branches: dendrites and an axon. The neuron receives input 

signals from other neurons, integrates them, and generates its own signal, an electric impulse 
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that travels along the axon away from the cell body. The axon makes contact with dendrites 

and cell bodies of other neurons; thus, the output signal of one neuron becomes input to other 

neurons. The structure that allows a neuron to pass an electrical or chemical signal to another 

cell is called synapse. 

 

2.1.2 Synapses 

The importance of a synapse to the firing of a neuron is called the synaptic weight. 

There are two kinds of synapses: excitatory and inhibitory. Excitatory synapses help a neuron 

to fire, inhibitory synapses hinder firing. An entire neuron can be considered as excitatory or 

inhibitory according to the kind of synapses that its axon makes. Finally, the firing of the 

neuron depends on the neuron's threshold, meaning that the combined input of excitatory and 

inhibitory impulses must surpass the threshold to trigger the firing. 

2.1.3 Dendrites 

The current knowledge shows that dendrites are more than just conduits to bring 

inputs of the cell body. Dendrites can be considered as complex non-linear processing 

elements in themselves [12]. Two types of dendrites can be distinguished: 

 Proximal Dendrites: The dendrite branches closest to the cell body. Multiple active 

synapses on proximal dendrites have a roughly linear additive effect at the cell body. 
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 Distal Dendrites: The dendrite branches farther from the cell body. Distal dendrites 

are thinner than proximal dendrites. They connect to other dendrites at branches in the 

dendritic tree and do not connect directly to the cell body. Distal dendrites act as 

semi-independent processing regions, if enough distal synapses become active at the 

same time within a short distance along the dendrite, they can generate a dendritic 

spike that can travel to the cell body. 

 

Figure 2.1 Structure of a typical neuron 

 

2.1.4 Neocortex 

The neocortex is the outermost part of the brain of mammals; it is a thin sheet of 6 

layers of neurons. Humans have in proportion the biggest neocortex among mammals. 

Neuroscientist V. Mountcastle discovered the columnar organization of the neocortex, which 

is very uniform across its surface [13]. Neurons in a column receive common inputs, are 
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interconnected and have common outputs. Mountcastle argues that these columns may 

constitute a fundamental computational unit in the neocortex and they should work under a 

common cortical algorithm [14]. Further research discovered that the visual cortex possess a 

hierarchical organization [1]. 

 

2.1.5 Hebbian Learning 

Brains are networks of neurons connected through synapses, there should be a 

mechanism that gives them the ability to learn. This idea led to the theory that learning could 

be the consequence of changes in the strengths of the synapses. The best-known theory of 

learning based on synaptic plasticity is that proposed by Hebb [15], who postulated that 

connection strengths between neurons are modified based on neural activities in the 

presynaptic and postsynaptic cells: 

When an axon of cell A is near enough to excite cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or both 

cells such that A’s efficiency, as one of the cells firing B, is increased. 

 



 

 

 

 

 10 

2.2 Mathematical and Computational Concepts 

2.2.1 Neuron Model 

The formal neuron model considers that a neuron in a net operates in synchronous 

time steps. Within each step a neuron can fire at most once, and the firing during interval   

depends only on the neuron's inputs during interval     and the threshold. The output is 1 

when the neuron fires and 0 otherwise. An  -input neuron is modeled by a linear threshold 

function [16]. 

  {   }  {   } 

Let      {   } be the  th input at time  , and let    be the weight of the  th input, the 

weighted sum of the inputs is defined by 

   ∑       

   

   

 

Let    be the output at time  , and let   be the threshold, the output is given by 

   {
            
            

 

For a neuron to fire, the weighted sum must reach or exceed the threshold. It should 

be noted that the recovery time, that a neuron needs in order to fire again, varies from neuron 

to neuron, the following could be a better description of recovery after firing: Firing raises 
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the neuron's threshold to a value greater than the maximum weighted sum, and the neuron 

cannot fire again immediately; thereafter, the threshold drops until firing becomes possible. 

 

2.2.2 Local, Dense and Sparse codes 

An important aspect of an information processing system is the way in which 

information is represented. A neural system like the brain, with a set of N binary neurons, 

could use one of the following coding schemes [17]: 

 Local codes, in which each item is represented by a separate neuron. A neuron in this 

scheme is called a grandmother cell. This scheme is simple and easy to decode. 

However, it has a very low representational capacity (N items at most), and it is not 

fault tolerant (a lost cell means a lost item). 

 Dense codes, in which each item is represented by the combination of activities of all 

neurons. This scheme has a very high representational capacity (2
N
 items). However, 

coding and decoding is difficult since all neurons are involved in the process, and 

requires redundancy schemes (at the expense of capacity) to make it fault tolerant; 

otherwise, a lost cell renders the code useless. 

 Sparse codes, in which each item is represented by a small set of neurons. This 

scheme combines advantages of local and dense codes while avoiding most of their 



 

 

 

 

 12 

drawbacks. It is still easy to decode, has a sufficiently high representational capacity, 

and is fault tolerant. 

 

2.2.3 Sparse Coding in the Brain 

The spatial receptive fields of simple cells in mammalian cortex can be characterized 

as being localized, oriented, and bandpass, comparable with the basis functions of wavelet 

transforms. These receptive field properties seem to produce, in terms of a strategy, a sparse 

distribution of output activity in response to natural images [18]. Field [19] applied this idea 

to simple cells in primary visual cortex suggesting that basis functions limited both in space 

and frequency maximize sparseness when applied to natural images. Földiak [20] proposed 

an algorithm to find sparse encodings in neural network models based on anti-Hebbian lateral 

connections within a layer of nonlinear artificial neurons and Hebbian forward connections 

between these layers, combined with a local threshold control mechanism to learn a sparse 

code with low information loss, representing the inputs by the combination of uncorrelated 

components. 

2.2.4 Sparse Representations 

The sparse representation of a signal      in a given overcomplete dictionary    , 

can be stated as       , where   is a     matrix (with    ) containing the elements 

of an overcomplete dictionary in its columns,   is a      coefficient vector, whose ‖ ‖  is 
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minimal [21]. Under these considerations, the problem of sparse representation is to find   

such that: 

       ‖  ‖  s.t.      

where ‖ ‖  is the    norm and is equivalent to the number of non-zero components in vector 

 . Vector   is called the sparse code of  . 

 

2.2.5 Memory-Prediction Framework 

The memory-prediction framework is a theory of brain function based mainly on the 

role of the mammalian neocortex in matching sensory inputs to stored memory patterns and 

how this process leads to predictions of what will happen in the near future. The theory 

postulates that the remarkably uniform morphology of cortical tissue reflects a common 

single algorithm which underlies all cortical information processing [5].  

The central idea of the theory is based on a hierarchy of recognition where bottom-up 

inputs interact with top-down expectations to generate predictions of subsequent expected 

inputs. Each hierarchy level remembers frequently observed temporal sequences of input 

patterns and generates labels for these sequences that are propagated up the hierarchy. As 

one moves up the hierarchy, representations gain: 

 Extent, bigger areas of the sensory domain are covered. 

 Temporal stability, higher-level labels tend to be more stable than lower-level labels. 
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 Abstraction, successive extraction of features, improves invariant representations, 

which in higher levels allow recognition of increasingly abstract entities. 

 

2.2.6 Hierarchical Temporal Memory 

Hierarchical temporal memory (HTM) is a model that attempts to implement the 

memory-prediction framework. Since its conception, HTM has evolved in several aspects, as 

can be seen in [22], [23] and [24]. The current known version of HTM has a strong influence 

in the model proposed in this study. 

HTM is fundamentally a memory-based system with a hierarchical organization, 

trained on lots of time-varying data. HTM can be viewed as a new form of neural network 

with specific architectural guidelines. HTM uses a neuron model more complex than the 

classical one; these neurons are arranged in columns, layers, regions, and hierarchies. The 

way data is stored and accessed is logically different from the standard model used in classic 

computer memory; the standard model has a flat organization and does not have an inherent 

notion of time. A programmer can implement any kind of data organization and structure on 

top of the flat computer memory, and has control over how and where information is stored. 

By contrast, HTM memory is more restrictive, it controls where and how information is 

stored, following a distributed fashion. The main characteristics of the model are: 
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 Hierarchy: An HTM network consists of regions arranged in a hierarchy. The region 

is the main unit of memory and prediction in an HTM. Typically, each HTM region 

represents one level in the hierarchy. Ascending the hierarchy always leads to 

convergence; multiple elements in a child region converge onto an element in a 

parent region. However, due to feedback connections, information also diverges as 

you descend the hierarchy. The benefit of hierarchical organization is efficiency. It 

significantly reduces training time and memory usage because patterns learned at 

each level of the hierarchy are reused when combined in novel ways at higher levels. 

Sharing representations in a hierarchy also leads to generalization of expected 

behavior. The hierarchy enables a new object in the world to inherit the known 

properties of its sub-components. 

 Regions: The notion of regions wired in a hierarchy comes from biology. Biologists 

divide the neocortex into different areas or “regions” primarily based on how the 

regions connect to each other. Some regions receive input directly from the senses 

and other regions receive input only after it has passed through several other regions. 

It is the region-to-region connectivity that defines the hierarchy. All neocortical 

regions look similar in their details. They vary in size and where they are in the 

hierarchy, but otherwise they are similar. 
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 Sparse distributed representations: Although neurons in the neocortex are highly 

interconnected, inhibitory neurons guarantee that only a small percentage of the 

neurons are active at one time. Thus, information in the brain is always represented 

by a small percentage of active neurons within a large population of neurons. This 

kind of encoding is called a “sparse distributed representation”. A single active 

neuron conveys some meaning but it must be interpreted within the context of a 

population of active neurons to convey the full meaning. The representation is 

obtained in a "winner takes all" fashion, the first cell that activates in a zone, inhibits 

neighbor cells in the zone. It may seem that this process generates a large loss of 

information as the number of possible input patterns is much greater than the number 

of possible representations in the region. However, both numbers are really big. The 

actual inputs seen by a region will be a miniscule fraction of all possible inputs. The 

theoretical loss of information will not have a practical effect. 

 Learning: An HTM region learns about its world by finding patterns and then 

sequences of patterns in sensory data. The region does not “know” what its inputs 

represent; it works in a purely statistical realm. It looks for spatial patterns, 

combinations of input bits that occur together often. It then looks for temporal 

patterns or sequences, how these spatial patterns appear in sequence over time. After 

initial training, an HTM can continue to learn or, alternatively, learning can be 
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disabled after the training phase. Once an HTM has learned the basic statistical 

structure of its world, most new learning occurs in the upper levels of the hierarchy. 

 Prediction: Every region of an HTM stores sequences of patterns. By matching stored 

sequences with current input, a region forms a prediction about what inputs will likely 

arrive next. HTM regions actually store transitions between sparse distributed 

representations. An HTM region will make different predictions based on context that 

might stretch back far in time. The majority of memory in an HTM is dedicated to 

sequence memory, or storing transitions between spatial patterns. Some key 

properties of HTM prediction are: 

o Prediction is continuous. As the inputs come in, HTM is constantly predicting 

what will happen next. 

o Prediction occurs in every region at every level of the hierarchy. 

o Predictions are context sensitive. Predictions are based on what has occurred 

in the past, as well as what is occurring now. Thus an input will produce 

different predictions based on previous context. An HTM region learns to use 

as much prior context as needed, and can keep the context over both short and 

long stretches of time, ability known as “variable order” memory. 

o  Prediction leads to stability. The output of a region, its prediction, becomes 

more stable the higher they are in the hierarchy.  
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o A prediction tells us if a new input is expected or unexpected. Each HTM 

region is a novelty detector. Because each region predicts what will occur 

next, it “knows” when something unexpected happens. 

o Prediction helps make the system more robust to noise. When an HTM 

predicts what is likely to happen next, the prediction can bias the system 

toward inferring what it predicted, avoiding the effects of noise. 

 

2.2.7 Dynamical Systems 

A dynamical system is a tuple        , with   a set of non-negative times,   a state 

space, and   an evolution function,        . The coordinates in the state space give a 

complete description of the system. Given a current state of the system, the evolution 

function predicts the next state or states. These predictions implicate the concept of time, 

which may be discrete or continuous. The evolution function is deterministic if each state has 

a unique consequent, and is stochastic if there is a probability distribution of possible 

consequents for a given state. The evolution function can be represented by a differential 

equation or a difference equation [25].  
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2.2.8 Deterministic Finite Automata 

A deterministic finite automaton (DFA) is a computational model defined as a 5-tuple  

[26] 

  

             

where: 

  is a finite set called the states, 

  is a nonempty finite set called the alphabet, 

        is the transition function, 

     is the start state, and 

    is the set of accept states. 

The members of the alphabet are regarded as symbols. A string over an alphabet is an 

ordered finite sequence of symbols taken from the alphabet. A DFA either accepts or rejects 

a string produced over the alphabet of the DFA. The language of a DFA   is the set of all 

strings that   accepts, denoted as        . 
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2.2.9 Pattern Recognition 

Pattern recognition is the study of how machines can observe the environment, learn 

to distinguish patterns of interest from their background, and make sound and reasonable 

decisions about the categories of the patterns [27].  

Watanabe [28] defines a pattern “as opposite of a chaos; it is an entity, vaguely 

defined, that could be given a name”, and establishes that the recognition/classification of a 

given pattern may be achieved by one of the following tasks: 

 Supervised classification, in this case the pattern is identified as a member of a 

predefined class. 

 Unsupervised classification, in this case the pattern is assigned to a, until now, 

unknown class. 
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3 A NEOCORTEX-BASED MODEL 

The accepted view among evolutionary biologists and cognitive neuroscientist is that 

evolution molded the human brain to solve problems related to surviving in an unstable 

outdoor environment and to do so in nearly constant motion [29]. Solving survival problems 

requires building and storing a model of the real world, task mainly done by the neocortex. 

The brain uses this memory-based model to make continuous predictions of future events; 

which would define intelligence as the ability to successfully predict the future, far enough to 

be of real use to the survival of an organism [5]. The real world model built by the brain, at 

first, is just a suitable representation for survival purposes. The stored representation is not a 

comprehensive representation of the real world, but a sample from a limited domain, dictated 

by the resolution of our natural sensors, the senses [30]. 

The tenets of HTM are analyzed and restated as a neocortex-based model; this model 

proposes a generalization of the role of sparse distributed representations by using a set of 

mappings, a semantic representation and a set of codebooks. Also, the model has a clearer 

and more complete formal specification of the hierarchy than HTM in [24]. In this model, the 

handling of input prediction is clearer and well defined using the transition function of a 

DFA. Finally, the general way in which the model uses codebooks, gives freedom to 

implement them, using any method that can group data and obtain representatives from these 

groups. 
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The model uses the concepts introduced in Chapter 2 in the following way. The input 

data can be formally treated as a sequence of states generated by a dynamical system. The 

model transforms this sequence into a semantic representation using a mapping function and 

a local code. The semantic representation of a single state is a high-dimensional Boolean 

vector. Two vectors have semantic similarity if they have common components. Once the 

input is in semantic form, as a sequence of Boolean vectors, the concept of codebooks from 

vector quantization is used to model archetypes that represent a (sparse) group of 

characteristics. The codebook is a finite set that can be considered as a set of symbols, an 

alphabet; under this consideration, the input sequence is equivalent to a string over an 

alphabet. The training dataset in a supervised classification problem is finite, making it 

comparable to a finite set of strings. The simplest computational model that can process a 

finite set of strings, a finite language, is a DFA. In the model, DFA are used to handle 

learning, acceptance (or rejection), and prediction of incoming patterns (strings). Also, the 

model aims to perform a dimensionality reduction of space and time using hierarchies and 

grouping sequences of transformed patterns. 

The model deals effectively with classification problems both in supervised manner 

and unsupervised manner. This study focuses only in the supervised version of the problem, 

which is stated as follows. 
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The problem formulation considers an extended version of the formal supervised 

pattern recognition problem, suitable to handle data streams. The theoretical model and 

model implementation proposed are capable of solving this problem, and are based mainly in 

the current knowledge of how the neocortex works. 

3.1 Problem Formulation 

3.1.1 Supervised Pattern Recognition Problem 

Given: 

 A set of instances   and a set of labels (classes)  . 

 An unknown function       that maps input instances     to output labels 

   . 

 A training set   {                 }, assumed to represent accurate examples of 

the mapping    

Produce: 

 A function  ̅     that approximates as closely as possible the mapping  . 

3.1.2 Extended Supervised Pattern Recognition Problem 

The previous formulation is extended in the definition of the set  , that now 

incorporates sequences: 

 A set of instances  , where     is a sequence of states generated by an unknown 

dynamical system          , with   a non-negative time interval,   the state 



 

 

 

 

 24 

space, and   the evolution function defined as        . If   is a real dynamical 

system,   is defined as the non-negative reals; otherwise, if   is a discrete dynamical 

system,   is defined as the non-negative integers. In both cases   is a Banach space 

over the vector space   . 

The goal of this formulation is the same as the previous one, it produces a function  ̅ 

that approximates  . 

3.2 Theoretical Model 

The idea behind this model is to solve the extended supervised pattern recognition 

problem by constructing an automaton   capable of computing  ̅ . The following 

assumptions are made: 

  ̅ is a computable function. 

 For the extended set of instances  : 

o The principle of locality, in the spatial and temporal sense, holds. Instances 

that exhibit spatial proximity or temporal proximity can be considered similar 

under some metric. 

o For all    ,   is a finite sequence generated by an unknown discrete 

dynamical system.  

3.2.1 The Automaton A 

Let   be a set of unknown discrete dynamical systems that generates  : 
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  {                } 

where    is a finite set restricted to the positive integers,    is the state space of    and    is 

the evolution function           . Assume, without loss of generality, that every    can 

use the state space    ⋃       , transforming   into: 

  {               } 

where          . 

Let         be the set of all possible sequences generated by  , more specifically: 

        {                
|  |                          } 

Hence           . 

Let   be an automaton defined as: 

        

where                  is a tuple of mappings and                is a tuple of 

deterministic finite automata. The automaton   can be thought as a hierarchy of deterministic 

finite automata that uses mappings in every level to preprocess and to transform its input 

sequence. An input sequence   is said to be accepted by   if every automaton in the 

hierarchy accepts the respective transformation of  .         is the set of all sequences that 

  accepts. Automaton   is used to recognize   in the sense that          . The 

construction of   is as follows: 
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    is defined as         such that         where     and     .    internally 

performs four mappings using a bounded domain     such that          , 

where         {    (                )} . The mappings are as 

follows: 

o         , where   is a bounded set such that            , and   is a 

lattice. 

o        {   } , where   is a lattice,   | | , and {   }  is a  -

dimensional Boolean space. 

o      {   }    , where {   }  is a  -dimensional Boolean space and 

   {   }  is a codebook obtained by a Vector Quantization process in the 

Boolean space under the Hamming distance. 

o           , where    {   }  is a codebook and    is a finite set of 

symbols (an alphabet), this mapping is bijective. 

o           (    (    (       )))    where     and     . 

 The notation    is a compact way to represent a transformation of a sequence over   

into a string over   .  
       

  computed as         (    (   (     ) ))  

 , where      and     
 . 
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          is defined as      
       such that        , where     

  and 

      .    computation requires choosing a fixed parameter   to group 

subsequences of length   in an unordered way. A goal of    is to reduce the 

dimensionality of the problem by imposing the constraint |  |  |    | . The 

computation is as follows: 

o         {   } , where |  |   , such that     (  )     with    

{          } and    {   }  a canonical Boolean vector with a 1 in the  th 

position. 

o        
  {   } , where   

  represents the strings of length   over    and 

{   }  is a  -dimensional Boolean space, such that given a     
 ,   

       : 

                                                     

with   {   } . 

o      {   }    , where {   }  is a  -dimensional Boolean space and 

   {   }  is a codebook obtained by a Vector Quantization process in the 

Boolean space under the Hamming distance. 

o             , where    {   }  is a codebook and      is a finite set of 

symbols (an alphabet), this mapping is bijective. 
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o           (    (       ))    where     
  and       . 

    is defined as                    , where if   |  | then: 

o    {          }  

o    {          }  

o   (     )      

              
                                      

o    is the initial state 

o       {  } 

 Choose   and   in such a way that         with     and     . 

      is defined as           such that: 

         , if                                  . 

By construction, automaton   accepts, across its hierarchy, the sequences of  , thus 

         . In the ideal case that          , automaton   would be capable of 

recognizing the language of  , however due to the definition of  , automaton   is not 

guaranteed to be a decider of        ; hence in the best case                . 

The complete definition of   produces the mapping           built using the 

information of the training set  , hence      can be considered as a mapping that 
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approximates the unknown function  . Therefore  ̅       is a solution of the extended 

pattern recognition problem. 

 

3.2.2 A simple example 

The following example tries to show how automaton A processes a given sequence of 

patterns in order to accept or reject the sequence as part of its language. Working with a low-

dimensional example is an oversimplification of the actual high-dimensional expected input; 

the process may seem counter-intuitive or flawed, but this example only aims to show the 

procedure that automaton A follows. 

The example presented is a path over a space time plane, where space is the positive 

reals and time is also the positive reals as Figure 3.1 shown. 
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Figure 3.1 A simple sequence s over space time 

The first step is to choose a domain          that contains all the states used by s. 

Time is mapped to the positive integers transforming s into a finite sequence. Then a lattice   

transforms   into a finite set, leaving s also as a finite sequence as Figure 3.2 shown. 
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Figure 3.2 Discretization of space time that transforms s into a finite sequence 

The next step creates a semantic representation of space by mapping the discrete 

space into a Boolean space; 12 elements in space imply a 12-dimensional Boolean space. The 

representation is semantic in the sense that if two vectors have an active bit in common, those 

vectors are using the same portion of space; or, the bit means the same in terms of space for 

both vectors. More bits in common indicate more similarity between vectors. The semantic 

representation over a Boolean space makes the Hamming distance a suitable metric to 

measure dissimilarity between vectors. Table 3.1 shows the resulting set of Boolean vectors 

for sequence s, where zeroes are omitted for clarity. The column Alphabet is explained with 

the help of Table 3.2 in the next paragraph. 
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Table 3.1 Boolean vectors representing sequence s 

 
Time  
Step 

Space 
Alphabet 

 
1 2 3 4 5 6 7 8 9 10 11 12 

se
q

u
en

ce
 s

 

1 1                       a 

2   1                     b 

3     1                   c 

4         1 1             d 

5             1 1 1 1 1   e 

6                       1 f 

7                       1 f 

8                     1   e 

9                   1     e 

10               1         e 

11             1           e 

12           1             d 

13         1               d 

14     1                   c 

15   1                     b 

 

After the first semantic representation of s is obtained, a vector quantization 

procedure follows; this procedure uses Hamming distance and a threshold to group vectors. 

As a result the numbers of different vectors to represent s is reduced. The resulting codebook 

is mapped to an alphabet which in turn serves to rewrite the sequence from Table 3.1 as 

s=abcdeffeeeeddcb. The codebook of Table 3.2, for the sake of the example is obtained 
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with a very loose threshold of 1 bit: two vectors are considered the same if they have at least 

1 bit in common. 

 

Table 3.2 First codebook and alphabet obtained from the Boolean set of vectors 

that represent s in Table 3.1 

Space 
Alphabet 

1 2 3 4 5 6 7 8 9 10 11 12 

1                       a 

  1                     b 

    1                   c 

        1 1             d 

            1 1 1 1 1   e 

                      1 f 

 

At this point s is transformed into a string over an alphabet, here is where the 

deterministic finite automata M from automaton A come in use; their duty at every level of 

the hierarchy is to learn the needed transitions to accept s and other training data. After 

training, M should reject sequences that don’t resemble the training data. Figure 3.3 shows 

the new space time representation of s using the first alphabet. 
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Figure 3.3 Space time representation of s using the first alphabet. 

The previous codebook reduced the space state by grouping semantically-similar 

vectors; the procedure that follows is an attempt to compress time by taking close-in-time 

subsequences of an arbitrary length. This process maps the input into a more abstract time-

dependent space where the set of states are fragments that represent change across time. To 

produce this mapping, time is considered in an unordered way; the temporal grouping 

parameter should not be too small, the purpose is to reduce the probability that two 

sequences, that should be considered different, are one the permutation of the other.  

For the current example the temporal parameter is set to 3. The number of vectors in 

the last codebook is 6, which creates a new 6-dimensional Boolean space, where sequence s 

is represented by 5 vectors built upon subsequences of length 3, these results appear in Table 



 

 

 

 

 35 

3.3. The new codebook obtained in Table 3.4 comes after applying vector quantization on 

vectors from Table 3.3; this procedure returns the alphabet seen in Table 3.4 and sequence s 

now is represented as s=ghhhg. 

Table 3.3 Boolean vectors representing sequence s after applying a temporal 

grouping parameter of 3 time steps. 

 
Time  
Step 

Space Alphabet 

 
a b c d e f   

se
q

u
en

ce
 s

 1 1 1 1       g 

2       1 1 1 h 

3         1 1 h 

4       1 1   h 

5   1 1 1     g 

  

Table 3.4 New codebook and alphabet obtained from the set of vectors that 

represent s in Table 3.3 

Space 
Alphabet 

a b c d e f 

1 1 1       g 

      1 1 1 h 

 

Figure 3.4 shows on the left the representation of sequence s under alphabet {g, h}, 

after applying the temporal grouping procedure once more, the final representation of 

sequence s under alphabet {k} appears on the right, which is simply s=k, a single point in 
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the last space time domain. At this point the construction of automaton A is complete; now, A 

should be able to accept sequences similar to s and reject those that don’t resemble it. 

 

Figure 3.4 Representations of sequence s under alphabet {g, h} and after one 

more temporal grouping under alphabet {k} 

 

3.2.3 Properties of the Automaton A 

3.2.3.1 Semantic Representation 

The data is promptly converted into a semantic representation using the mapping 

       {   }  that maps a high dimensional lattice into a high dimensional Boolean space 

where a point in the lattice corresponds to a bit in the Boolean vector. This conversion is 

costly in terms of storage, but necessary to achieve the property. Once the representation is 
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semantic, measuring similarity is straightforward. This property remains consistent across the 

hierarchy. 

3.2.3.2 Autoassociativity 

Autoassociativity is defined as the ability to associate a pattern with a part of itself. 

The model obtains this property from its semantic representation and by using the set of 

codebooks   , partial inputs have semantic similarity with already stored codewords, enabling 

the recovery of a complete pattern. Since this property remains consistent across the 

hierarchy, its influence immediately extends to space and time. 

From a cognitive point of view, autoassociativity as a property of the brain might give 

the explanation to why analogies are so important for cognition [31]. A new concept, difficult 

at first, with the right analogy is immediately associated with an already mastered concept, as 

if the new concept is transformed into a partial input of the mastered concept and 

autoassociated to it.  

3.2.3.3 Noise tolerance 

The model obtains this property for the same reason that it obtains autoassociativity, 

the use of semantic representations and codebooks across the hierarchy. Semantic similarity 

and codewords enable the restoration of the pattern to a version that is useful to the model. 

Also, since this property is consistent across the hierarchy, its influence extends to time and 

space. 
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3.2.3.4 Semantic Invariance 

Autoassociativity and noise tolerance are important steps toward invariant semantic 

representations. Missing or distorted parts in an input sequence, in general in lower levels of 

the hierarchy, can be completed or restored by autoassociativity and noise tolerance in higher 

levels of the hierarchy, avoiding interruption or failure of the recognition process. 

An invariant semantic representation seems to be the characterization of a region of 

space time for a given input; after that, new inputs that fall within this region produce the 

same invariant representation. If the model is still learning, this region of space time is 

dynamically adjusting its shape to the more frequent inputs. 

From a cognitive point of view, invariant semantic representations could define what 

a mental abstraction is, a characterized region of space time. Since all these representations 

have a homogenous nature, it is perfectly valid to feed abstractions, as representations, into 

other hierarchies which could be the foundation for high level thinking. 

3.2.3.5 Input prediction 

The model has one deterministic finite automaton for every level of the hierarchy; 

these automata are in charge of prediction duties. They learn their transition functions from 

the training data that later dictates what to expect. Using finite automata in such a natural 

way is only possible due to the semantic invariance property that enables the use of alphabets 

based on invariant representations. 
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Originally, the model rejects a sequence if any level in the hierarchy rejects the 

sequence. This constraint can be relaxed in lower levels of the hierarchy and maintained in 

higher levels, the model can be more noise tolerant with this modification. Additionally, in a 

well-trained model, a rejection of a sequence at a higher level of the hierarchy might be 

considered as an anomalous input or an outlier. 

3.2.3.6 Subsequence contextualization 

This aspect is not considered in the theoretical model, but can be achieved in the 

implementation considering the technique of splitting states [32]. The problem of 

subsequence contextualization refers to the following situation: 

Given sequences s=abcd and r=ebcf the model should be able to predict d after c, 

only if a was at the beginning of the contextualized sequence; similarly predict f after c, 

only if e was at the beginning of the contextualized sequence. Otherwise, unacceptable 

sequences as {ebcd, abcf} might be accepted. 

Splitting states implies that every time a context is detected, new states are created for 

the subsequence in the new context, with the condition that these states should respond to the 

same corresponding input in the original subsequence. Transitions between sequence 

elements are learned independently for every context. This is equivalent to transforming 

original sequences s and r into s=ab1c1d and r=eb2c2f. All bi respond to b but they only 

activate depending on the previous sequence element, once a context is activated, it is clear 
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to the model what sequence element should be next. The strategy to detect a new context is: 

if two or more states predict the same state a then split a. 

 

3.3 Model Implementation 

Two implementations were developed; the first implementation uses sparse 

distributed representations and has similarities to the HTM implementation [24]. The second 

implementation strictly uses a vector quantization approach based on thresholds. An 

important goal of these implementations is to construct an instance of automaton   almost 

exclusively by learning from data of the training set  . The first implementation makes two 

important considerations: 

 The input data is already in Boolean format as a representation in {   } . Mappings 

         and        {   }  can be done independently and specifically for 

every experiment.   is expected to be in the order of thousands. 

 Mappings            and              are not performed. Codebooks    are 

implemented via sparse representations over the Boolean space with a sparsity factor 

of 2%. Codebooks cardinalities should be decreasing, |  |  |    |. Corresponding 

implementations of automata    use codebooks    as if they were alphabets.  
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The neocortex favors sparse distributed representations due to two important reasons: 

 To achieve semantic representations. Sparse representations have the ability to 

uncover semantic information due to a simple but important property of very high 

dimensional data, at least observable in many image applications: instances belonging 

to the same class exhibit a degenerate structure, meaning that they lie on or near low-

dimensional subspaces or submanifolds [33]. 

 Using strictly an alphabet would be equivalent to using a local code, in this case, a 

single neuron. A damaged neuron in a local code could completely erase a portion of 

a memory. Instead, using a sparse representation can be seen as a measure for fault-

tolerance; a damaged neuron in a sparse code only produces degradation in a 

memory. 

 

The second implementation strictly uses a vector quantization approach based on 

thresholds. These two implementations show the generality of the model, allowing the use of 

different methods to compute codebooks. Essentially, any method that can group vectors and 

obtains representatives of those groups can be used. 
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3.3.1 First Implementation 

The hierarchy and its main components are represented in Figure 3.5. The 

hierarchy is made by a set of layers; every layer has a set of columns, where every 

column has a specific feed forward input, taken as a random subset of the whole 

input. A column has a group of cells that respond to the input of the column. A 

cell has a set of segments of dendrites for prediction purposes; a segment 

remembers what columns were active just before the cell became active. The 

sparse code is achieved by selecting a small set of columns that best match the 

current input, the rest of the columns are inhibited. The set of winner columns is 

rewarded to improve its response to the particular input. 

 

Figure 3.5 First implementation design. The hierarchy and its main components 

are schematized. 
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The main classes used in this implementation are: 

 Hierarchy = (Input, Regions, Output).  

o Input reads a sequence of Boolean vectors representing the initial entry for the 

model. Every time a sequence element is received, a global time step is 

incremented, triggering a sequential attempt by Hierarchy.Regions to process 

the sequence element, some regions may have to wait to receive enough 

sequence elements before computing successfully an output. 

o Regions is a list of instances of class Region. 

o Output returns the label for a given entry sequence once it is completely read. 

 Region = (Input, Columns, Output). 

o Input reads a sequence of Boolean vectors from Hierarchy.Input or from a 

previous Region.Output. 

o Columns is a list of instances of class Column. 

o Output returns a sparse representation as a Boolean vector to feed the next 

Region.Input or Hierarchy.Output. Region uses Column.Output to build a 

sparse representation, a small subset of Columns, determined by the sparsity 

factor and under the strategy “winners take all”. Region.Output is computed 

every time a sequence element is read. 

   Column = (Input, Cells, Dendrites, Synapses, Output) 
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o Input receives a sequence element, as a Boolean vector, from Region.Input. 

o Cells is a list of instances of class Cell. This attribute enables state splitting, to 

handle different context in which a Column might be part of. 

o Dendrites is a Boolean vector with the same dimensions as Column.Input. 

This attribute represents the potential connections (0 not connected, 1 

potential connection) that a Column can establish to the input. 

o Synapses is a vector with the same dimensions as Column.Input. This 

attribute, in conjunction with Column.Dendrites, states if a potential 

connection is, at the moment, connected or not, to corresponding positions in 

the input. The components of this vector take values in the real interval [0, 1], 

are considered connected when values are above a threshold (0.2 in 

experiments), and can be modified by learning. 

o Output is a non-negative integer value that measures matching between the 

connected part of Column.Dendrites and Column.Input. This attribute is 

computed as: 

                                             

where     is the usual dot product between vectors. If Column.Output is strong 

enough to be part of winner columns, Column checks its attribute Cells and 
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activates only those in predictive state; if no cell is in predictive state, all cells 

in Column are put in active state. 

 Cell = (Segments, ActiveState, PredictiveState, LearnState) 

o Segments is a list of instances of class Segment. A Segment links a sparse 

representation to a cell that might be activated in the next time step due to the 

next sequence element, works like a prediction mechanism. 

o ActiveState indicates if the cell is active or not at the end of current time step. 

o PredictiveState indicates if the cell is predicting its activation or not at the 

beginning of current time step. Computation occurs in the end of previous 

time step and it is enough that one Segment in Cell.Segments is active to set 

this attribute on. 

o LearnState indicates if the cell is chosen for learning or not at the end of 

current time step. 

 Segment = (Dendrites, Synapses) 

o Dendrites is a list indicating a set of cells whose activation usually precedes 

the activation of the owner cell. 

o Synapses is a list with the same dimensions as Cell.Dendrites. The elements of 

this list take values in the real interval [0, 1], are considered connected when 
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values are above a threshold (0.2 in experiments), and can be modified by 

learning. 

A Segment is said to be active if the number of active cells for connected synapses 

in Segment.Dendrites is above a threshold. 

The most important algorithms are offered in pseudo-code: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region.ComputeSparseCode 

Input:  

s: A sequence element 

k: The number of sparse columns to be retrieved 

Output:  

c: A sparse code 

1. For every Column in Region 

1.1.  Compute Column.Output for s 

2. Select k winner Columns, the ones with the highest Column.Output 

3. For every winner Column 

3.1. Reward Column.Synapses that match s 

3.2. Punish Column.Synapses that don’t match s 

4. Return the list of winner Columns as c 

 

Region.ComputePrediction 

Input: 

c: A sparse code 

Output:  

p: Prediction as a sparse code 

1. For every Column in c 

1.1. If a cell in Column is in predictive state  

1.1.1. Then activate cell and mark cell for learning 

1.1.2. Else activate Column 

2. If a Column was activated 

2.1. Then select the cell with a segment that best matches the sparse 

code c 

2.2. If no cell matches the sparse code c 

2.2.1. Then choose a new cell and create a segment in it that 

matches the sparse code c 

3. If a Cell was activated and was predicted 

3.1. Then Reward the segment that best matches the sparse code c 

4. If a Cell was predicted and not activated 

4.1. Then Punish the segment that caused the prediction 

5. Given current active cells compute upcoming predictions 
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3.3.2 Second Implementation 

The hierarchy and its main components are represented in Figure 3.6. The hierarchy 

is represented by a set of layers; every layer has a codebook and a DFA associated with it. 

The DFA uses the codebook as an alphabet. 

 

Figure 3.6 Second implementation design. The hierarchy and its main 

components are schematized. 

This implementation is more compact than the previous one. The classes Hierarchy 

and Region remain; however, the class Region, instead of class Columns, has the classes 

Codebook and DFA. Codebook tries to match an input to and already stored codeword within 

a threshold; if there is no codeword that matches the input, a new codeword using the input is 

created. DFA uses, as a symbol of an alphabet, a unique identifier for every codeword; it 

creates the necessary states to learn correctly the transitions between symbols. The resulting 



 

 

 

 

 48 

transition function is used later for input prediction; predicted symbols can have its threshold 

tolerance increased.  
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4 EXPERIMENTAL EVALUATION 

4.1 Methodology 

The goal of the experiments is to show and test specific aspects of the theoretical 

model under implementations that follow the specifications listed in Section 3.3. These 

aspects are: 

 Construction of sparse distributed representations or codebooks using learning. 

 Importance of order in training data during learning. 

 Pattern reconstruction. 

 Spatial and temporal autoassociativity. 

 Spatial and temporal noise tolerance. 

 Input prediction. 

 Subsequence contextualization. 

 Successful recognition across the hierarchy. 

All these aspects are covered across six experiments. The experimental report format 

includes: 

 Description. 

 Properties considered. 

 Data and parameters used. 
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 Results. 

 Discussion. 

Experiments I, II, III, IV and V are accomplished using the first implementation; 

these experiments have a qualitative character, showing the correct operation of the model. 

Experiments accomplished with the first implementation have these specifications in 

common: Every column has 6 cells. Dendrites of a column randomly cover 75% of the input, 

60% of these dendrites have connected synapses. Every cell has 12 segments. Sparsity factor 

is 2% for all layers. The input is always a 50×50 binary image per time step. 

Experiment VI is accomplished using the second implementation; this experiment has 

a quantitative character, showing the performance of the model as a classifier for a real 

dataset, the dataset was taken from the Carnegie-Mellon Motion Capture Database [34]. 

 

4.2 Experiment I 

4.2.1 Description 

Given a simple sequence S of 2D binary images as a training data set, train the model 

and show the steps that create sparse distributed representations. The binary images represent 

single uppercase letters. Test the model using different versions of sequence R, where 

individual patterns have different levels of salt and pepper noise or have been cropped. Show 

pattern reconstruction using the learned sparse code. 
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4.2.2 Properties considered 

Construction of sparse distributed representations using learning, importance of order 

in training data during learning, pattern reconstruction, spatial autoassociativity and spatial 

noise tolerance. 

 

4.2.3 Data and parameters used 

 Model: 1 layer (L1). Layer dimensions: L1=32×32 columns. Sparsity factor is 

returning 21 columns for every pattern. Learning is done with 4 iterations. 

 Training sequence: S=AFM 

 Testing sequence: R=AF 

 Noise levels: A random set   of values switched in the testing sequence, where | | is 

10%, 30%, 50% and 70% of nonzero values in the original binary image. 

 Cropping: 50% of nonzero values, lower or right halves in the testing sequence. 

 Pattern reconstruction: Majority vote. A pixel is accepted if more than half of the 

sparse code accepts it. 

4.2.4 Results 

After initialization, Figure 4.1 (a) shows the potential input coverage; in average 75% 

of columns has a dendrite to a specific input pixel. (b) shows the effective input coverage; in 

average 45% of columns has a dendrite with a connected synapse to a specific input pixel. 
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Figure 4.1 (a) Potential input coverage. (b) Effective input coverage. 

Before any learning, Figure 4.2 shows the dendrites over the input of one specific 

column. (a) shows the whole set of dendrites. (b) shows the initial value of synapses in the 

range of [0.18, 0.23]. (c) shows connected synapses, with values equal or greater than 0.2. 

 

Figure 4.2 Dendrites of a column after initialization. (a) Dendrites. (b) Values of 

synapses. (c) Connected synapses. 

Figure 4.3 shows the changes over the synapses of one winning column after one 

iteration. Given the input pattern, hits and misses are rewarded and penalized respectively by 

changing the strength of synapses. 
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Figure 4.3 Dendrites of a column after one iteration. (a) Dendrites. (b) Values of 

synapses. (c) Connected synapses. 

After two iterations, Figure 4.4 shows the changes over the synapses of one winning 

column. The remaining connected synapses finally match the input in the best possible way. 

 

Figure 4.4 Dendrites of a column after two iterations. (a) Dendrites. (b) Values of 

synapses. (c) Connected synapses. 

 

Once the training is finished, the sparse code for pattern “A”, represented by a set of 

21 winning columns, can be used to reconstruct the learned pattern under a majority vote 

criterion. Figure 4.5 shows the reconstruction process. (a) shows the voting according the 
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sparse code, a pixel has a voting in the range 0 to 21. (b) shows the binary reconstruction 

after majority vote, a pixel needs 11 or more votes to be accepted. (c) shows the 

reconstruction error, for pattern “A” the error is just one pixel. 

 

Figure 4.5 Pattern reconstruction. (a) Voting according the sparse code. (b) 

Binary reconstruction after majority vote. (c) Reconstruction error. 

To test tolerance to noise, different levels of random noise are introduced in the input. 

Noise is in terms of percentage of nonzero values in the pattern. Pattern “A” has 377 nonzero 

values; a 10% spatial noise means that 38 pixels are switched in the pattern. Figure 4.6 and 

Figure 4.7 show the testing of an input with spatial noise of 10% and 30% respectively. In 

both cases, (a) shows the input with noise. (b) shows the voting according the sparse code 

obtained for the input. (c) shows the binary reconstruction after majority vote. The 

reconstruction error is 1 pixel, the same as in the original learned sparse code.  
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Figure 4.6 Testing spatial noise. (a) Input with 10% noise. (b) Voting according 

the resultant sparse code. (c) Binary reconstruction after majority vote. 

 

Figure 4.7 Testing spatial noise. (a) Input with 30% noise. (b) Voting according 

the resultant sparse code. (c) Binary reconstruction after majority vote. 

At 50% level of noise, Figure 4.8 (b) shows how the sparse code obtained for the 

input pattern includes untrained columns that are actually matching the noise, yet (c) shows 

that majority vote leads to a successful reconstruction of the pattern. Reconstruction error is 1 

pixel. 
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Figure 4.8 Testing spatial noise. (a) Input with 50% noise. (b) Voting according 

the resultant sparse code. (c) Binary reconstruction after majority vote. 

At 70% level of noise, Figure 4.9 (b) shows that the sparse code obtained for the input 

pattern no longer resembles the original pattern “A”, most columns in the sparse code are 

untrained columns producing a random pattern in the voting. (c) shows that majority vote 

produce an unrecognizable pattern “A”. Reconstruction error is 715 pixels. 

 

Figure 4.9 Testing spatial noise. (a) Input with 70% noise. (b) Voting according 

the resultant sparse code. (c) Binary reconstruction after majority vote. 
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To test autoassociativity, three incomplete instances of pattern “F” are submitted as 

input. Figures Figure 4.10, Figure 4.11, and Figure 4.12 show how the model is capable of 

recovering the original learned pattern from an incomplete version of itself. The 

reconstruction error in all cases is 1 pixel, the same as in the original learned sparse code. 

 

Figure 4.10 Testing autoassociativity. (a) Input with 50% pixels cropped. (b) 

Voting according the resultant sparse code. (c) Binary reconstruction after 

majority vote. 

 

Figure 4.11 Testing autoassociativity. (a) Input with lower half cropped. (b) 

Voting according the resultant sparse code. (c) Binary reconstruction after 

majority vote. 
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Figure 4.12 Testing autoassociativity. (a) Input with right half cropped. (b) 

Voting according the resultant sparse code. (c) Binary reconstruction after 

majority vote. 

4.2.5 Discussion 

This experiment demonstrates two desirable properties of the pattern recognition 

model, spatial noise tolerance and spatial autoassociativity; it also shows the importance of 

noise free training data and well characterized patterns. In presence of abundant training 

samples, learning can automatically discard spatial random noise since it is not stable across 

different samples. 
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4.3 Experiment II 

4.3.1 Description 

Given sequences S and R of 2D binary images as a training data set, train the model 

and show that both sequences are consistently recognized across the hierarchy. These 

sequences have common subsequences that the model should be able to handle in proper 

context making the right predictions. 

4.3.2 Properties considered 

Subsequence contextualization and successful recognition across the hierarchy. 

4.3.3 Data and parameters used 

 Model: 3 layers (L1, L2, L3). Layer dimensions: L1=32×32 columns, L2=16×16 

columns and L3=10×10 columns. Temporal parameters are 5, 4 and 1 for layers L1, 

L2 and L3 respectively. Learning is done with 2 iterations. 

 Training sequences: 

o S=ABGMLNRST_VXYZ_HMRQK 

o R=EBGWLNRST_MXYH_HMQRK 

 Testing sequences: S and R 

 Common subsequences {BG,LNRST_,XY,_HM,K} 
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4.3.4 Results 

The sparse codes, instead of binary images, are used to present the results. 

Sparse codes for predictions in L1 show consistent single pattern prediction in 

all cases. Consistent in the sense that last elements in common subsequences, 

patterns {G,_,Y,M,K}, are represented by the same sparse code (columns) in 

sequences S and R. Single pattern prediction implies that the model is correctly 

identifying the context when reading a common subsequence, thus using 

different learning cells inside the columns of the corresponding sparse code, 

allowing a unique prediction after the end of the common subsequence. Tables 

Table 4.1 and  

 

Table 4.2 show also consistent single pattern predictions in L2, at this level there are 

two common subsequences {NRST_, HMRQK}. L3 recognizes correctly sequences S and R as 

in the training phase. 

 

Table 4.1 Sparse Code in L2 and L3 for sequence S 

Time 

Step 

L2 

Activations 

L2 

Predictions 

L3 

Activations 

5 [59,89,144,149,150,162] [21,41,59,131,154,216]  

10 [21,41,59,131,154,216] [15,27,53,85,210,219]  

15 [15,27,53,85,210,219] [2,5,9,36,48,117]  
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20 [2,5,9,36,48,117]  [19,71] 

 

 

 

Table 4.2 Sparse Code in L2 and L3 for sequence R 

Time 

Step 

L2 

Activations 

L2 

Predictions 

L3 

Activations 

5 [13,62,135,141,228,251] [21,41,59,131,154,216]  

10 [21,41,59,131,154,216] [33,39,61,139,200,229]  

15 [33,39,61,139,200,229] [2,5,9,36,48,117]  

20 [2,5,9,36,48,117]  [9,49] 

 

4.3.5 Discussion 

Recognizing proper context is very important for the model to make accurate 

predictions of what will happen next, without context one pattern can trigger several 

predictions with many of them unacceptable for the current input. 

4.4 Experiment III 

4.4.1 Description 

Given sequences S and R of 2D binary images as a training data set, train the model 

and use testing data set {S1,S2,R1,R2} to evaluate recognition across the hierarchy. The 

testing data set introduces temporal perturbations as missing elements, extra elements, 

changes in order and different values. 
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4.4.2 Properties considered 

Temporal autoassociativity, temporal noise tolerance and successful recognition 

across the hierarchy. 

4.4.3 Data and parameters used 

 Model: 3 layers (L1, L2, L3). Layer dimensions: L1=32×32 columns, L2=16×16 

columns and L3=12×12 columns. Temporal parameters are 10, 5 and 1 for layers L1, 

L2 and L3 respectively. Learning is done with 4 iterations. 

 Training sequences: 

o S=ABCDEFGHIJKLMNOPQRSTUVWXYZ_ABCDHIJKLMNOPQRSTUVWXYZ 

o R=GHTSRPQNOPQRSTUABCDEFABCD_HIJKLMNOPZXYWVUABCSOPQGE 

 Testing sequences: 

o S1=ABCEFGHIJKLMNOQRSTUVWXYZ_ABCDHI_JKLMNO_PQRST_UVXYZ 

o S2=ABDCEFGHIJKAMNOPQTRSUVAXYZ_ABCDHLAJKMNOPQURATVWXYZ 

o R1=GHTSRPNOLQR_STUABDEFABCD_HIJKBMNOPZBYWVUABCSOBQGE_ 

o R2=GHTSRPCQNPOQRSTUABCDFEABC_HIJKLXMNOPZXVYWUABCSPOQG 

4.4.4 Results 

The sparse codes, instead of binary images, are used to present these results. Since the 

input for L1 represents 1 time step, temporal analysis is meaningful only for higher levels. 

Due to particular temporal parameters for this experiment the input to L2 represents 
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sequences of 10 time steps and the input to L3 represents sequences of 50 time steps mapped 

to just 5 L2-patterns. Tables Table 4.3 and Table 4.4 compare sparse codes of training data 

and testing data. Some L2-patterns are not identical, still applying majority vote in L3 it is 

acceptable to say that R, R1 and R2 are in the same class. 

 

Table 4.3 S, S1 and S2 sparse codes  

Time 

Step 

Seq L2 

 

L3 

10 S [9,41,105,118,139,154]  

 S1 [9,41,105,118,139,154]  

 S2 [9,41,105,118,139,154]  

20 S [113,182,188,193,202,222]  

 S1 [43,57,59,112,138,190]  

 S2 [92,113,188,193,202,222]  

30 S [17,28,64,69,167,210]  

 S1 [17,28,64,69,167,210]  

 S2 [17,28,64,69,167,210]  

40 S [36,61,85,87,174,226]  

 S1 [36,61,85,87,174,226]  

 S2 [36,61,85,87,174,226]  

50 S [20,62,128,152,214,228] [89,90,144] 

 S1 [20,62,128,152,214,228] [89,90,144] 

 S2 [20,62,128,152,214,228] [89,90,144] 

 

 

 

 

 



 

 

 

 

 64 

 

 

Table 4.4 R, R1 and R2 sparse codes 

Time 

Step 

Seq L2 

 

L3 

10 R [113,182,188,193,202,222]  

 R1 [113,188,190,193,202,222]  

 R2 [113,188,202,222,227,255]  

20 R [31,53,89,133,192,234]  

 R1 [31,57,79,93,117,178]  

 R2 [31,34,89,112,133,138]  

30 R [9,41,105,118,139,154]  

 R1 [9,41,105,118,139,154]  

 R2 [9,33,41,105,118,139]  

40 R [35,146,159,207,219,233]  

 R1 [35,146,159,207,219,233]  

 R2 [35,146,159,207,219,233]  

50 R [34,53,89,133,192,234] [2,72,112] 

 R1 [34,53,89,133,192,218] [72,85,112] 

 R2 [3,34,111,112,124,133] [72,112,127] 

 

4.4.5 Discussion 

In some cases the sequences are considerably distorted, but due to sparse coding over 

a semantic representation, the similarity between patterns degrades gradually (in time and 

space), however higher levels can still use the representation. 
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4.5 Experiment IV 

4.5.1 Description 

Given sequences S and R of 2D binary images as a training data set, train the model 

and use testing data set {S1, R1} to show how the model can focus on temporal structure. All 

sequences involve small spatial patterns. Testing sequences introduce temporal perturbations 

compared with corresponding training sequences. 

4.5.2 Properties considered 

Spatial and temporal autoassociativity, temporal noise tolerance. 

4.5.3 Data and parameters used 

 Model: 3 layers (L1, L2, L3). Layer dimensions: L1=32×32 columns, L2=16×16 

columns and L3=12×12 columns. Temporal parameters are 10, 5 and 1 for layers L1, 

L2 and L3 respectively. Learning is done with 2 iterations. 

 Training sequences: S and R. These sequences contain 32 time steps, they represent a 

path followed by a small square. Figure 4.13 shows parts of these sequences. 
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Figure 4.13 Partial illustration of training sequences S and R 

 Testing sequences: S1 and R1. These sequences contain 32 time steps, they represent 

a perturbed path followed by a small circle. Figure 4.14 shows these sequences 

 

Figure 4.14 Illustration of testing sequences S1 and R1 

4.5.4 Results 

The sparse codes for levels L2 and L3 are used to present these results. Due to 

particular temporal parameters for this experiment the input to L2 represents sequences of 8 
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time steps and the input to L3 represents sequences of 32 time steps mapped to just 4 L2-

patterns. Tables Table 4.5 and Table 4.6 compare sparse codes. S and S1 are recognized as 

the same sequence; also R and R1 are recognized as the same sequence. 

 

Table 4.5 S and S1 sparse codes 

Time 

Step 

Seq L2 

 

L3 

8 S [6,13,55,71,118,230]  

 S1 [13,55,71,118,230,254]  

16 S [103,111,140,153,243,248]  

 S1 [103,111,140,153,243,248]  

24 S [96,112,163,206,218,222]  

 S1 [96,112,163,206,218,222]  

32 S [30,48,117,135,139,158] [24,57,135] 

 S1 [30,48,117,135,139,158] [24,57,135] 

 

Table 4.6 R and R1 sparse codes 

Time 

Step 

Seq L2 

 

L3 

8 R [57,75,96,131,202,251]  

 R1 [2,57,75,131,202,251]  

16 R [29,65,132,180,191,241]  

 R1 [29,65,132,180,191,241]  

24 R [6,26,34,142,150,182]  

 R1 [6,26,34,142,150,182]  

32 R [25,32,136,141,177,210] [85,133,144] 

 R1 [25,32,136,141,177,210] [85,133,144] 
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4.5.5 Discussion 

Using small spatial elements allows focus on temporal structure regardless of spatial 

structure; spatial autoassociativity recovers the original learned pattern. This setting is useful 

for learning paths across the 2D domain. 

 

4.6 Experiment V – Short Video Sequence Recognition 

4.6.1 Description 

Given the training data set {S, R, T}, the model is tested using the data set {S1, R1, 

T1} to evaluate recognition across the hierarchy. The data represent short video sequences 

(originally in .gif format); all sequences have 18 color frames. The frame size is 200×200 

pixels. An RGB pixel is converted to a Boolean representation using the mapping intervals [0, 

0.2, 0.4, 0.6, 0.8, 1] in every channel. The result gives a 15-component vector, with 3 active 

bits. The values used for reconstruction in corresponding intervals are (0, 0.25, 0.5, 0.75, 1). 

4.6.2 Properties considered 

Spatial and temporal autoassociativity, spatial and temporal noise tolerance. 

4.6.3 Data and parameters used 

 Model: L1=32×32, L2=16×16 and L3=12×12 columns. Temporal parameters are 6, 3 

and 1 for layers L1, L2 and L3 respectively. Learning is done with 4 iterations. 
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 Training sequences (Figure 4.15): 

S: weight lifting. R: jumping. T: running. 

            

Figure 4.15 Training sequences. Weight lifting, jumping, running. 

 Testing sequences (Figure 4.16): 

S1: weight lifting plus a red text. R1: jumping plus snow effect. T1: running plus rain. 

           

Figure 4.16 Testing sequences. Different types of noise introduced. 

4.6.4 Results 

The whole testing data set is recognized successfully. 

4.6.5 Discussion 

Despite the different types of noise introduced in every frame of the sequence, the 

model is able to recognize the sequence. The reconstruction of the sequence, using the set of 
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reconstruction values, leads to a noise free sequence, with a color pretty close to the original 

sequence. 

4.7 Experiment VI – Motion Capture Data Classification 

4.7.1 Description 

Given a training set E and a testing set T, the model is trained using E to perform a 

classification over the testing set T. There are 7 classes, training set E has one sequence per 

class, and testing set T has 42 sequences. Classes have an uneven distribution of samples. 

The dataset comes from the MoCap Database [34]. 

4.7.2 Data and parameters used 

The data is in skeleton movement format (.amc filetype). Every time step in a 

sequence returns 62 real-values as a vector. All sequences have different length. The data 

capture human activities (Figure 4.17) such as walking (19 samples), running (11), jumping 

(8), walking in an uneven terrain (2), basketball forward dribbling (3), basketball backward 

dribbling (2), and soccer ball kicking (4). This data produces a real matrix with 62 columns 

and as many rows as time steps are in the sequence. The preprocessing stage is quite simple, 

for every column the maximum and minimum values are obtained; these values determine a 

set of intervals. Every interval is divided into 10 equal portions; every portion is mapped to a 

Boolean vector with 10 bits. For a given real value, the bit representing the corresponding 

portion is set to 1 and the rest to 0. After preprocessing, every time step in a sequence has a 
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representation as a Boolean vector with 620 components, where just 10 bits can be set to 1 at 

any given time step. 

 

Figure 4.17 Two skeleton sequences. Walking and running. 

The model contains 3 levels: L1, L2, and L3. Every level has the same 75% similarity 

threshold. Temporal parameters are 50, 12, and 1. One iteration is sufficient to train the 

model. 

4.7.3 Results 

The classifier achieved, in average, an accuracy of 92.4%. The validation used was 

repeated random sub-sampling with 10 trials. All selected random training sets contained 

one sequence per class, the rest of the sequences were used in the testing sets. Table 4.7 

Confusion matrix for the testing set shows the average confusion matrix for the testing set in 

10 trials. Classes are: 1. Walking. 2. Running. 3. Jumping. 4. Walking in an uneven terrain. 5. 

Basketball forward dribbling. 6. Basketball backward dribbling. 7. Soccer ball kicking. 
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Table 4.7 Confusion matrix for the testing set 

 
1 2 3 4 5 6 7 

1 0.88 0.04 0.14 0.20 0.30 0.00 0.00 

2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

3 0.01 0.00 0.97 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.04 0.70 0.00 0.00 0.00 

5 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

6 0.00 0.00 0.00 0.00 0.15 0.70 0.00 

7 0.00 0.00 0.03 0.00 0.00 0.00 0.93 

 

The accuracy results are good, considering the fact that just one sample per class was 

used in the training set and all the sequences have different lengths. The model seems to be a 

strong classifier for this kind of data and it can compete with methods such as [35] based on 

Hidden Markov Models which had an accuracy of 95% on other motion capture data set. 

 

 

4.8 Running time 

The main factor that determines running time is the length of the sequence. The first 

implementation (Experiments I to V) has an average running time of 0.2 seconds per time 



 

 

 

 

 73 

step. The amount of cells involved in learning can also be considered; but, since this number 

is related to the sparsity factor, its impact is small compared to the whole number of cells in a 

level. The second implementation (Experiments VI) shows an important improvement in 

running time, a time step takes in average 0.005 seconds. Also, the second implementation is 

more efficient compared to the first one in terms of storage. The first implementation has to 

preallocate a big amount of memory in order to initialize its columns and cells; on the other 

hand, codebooks use an on-demand scheme to allocate more memory in real-time. All tests 

are run on a computer with an Intel Core i5 1.8 GHz CPU, 6GB RAM. 
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This thesis presented a generic model for pattern recognition, mainly based on the 

known operation of the neocortex. The theoretical model also establishes a more general 

framework for treatment of space time data through a dimensionality reduction process. 

The model exhibits desirable properties for a pattern recognition system, such as 

spatial and temporal autoassociativity, spatial and temporal noise tolerance, recognition 

under sequence contextualization, and input prediction. 

The last experiment shows the model as a strong classifier in a supervised 

classification case; achieving an accuracy of 92.4% in average. For this experiment, the 

training set had only one sample per class. 

The way the model characterizes a region of space time for a given input, defines 

something that might be called an invariant semantic representation. At the same time, these 

invariant semantic representations could shed light on what a mental abstraction is. 

Autoassociativity might give an explanation to the usefulness of analogies as a tool for 

cognition. Abstractions and analogies are concepts that definitely find an important place 

within the effort of the brain to build a model, a representation, of the real world in order to 

survive. 



 

 

 

 

 75 

From the two implementations, the first one has a running time of 0.2 seconds per 

time step. The second implementation shows a great improvement over the first one; having 

a promising running time of 0.005 seconds per time step, low on-demand requirements for 

storage, and the capacity to be trained in just a single-scan. 

 

5.2 Future Work 

The following considerations are presented as future work: 

 Bidirectional processing of information across the hierarchy to improve predictions. 

Current model and implementation only consider unidirectional (bottom-up) 

processing of information. 

 Variable temporal grouping of sequences for a more effective dimensionality 

reduction of data. Current implementation works with fixed temporal parameters, 

forcing the length of sequences to be a multiple of temporal parameters. 

 Extend the model to include active representations. Current model only considers 

passive representations in the sense that it only receives information to recognize. 

Active representations include actions to perform when the memory is recovered. 

Brains store active representations that communicate with the motor cortex to trigger 

movement. 
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 Valuation data can be included with the representation. The importance of the 

memory (positive or negative) can be indicated to a potential autonomous agent 

through this valuation data. This will enable decisions under the policies: “seek 

reward”, “avoid punishment”. 

 Develop a parallel implementation. The model is particularly fit for parallelization. 
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6 ETHICAL CONSIDERATIONS 

Science in general and research in particular are strongly intertwined with social well-

being. It is essential that ethical principles be applied in scientific research. In 1974, the 

declaration of Helsinki formalized, in the medical field, the ethical principles for research 

involving human subjects. Since that time, there has been a lot of progress, reflected in high 

standards that modern society demands [36]. Currently, scientists should know and follow 

moral principles and practices adequate to every research area such as honesty, carefulness, 

diligence, openness, fairness, respect and credit [37]. 

There is common agreement in the scientific community in principles about proper 

scientific work, scientific integrity, and knowledge production practices that were followed 

in this research. The methodology and data used in the study are clearly described. The 

results of the experiments are treated in an objective way and without any pressure at all to 

arrive to a particular conclusion.  

Moreover, there are other indirect ethical issues that could surface from studies like 

this; whose consequences should not be underestimated. If a theoretical model turns out to be 

a functional representation of the workings of the brain, concern and excitement would 

follow, due to the possibilities of using such a critical knowledge to hack the brain. 

Neuromarketing generates concern because it is trying to tailor products or services 

irresistible to the crowds [38]. What would similar disciplines do if a model can accurately 
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tell them how a brain would learn or react? On the other side, the development of new 

techniques for faster and more efficient learning, or theoretical frameworks to understand and 

overcome cognitive disorders, brings excitement in fields like education, neuromedicine, 

biomedicine, psychiatry or psychology. At some point, ethics will have to establish standards 

for these possibilities. 

Fuchs [39] reviews ethical problems resulting from brain research which motivated 

the emergence of a new discipline termed neuroethics. The increasing understanding of brain 

processes and modifying techniques, challenges essential notions such as free will, agency, 

moral, judgment, self and personality. Changes in these notions can interfere with essential 

intuitions about us, inevitably questioning concepts such as responsibility and culpability on 

which central institutions of our society are based. These questions concerning underlying 

concepts of humans should be actively dealt with by interdisciplinary debate from disciplines 

such as philosophy, neuroscience, and humanities. 

Neuroeducation [40] is an emerging field that links education and neuroscience in an 

effort to improve learning and instruction. Neuroeducation reviews key advances in 

neuroscience, to design training programs of neurocognitive functions, such as working 

memory, that are expected to have effects on overall brain function. Also, Neuroeducation 

considers the potential for modern brain imaging methods as diagnostic tools and as 

measures of the effects of educational interventions. 
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APPENDIX A  SECOND IMPLEMENTATION 

Main Classes 

classdef Hierarchy < handle     
    properties         
        dimsLevels; 
        Thresholds; 
        maxSegs;        
        Levels; 
        numLevels 
        inLearning;  
        Input 
        Output;        
    end     
    methods 
        function obj = Hierarchy(numlevels,dimslevels,thresholds,maxsegs) 

         
        function reset(obj) 

         
        function obj = set_inLearning(obj,val) 

         
        function output = readNext(obj,element) 

         
        function output = readString(obj,string)         
    end     
end 

 

classdef Level < handle 
    properties 
        id; 
        dimsInput;       
        dimsOutput;         
        Codeword; 
        DFA; 
        maxSeg; 
        Input; 
        Buffer; 
        Output; 
        inLearning;         
    end 
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    methods   
        function obj = Level(id, dimsInput, dimsOutput, threshold,  

                             maxSegment) 
 

        function reset(obj) 

               
        function set_inLearning(obj,value) 

 
        function output = readNext(obj,element) 

 
        function buffer = flushBuffer(obj, element) 

         
        function buffer = returnBuffer(obj)         
    end 
end 

  
classdef Codebook < handle 
    properties 
        dimsInput;  
        Symbols; 
        Codewords; 
        Vectors; 
        VectorsBinary; 
        defaultThreshold; 

        Thresholds; 
        Input; 
        Output;  
        inLearning; 
    end     
    methods 
        function obj = Codebook(dimsInput,defaultthreshold) 

         
        function reset(obj) 
 

        function set_inLearning(obj,value) 

         
        function output = readNext(obj,element) 

         
        function winnercodeword = computeOverlapOnInput(obj)             

         
        function symbol = Learn(obj,codeword)                         

                        
        function [Codeword,CodewordBinary] = getCodeword(obj,symbol) 
    end     
end 
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classdef DFA < handle 
    properties         
        Transitions;  
        Symbols; 
        States;         
        CurrentState;  
        Accepted; 

        readNext; 

        learnTransition; 

        Input; 
        Output; 
        inLearning;         

    end     
    methods 
        function obj = DFA() 
 

        function reset(obj) 

         
        function set_inLearning(obj,value) 

                
        function [accepted,predictions] = readNext(obj, symbol)             

              
        function destinationState = learnTransition(obj,originalState, 

                                    symbol) 

                 
        function state = getNewState(obj) 

 
        function state = getAssociatedState(obj,symbol) 

         
        function state = associateNewStateToSymbol(obj, symbol) 

         
        function rewardTransition(obj,state,possymbol) 

         
        function punishTransition(obj,state,possymbol) 

                 
        function symbols = getPredictedSymbols(obj,state) 
    end 
end 
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Example Script 

% Assumption SeqsBin is a list of sequences in Boolean format 

 

% Hierarchy Parameters 
numlevels = 3; 
vectorsize = size(SeqsBin{1},2);  
dimsLevels = [vectorsize 400; 400 200; 200 100]; % In-out for every Level 
thresholds = [0.1 0.25 0.25]; % Similarity thresholds 

maxsegs = [50 12 1]; % Temporal parameters 
 

% Hierarchy creation 

H = Hierarchy(numlevels,dimsLevels,thresholds,maxsegs); 

 

% Classification 

Classes = []; 
for s = 1:numel(SeqsBin) 

    seq= SeqsBin{s}; 
    Steps = size(seq,1);     
    for j=1:Steps 

        output = H.readNext(seq(j,:)); 
    end 
    Classes = [Classes; output]; 
    H.reset; 
end 
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