
U N S U P E RV I S E D U N M I X I N G A N A LY S I S B A S E D O N
M U LT I S C A L E R E P R E S E N TAT I O N

By

Maria Constanza Torres-Madroñero

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTING AND INFORMATION SCIENCE AND ENGINEERING

University of Puerto Rico
MAYAGUEZ CAMPUS

May 2013

Approved by:

____________________________________ ____________________
Shawn Hunt, Ph.D
President, Graduate Committee Date

____________________________________ ____________________
Miguel Veléz-Reyes, Ph.D
Co-president, Graduate Committee Date

____________________________________ ____________________
Nayda G. Santiago, Ph.D
Member, Graduate Committee Date

____________________________________ ____________________
James Goodman, Ph.D
Member, Graduate Committee Date

____________________________________ ____________________
Wilson Rivera, Ph.D
Program Coordinator Date

____________________________________ ____________________
Elsie I. Parés Matos, Ph.D
Graduate School Representative Date



Abstract of dissertation presented to the Graduate School of the
University of Puerto Rico in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

U N S U P E RV I S E D U N M I X I N G A N A LY S I S B A S E D O N
M U LT I S C A L E R E P R E S E N TAT I O N

By

Maria Constanza Torres-Madroñero

May 2013

Chair: Miguel Veléz-Reyes, Ph.D
Ph.D Major: Computing and Information Science and Engineering

A B S T R A C T

Unsupervised unmixing analysis aims to extract the basic materials, the so called

endmembers, and their abundances from a hyperspectral image. Unmixing is usu-

ally performed by pixels-only techniques that do not take into account the spatial

information and generally require a priori estimate of the number of endmembers.

Recently, several spatial-spectral unmixing techniques have been developed. How-

ever, most of these techniques depend of spatial kernels or windows to include the

spatial information in the unmixing analysis. In this work, a new unmixing approach

based on multiscale representation is developed. The proposed technique extracts

spectral signatures and spectral endmember classes from hyperspectral imagery in

an unsupervised fashion. A multiscale representation of the hyperspectral images

is obtained using nonlinear diffusion. Then, spectral endmembers are automatically

identified using multigrids methods to solve the diffusion partial differential equa-

tion. The multiscale representation and multigrids allows to avoid the use of spatial

kernels. Once the spectral endmembers are identified, similar spectra are clustered to

build spectral endmember classes thus accounting for the spectral variability of the

materials along the unmixing analysis. A comparison with other unmixing methods

ii



shows that the proposed unsupersived unmixing approach outperforms traditional

spectral techniques. Capabilities of the proposed approach were validated and as-

sessed using simulated imagery and real imagery collected with the AVIRIS and

AISA sensors over different landscapes.
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R E S U M E N

El análisis de desmezclado no supervisado busca extraer los constituyentes básicos,

conocidos como "endmembers", y sus abundancias desde una imagen hiperespectral.

Comúnmente, el desmezclado es realizado a través de técnicas que no toman en

consideración la información espacial de la imagen y que generalmente requieren es-

timar de ante mano el número de "endmembers". Recientemente, varias técnicas que

combinan la información espacial y espectral han sido desarrolladas. Sin embargo,

la mayoría de estas técnicas dependen de ventanas o vecindarios para incluir la in-

formación espacial en el desmezclado. Un nuevo método de desmezclado basado

en las representaciones en múltiples escalas fue desarrollado para este trabajo. El

método propuesto extrae los "endmembers" espectrales y las clases espectrales de

"endmembers" desde una imagen hiperespectral de una manera no supervisada. Una

representación en multiescala es obtenida por difusión no lineal. Los "endmembers"

espectrales son automáticamente identificados usando métodos de "multigrids" para

solucionar la equación diferencial de difusión. La representación en multiescala y

el "multigrid" evitan el uso de ventanas espaciales. Una vez los "endmembers" es-

pectrales son identificados, espectros similares son agrupados para formar las clases
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espectrales de "endmembers" manteniendo la variabilidad espectral de los materiales

a lo largo del proceso de desmezclado. Una comparación entre el método basado en

las representaciones en múltiples escalas y otras técnicas de desmezclado demues-

tran que el metodo desarrollado supera las técnicas tradicionales. Las capacidades

del algoritmo fueron validados y evaluados usando imágenes sintéticas e imágenes

reales capturadas con los sensores AVIRIS y AISA sobre diferentes paisajes.
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List of Figures xiv

Figure 6.16 Comparison of spectral endmember classes from A.P. Hill with
classification map and spectral library. . . . . . . . . . . . . . . . . 162

Figure 6.17 Evaluation of unmixing results for Cuprite: kaolinite and chal-
cedony. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 6.18 Evaluation of unmixing results for Cuprite: calcite and muscovite. 165

Figure 6.19 Evaluation of unmixing results for Cuprite: kaolinite-smectite
and alunite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 6.20 True positives, false positives, and false negatives of loblolly pine,
summer deciduous, soil, shaded vegetation classes from A.P. Hill. . . 169

Figure 6.21 True positives, false positives, and false negatives of green field,
grass field, autumn deciduous, and water classes from A.P. Hill. . . . 170

Figure 6.22 Histogram for the abundances of true positive and false positive
pixels of A.P. Hill classes. . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 6.23 Comparison among abundances, classification map, and true
positives, false positives, and false negatives of Cuprite classes. . 174

Figure 6.24 Histogram for the abundances of true positive and false positive
pixels of Cuprite classes. . . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 6.25 Classification map from unmixing results of A.P. Hill. . . . . . . 178

Figure 6.26 Classification map from unmixing results of Cuprite. . . . . . . 180

Figure 6.27 Scale selection for Guanica images. . . . . . . . . . . . . . . . . . . 185

Figure 6.28 Estimation of the number of spectral endmember classes for
Guanica images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Figure 6.29 Abundances for extracted spectral endmember classes of Guanica
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 6.30 Extracted spectral endmember classes for Guanica images. . . . . 187

Figure 6.31 Comparison of vegetation spectral endmember classes from Guanica
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Figure 6.32 Estimated vegetation from Guanica images. . . . . . . . . . . . . 189

Figure 7.1 Extracted endmembers from A.P. Hill using SMACC. . . . . . . . 194

Figure 7.2 Abundances for extracted endmembers from A.P. Hill using
SMACC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure 7.3 Extracted endmembers from A.P. Hill using VCA. . . . . . . . . . 196

Figure 7.4 Abundances for extracted endmembers from A.P. Hill using VCA.197

Figure 7.5 Extracted endmembers from A.P. Hill using RBSPP combined
with VCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Figure 7.6 Abundances for extracted endmembers from A.P. Hill using
RBSPP combined with VCA. . . . . . . . . . . . . . . . . . . . . . 199

Figure 7.7 Comparison of loblolly pine and gravel endmembers. . . . . . . . 202

Figure 7.8 Reconstruction error from unmixing results of A.P. Hill. . . . . . 203

Figure 7.9 True positives, false positives, and false negatives of loblolly pine,
summer deciduous, soil, shaded vegetation classes extracted using
SMACC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



List of Figures xv

Figure 7.10 True positives, false positives, and false negatives of green field,
grass field, and water classes extracted using SMACC. . . . . . . . 205

Figure 7.11 Histogram for the abundances of true positive and false positive
pixels of A.P. Hill classes extracted using SMACC. . . . . . . . . 206

Figure 7.12 True positives, false positives, and false negatives of loblolly pine,
summer deciduous, soil, shaded vegetation, grass field, and water
classes extracted using RBSPP. . . . . . . . . . . . . . . . . . . . . 207

Figure 7.13 Histogram for the abundances of true positive and false positive
pixels of A.P. Hill classes extracted using RBSPP. . . . . . . . . . 208

Figure 7.14 Classification maps of A.P. Hill using unmixing results of pro-
posed approach, SMACC, and RBSPP. . . . . . . . . . . . . . . . 212

Figure 7.15 Extracted endmembers from Cuprite image using SMACC. . . . 216

Figure 7.16 Abundances for extracted endmembers from Cuprite using SMACC.217

Figure 7.17 Extracted endmembers from Cuprite image using VCA. . . . . . 218

Figure 7.18 Abundances for extracted endmembers from Cuprite using VCA.219

Figure 7.19 Extracted endmembers from Cuprite image using RBSPP com-
bined with VCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Figure 7.20 Abundances for extracted endmembers from Cuprite using RB-
SPP combined with VCA. . . . . . . . . . . . . . . . . . . . . . . . 221

Figure 7.21 Comparison of kaolinite and alunite endmembers. . . . . . . . . . 224

Figure 7.22 Reconstruction error from unmixing results of Cuprite. . . . . . . 226

Figure 7.23 Comparison among abundances, classification map, and true
positives, false positives, and false negatives of Cuprite classes
extracted using SMACC. . . . . . . . . . . . . . . . . . . . . . . . . 227

Figure 7.24 Histogram for the abundances of true positive and false positive
pixels of Cuprite classes extracted using SMACC. . . . . . . . . . 228

Figure 7.25 Comparison among abundances, classification map, and true
positives, false positives, and false negatives of Cuprite classes
extracted using VCA. . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Figure 7.26 Histogram for the abundances of true positive and false positive
pixels of Cuprite classes extracted using VCA. . . . . . . . . . . . 230

Figure 7.27 Comparison among abundances, classification map, and true
positives, false positives, and false negatives of Cuprite classes
extracted using RBSPP. . . . . . . . . . . . . . . . . . . . . . . . . . 231

Figure 7.28 Histogram for the abundances of true positive and false positive
pixels of Cuprite classes extracted using RBSPP. . . . . . . . . . . 232

Figure 7.29 Classification maps of Cuprite using unmixing results of pro-
posed approach, SMACC, VCA, and RBSPP. . . . . . . . . . . . . 238

Figure 8.1 Computational system for unsupervised unmixing analysis. . . . 245

Figure 8.2 Data structures for multigrid. . . . . . . . . . . . . . . . . . . . . . 247



L I S T O F TA B L E S

Table 2.1 Examples of hyperspectral sensors and their technical specifi-
cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.1 Optimal stopping scale for False Leaf, AP Hill subset and Guanica
Subset images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 3.2 Number of spectral endmembers for False Leaf, AP Hill subset,
and Guanica Subset images. . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.1 Similarity metrics for hyperspectral data. . . . . . . . . . . . . . . 76

Table 4.2 Spectral clustering algorithm. . . . . . . . . . . . . . . . . . . . . . 81

Table 4.3 Number of spectra per spectral endmember class of Test Data. . 89

Table 4.4 Clustering results for six spectral endmember classes from Test
Data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 4.5 Clustering results for the seven spectral endmember classes from
Test Data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 4.6 Confusion matrix for clustering results of average and complete
linkages using SAM in Test Data set. . . . . . . . . . . . . . . . . . 96

Table 4.7 Estimated number of clusters for Test Data set. . . . . . . . . . . . 97

Table 4.8 Estimated number of clusters for False Leaf image. . . . . . . . . 101

Table 5.1 Mean square errors and standard deviations for the estimate
abundance from Synthetic Data I . . . . . . . . . . . . . . . . . . . 118

Table 5.2 Relative error (%) for the estimate abundance from Synthetic
Data I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table 5.3 Spectral angle and standard deviations for the extracted spec-
tral endmembers and original endmembers for Synthetic Data
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table 5.4 Mean square errors and standard deviations for the estimate
abundance from Synthetic Data I using the proposed approach,
SMACC, VCA, and RBSPP. . . . . . . . . . . . . . . . . . . . . . . 122

Table 5.5 Relative error (%) for the estimate abundance from Synthetic
Data I using the proposed approach, SMACC, VCA, and RBSPP.. 122

Table 5.6 SAM for the extracted spectral endmembers and original end-
members for Synthetic Data I. . . . . . . . . . . . . . . . . . . . . 123

Table 5.7 Comparison of estimated number of endmembers for Synthetic
Data I I and I I I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 5.8 Mean square error and standard deviation for the estimate abun-
dances from Synthetic Data I I. . . . . . . . . . . . . . . . . . . . . 128

Table 5.9 Spectral angle and standard deviations for the extracted spec-
tral endmembers and original endmembers for synthetic data. . 128

xvi



List of Tables xvii

Table 5.10 Mean square errors and standard deviations for the estimate
abundance from Synthetic Data I I. . . . . . . . . . . . . . . . . . . 133

Table 5.11 Spectral angle and standard deviations for the extracted spec-
tral endmembers and original endmember for Synthetic Data
I I I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Table 6.1 Contingent Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Table 6.2 Estimated number of spectral endmember classes using validity
indexes for A.P. Hill and Cuprite. . . . . . . . . . . . . . . . . . . 155

Table 6.3 Comparison of estimated number of endmembers for A.P. Hill
and Cuprite images. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 6.4 Relation between spectral endmember classes and information
classes for A.P. Hill. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Table 6.5 Relation between spectral endmember classes and information
classes for Cuprite. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Table 6.6 Spectral angle between spectral endmembers and reference spec-
tra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Table 6.7 True positive, false positive, and false negative rates for A.P.
Hill classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 6.8 True positive, false positive, and false negative rates for Cuprite
classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Table 6.9 Agreement matrix between reference map and generated clas-
sification map from unmixing results of A.P. Hill. . . . . . . . . . 178

Table 6.10 Agreement matrix between reference map and generated clas-
sification map from unmixing results of Cuprite. . . . . . . . . . 180

Table 7.1 Relation between endmembers extracted by SMACC and RB-
SPP, and information classes for A.P. Hill. . . . . . . . . . . . . . . 201

Table 7.2 True positive, false positive, and false negative rates for A.P.
Hill classes extracted using SMACC. . . . . . . . . . . . . . . . . . 205

Table 7.3 True positive, false positive, and false negative rates for A.P.
Hill classes extracted using RBSPP. . . . . . . . . . . . . . . . . . . 208

Table 7.4 Comparison of true positive and false positive rates for A.P.
Hill classes extracted using the proposed approach, SMACC,
and RBSPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Table 7.5 Agreement matrix between reference map and generated clas-
sification map from unmixing results of A.P. Hill using SMACC. 211

Table 7.6 Agreement matrix between reference map and generated clas-
sification map from unmixing results of A.P. Hill using RBSPP. . 213

Table 7.7 Comparison agreement analysis among classification maps ob-
tained from the proposed approach, SMACC, and RBSPP. . . . . 215

Table 7.8 Relation between endmembers extracted by SMACC, VCA, and
RBSPP, and information classes for Cuprite. . . . . . . . . . . . . 223

Table 7.9 Spectral angle between extracted endmembers by SMACC, VCA,
RBSPP, proposed approach, and reference spectra. . . . . . . . . . 225



List of Tables xviii

Table 7.10 True positive, false positive, and false negative rates for Cuprite
classes extracted using SMACC. . . . . . . . . . . . . . . . . . . . 228

Table 7.11 True positive, false positive, and false negative rates for Cuprite
classes extracted using VCA. . . . . . . . . . . . . . . . . . . . . . 230

Table 7.12 True positive, false positive, and false negative rates for Cuprite
classes extracted using RBSPP. . . . . . . . . . . . . . . . . . . . . 232

Table 7.13 Comparison of true positive rates for A.P. Hill classes extracted
using the proposed approach, SMACC, and RBSPP. . . . . . . . . 233

Table 7.14 Comparison of false positive rates for A.P. Hill classes extracted
using the proposed approach, SMACC, and RBSPP. . . . . . . . . 233

Table 7.15 Agreement matrix between reference map and generated clas-
sification map from unmixing results of Cuprite using SMACC. . 237

Table 7.16 Agreement matrix between reference map and generated clas-
sification map from unmixing results of Cuprite using VCA. . . . 239

Table 7.17 Agreement matrix between reference map and generated clas-
sification map from unmixing results of Cuprite using RBSPP. . . 239

Table 7.18 Comparison of between-class agreement of classification maps
obtained from the proposed approach, SMACC, VCA, and RBSPP.241

Table 7.19 Comparison of assignment-class agreement of classification maps
obtained from the proposed approach, SMACC, VCA, and RBSPP.242

Table 7.20 Comparison of overall agreement of classification maps obtained
from the proposed approach, SMACC, and RBSPP. . . . . . . . . 242

Table 8.1 Algorithm for scale selection. . . . . . . . . . . . . . . . . . . . . . 246

Table 8.2 Algorithm for spectral endmember extraction using multigrid
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Table 8.3 Algorithm for the Davies and Bouldin validity index computation.250



1I N T R O D U C T I O N

1.1 justification

Remote sensing uses spaceborne or airborne sensors to acquire information about the

Earth. These data allow the characterization of the terrestrial surface, the atmosphere,

and the oceans. Remote sensors are useful tools for several applications ([1, 2]) such

as land cover classification, cartography, urban growth monitoring, weather, military

application and even planetary exploration. One of the most promising types of re-

mote sensing systems are hyperspectral sensors. These sensors measure the radiation

reflected or emitted by a surface across of the electromagnetic spectrum, capturing

spectral information in hundred of narrow contigous bands. The spatial and spectral

information collected by the hyperspectral sensors offer a unique opportunity for the

remote identification of materials.

Spectral information collected by hyperspectral sensors can be the result of mixing

different materials in the sensor field of the view [3]. For instance, if the ground

instantaneous field of view of the sensor is larger than the objects being sensed

then multiple materials occupy a single pixel in the image [1]. There are linear and

nonlinear models to describe these mixed pixels. The linear mixing model (LMM)

sees the pixel surface as the result of the sum of the contributions of each material

or endmembers weighted by their abundances [3]. The nonlinear model assumes

a more complex scenario where particles of a same material reflects the light in

a non-uniform way [3]. LMM is the most used model since it is considered a good

approximation to the reality especially for remote sensing applications where images

1
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with resolution in meters are used [4]. Solving the inverse problem, i.e. unmixing, is

of great interest in remote sensing image analysis. In unsupervised unmixing, the

number of endmembers, their spectral signatures and the abundances are estimated

from hyperspectral data [3]. Unmixing is a case of generalized inverse problem [3]

where the model parameters are estimated from measured data. Unmixing is an ill-

posed problem [3], and their results are affected by the perturbation in the measured

spectral images (resulted by the interaction of the signal with the environment and

the system), and the underlying assumptions of the different unmixing approaches.

Most algorithms for unmixing are based on the geometrical approach. Pixels in

the hyperspectral images are points in a high-dimensional scatterplot that form a

simplex where the vertices are the endmembers [5]. The problem with the geomet-

rical methods, as well as most of the unmixing techniques, is that they only use the

spectral information in the hyperspectral image (see Section 2.3 for a review of un-

mixing methods). In addition, most of the existing endmember extraction algorithms

provide good results with the appropriate number of endmembers. However, there

are no reliable methods to determine the number of endmembers (see Section 2.5).

The automated estimation of the number of endmembers is still an open problem in

hyperspecral image processing.

The increasing availability of high spatial and spectral resolution sensors opens

new possibilities for remote exploration of materials, at the same time that new

challenges are imposed for the processing of hyperspectral images. One of these

challenges is the incorporation of the spatial information into the analysis. It is

expected that spatial-spectral techniques will improve the results of spectral ap-

proaches, whence more algorithms that take full advantage of the spatial and spec-

tral information captured by hyperspectral sensor should be developed. The need of

spatial-spectral approaches has been recognized by several researches (e.g. [6, 7, 8]).

Several algorithms that takes into account the spatial and spectral information have
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been proposed for the analysis of hyperspectral imagery mainly for classification

applications (e.g. [9, 10, 11, 12, 13]).

Recently, some spatial-spectral unmixing methods have been developed. For ex-

ample, the Automated Morphological Endmember Extraction algorithm (AMEE [9]),

the Spatial-Spectral Endmember Extraction algorithm (SSEE [14]), the Spatial Pre-

Processing endmember extraction (SPP [15]), the spatially adaptive hyperspectral

unmixing [16], the Region-Based Spatial Pre-Processing (RBSPP [17]), piece-wise con-

vex spatial-spectral unmixing [18], and Weighted Non-negative Matrix Factorization

(WNMF [19]) are approaches that use common techniques of image processing (e.g.

morphological operation, kernel methods, segmentation) to incorporate the spatial

information in the unmixing analysis. Results of AMEE, SSEE, SPP, WNMF, spatially

adaptive hyperspectral unmixing and piece-wise convex spatial-spectral algorithms

depend of the size of spatial kernels or windows defined into the procedures. RBSPP

[17] used unsupervised clustering techniques for the segmentation of hyperspectral

images into spectral uniform regions where endmembers are extracted avoiding spa-

tial kernels. This algorithm assumes that the endmembers are in the spectrally uni-

form regions and mixed pixels are in the boundary of these regions. However, the

RBSPP algorithm [17] is only a pre-processing step that does not perform the end-

member extraction by itself. It still requires a spectral algorithm for the extraction of

endmembers. A review of spatial-spectral techniques is included in Section 2.3.3.

Unmixing plays an important role in hyperspectral image processing and a wide

range of applications of hyperspectral remote sensing. Fully-automated techniques

that take into account the spatial and spectral information of hyperspectral image

are required. In this thesis, an unsupervised unmixing algorithm that uses both the

spatial and spectral information of the image for the jointly estimation of the number

of endmembers and the extraction of their spectral signatures taking advantage of

multiscale representation techniques based on nonlinear diffusion is presented.
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1.2 rationale

Endmembers are usually referred to pure materials in most unmixing techniques.

However, it is clear that the availability of pure pixels in an image depend strongly

of the spatial resolution of the sensor. Therefore, the term spectral endmembers in this

work does not refer to pure materials. Endmembers here refer to spectral signatures

representing the distinct components of an image such as uniform regions and ob-

jects. Similar endmember concepts have been employed in previous work such as in

[17, 15, 18, 4].

Most unmixing techniques use a single spectrum to represent the spectral features

of the basic components in an image. However, different materials in an image

have spectral variability caused by factors such as topographic effects and changes

of illumination (e.g. shadows). Thus, it is more appropriate to use a set of represen-

tative spectra as endmembers to account for the spectral variability. Some unmixing

approaches have considered the spectral variability (e.g. [16, 20, 21, 22, 23]). For

instance, the multiple endmember spectral mixture analysis (MESMA) proposed by

Roberts et al. [20] allows varying the type and number of endmembers in each pixel.

However, MESMA uses spectral libraries obtained from field work or laboratory

spectra. Piece-wise convex (PCE) endmember extraction algorithm described in [21]

and [22] builds sets of endmembers that represents the different convex regions in an

image. PCE allows endmembers belonging to different sets with a grade of member-

ship. Canham et al. [16] and Somers et al. [23] present unmixing approaches using

also sets of endmembers. Both approaches employ spatial windows for endmember

extraction, and then sets of endmembers are formed by clustering.

In the developed approach, the sets of spectral endmembers are named spectral

endmember classes. The concept of spectral endmember classes can be related to the

concept of information classes used in classification (see Figure 1.1) [2]. Informa-
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Figure 1.1: Spectral endmember classes concept: (a) Information classes for classification (Fig-
ure from [2]). (b) spectral endmember classes for unmixing analysis.

tion classes are groups of spectral classes that represent actual meaningful infor-

mation classes in the image. In Figure 1.1(a), the red points represent the spectra

classes (e.g.Veg1, Veg2, Veg3), and a set of spectra classes form an information class

(e.g. Vegetation = {Veg1, Veg2, Veg3}). In unmixing, spectral endmember classes are

groups of spectral endmembers (i.e. the big red points in the Figure 1.1(b)) that rep-

resent the basic components of an image while maintaining the spectral variability.

Spectral endmembers are assumed inside the spectrally uniform regions of a hy-

perspectral image for the developed approach. Thus, a mechanism for determining

these uniform regions across on image is necessary. Spectral endmembers must

be extracted from these uniform regions. RBSPP finds the uniform regions by seg-

mentation and uses the average of the pixels within a region as the representative.

However, RBSPP is an pre-processing step to include the spatial information in the

unmixing analysis. The final selection of endmembers is conducted using spectral

techniques such as geometrical methods. The spatial-spectral unmixing approach de-

veloped here takes advantage of multiscale representation for the determination of

the spectrally uniform regions and their representative spectra avoiding the explicit

segmentation of the hyperspectral image.
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Multiscale representation builds a family of images where fine details are system-

atically removed using smoothing operations [24]. For example, a linear multiscale

representation can be obtained by convolution using several linear Gaussian filters

with different variances. The variances generate different levels of smoothing that

define a scale space for an image. Smoothing operation using linear Gaussian filters

is known as isotropic diffusion because it diffuses the information equally in all direc-

tions. However, isotropic diffusion reduces the noise but it also eliminates the edges

in the image. In contrast, nonlinear diffusion seeks to smooth an image while keeping

the boundaries regions or edges [24, 25]. A nonlinear diffusion partial differential

equation (PDE) is solved to perform nonlinear diffusion, where the initial condition

is the original hyperspectral imagery (see Section 3.1).

The spatial and spectral effects of nonlinear diffusion can be understood by looking

at Figure 1.2. Parameter t represents the scale steps. Note that regions are smoother

as the scale increases. The edges in the image are enhanced at the same time as

that fine details are removed. In addition, scatterplots in Figure 1.2 show how the

spectral variability decreases as scale increases. The scatterplots in Figure 1.2 have

the same number of points (i.e. pixels). The reduction of spectral variability is due

to the nonlinear diffusion.

Assuming that spectral endmember are found into the spectrally uniform regions

of the image and mixed pixels are in the boundaries of these regions, then the multi-

scale representation based on nonlinear diffusion can be used to determine the spec-

tral endmembers of the hyperspectral image. As multiscale representation builds a

family of smoothed image where the spectrally uniform region can be distinguished

(e.g. see Figure 1.2), then spectral endmembers can be selected as the representa-

tive spectra for each one of these uniform regions. A procedure based on multigrid

methods is developed for the extraction of representative spectra from the smoothed

images.
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Figure 1.2: Example of nonlinear diffusion for t = 2, 20, 40 scale steps of an AVIRIS image
of 40 x 40 pixels. Top row shows the RGB composition using bands 30 (650 nm),
20 (557 nm) and 9 (451 nm). Bottom row shows scatterplots between a red band
(band 30: 650 nm) and a infrared band (band 43: 750 nm).

Unlike RBSPP, the unsupervised unmixing approach based on multiscale represen-

tation determines the basic constituents by itself and takes advantage of nonlinear

diffusion and multigrid methods for the spectral endmember extraction avoiding seg-

menting the image. All representative spectra are used as spectral endmembers to

consider the spectral variability. Similar spectral endmembers are grouped to build

the spectral endmember classes. More details are given in Sections 3.2 and 4.2.

1.3 technical approach

Duarte et al. [26] propose an algorithm for multiscale segmentation and represen-

tation of hyperspectral imagery based on nonlinear diffusion. Duarte’s algorithm

uses multigrid methods to solve the nonlinear PDE. Multigrid methods are numeri-

cal techniques to solve systems of linear equations [27]. Multigrid methods build a

hierarchical representation of a problem from a fine grid to a coarse grid (see Figure

1.3). In the coarsest grid, the equation system is solved exactly and then the solution
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Figure 1.3: Multigrid structure. Figure from [26].

is propagated back to the finer grid. Each grid is represented by a graph. The vertices

in the initial graph are the pixels in the original hyperspectral imagery and the initial

edges are built using the closest neighbors. A sampling operation is responsible of

building the next grids by selecting those vertices that represent a large number of

vertices in the previous one (see Section 3.1).

Taking advantage of the multigrid structure, the spectral endmembers can be se-

lected as the vertices in the coarsest grid in a given scale. These vertices are selected

such that they represent the vertices in the previous grids. Then, it is expected that

vertices in the last grid represent the spectral features of the image such as presented

in Section 3.2. Using these spectral endmembers, the abundances can be estimated

using existing methods such as least square (if the number of spectral endmembers is

less or equal to the number of bands) or sparse regression (if the number of spectral

endmembers is bigger that the number of bands).

Spectral endmembers represent the distinct components in a scene as well as their

spectral variability. Thus, it is necessary to group spectral endmembers into sets with

similar spectral features, i.e. meaningful clusters that represents the distinct materi-
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als of the image. These meaningful sets of spectral endmembers are the spectral

endmember classes.

A way to build the spectral endmember classes is by using clustering techniques.

Clustering divides the data into subsets with similar spectra [28, 29, 30]. One of the

more challenging problems in clustering analysis is to determine what an optimal

partition of the data is. Clustering results depend of the definition of similarity

and the metric used to measure it. In the same way, determining the number of

clusters (i.e. the number of spectral endmember classes in the developed approach)

is very difficult. This work used relative validity indexes to determine the number

of spectral endmember classes. Validity indexes can be used to compare different

clustering algorithms as well as to compare the partition obtained with different

parameters such as the number of clusters [28, 31, 32]. Clustering has been used

before to build set of endmembers in unmixing algorithms [16, 23]. However, there

is not a clear study about how to select the method and the number of clusters for

this purpose. There are several approaches for clustering, but their performance

depends strongly of the data. An example using a controlled data set is conducted

to determine the appropriate technique to extract the spectral endmember classes.

In summary, assuming that spectral endmembers are the representation of the

spectral signatures of uniform regions and mixed pixels are found in the edges, the

unmixing process can be performed as in Figure 1.4. This approach involves the

three common steps for unmixing: estimation of number of endmembers, extraction

of endmembers, and estimation of abundances using only the information in the

hyperspectral image. The first step consists of the multiscale representation of the

hyperspectral image using nonlinear diffusion. A scale is selected from the family of

smoothed images to perform the spectral endmember extraction. Different scale se-

lection methods are studied and compared in this work. Using the selected scale, the

spectral endmembers are extracted by an approach based on the multigrid structure.

Spectral endmembers are used to compute the abundances and these are grouped
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Figure 1.4: Schematic of proposed approach for unmixing.

into spectral endmember classes by clustering techniques. Finally, the abundance

for an spectral endmember class will correspond to the sum of the individual abun-

dances of the spectral endmembers that belong to the same spectral endmember

class.

1.4 research design and objectives

The main objective of this work was to develop a new spatial-spectral approach

for unmixing analysis based on multiscale representation. Multiscale representation

using nonlinear diffusion and multigrid methods is employed for spectral endmem-

ber extraction. Extracted spectral signatures are grouped into spectral endmember

classes that represent both the spectral features and the spectral variability of dif-

ferent materials in the image. This approach is implemented in an unsupervised

computing system for the analysis and processing of hyperspectral images.
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1.4.1 Specific Objectives

The specific objectives of the work were:

• Develop a spectral endmember extraction algorithm using the multiscale rep-

resentation and the multigrid structures obtained from Duarte et. al. [26] algo-

rithm.

• Analyze the scale effects in spectral endmember extraction, and explore scale-

selection methods to determine a suitable scale into the multiscale representa-

tion.

• Study the use of spectral endmember classes, instead single spectrum, for the

representation of distinct components of the image.

• Compare different methods for clustering of spectral endmember class extrac-

tion. Evaluate validity indexes for the estimation of the number of spectral

endmember classes.

• Validate the technical approach presented in Figure 1.4 using hyperspectral

images collected over different scenarios.

• Compare the proposed approach with other unmixing techniques: VCA, SMACC,

and RBSPP.

• Study the effects of spatial resolution in unsupervised unmixing analysis.

• Implement a computing system using MATLAB based on the developed un-

mixing approach for the unsupervised analysis of hyperspectral images.
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Figure 1.5: False Leaf image.

1.4.2 Validation and Assessment

In the first part of this research, an image collected with an SOC700 hyperspectral

camera is used to validate the technical approach. The False Leaf image was collected

by Surface Optics Corporation and downloaded from their website1. It consists of

640 x 640 pixels and 120 spectral bands from 402 nm to 908 nm. The image was

captured under indoor lighting conditions. The image has two artificial leaves. A

RGB composite using bands 57 (639 nm), 35 (548 nm) and 13 (460 nm) is presented

in the Figure 1.5. The image has several regions with uniform spectral features, the

basic components of this image can be easily determined, and most mixed pixels are

in the edges. Because of these characteristics, the False Leaf image is used as first

instance to test the different stages of the proposed approach.

A large evaluation of the unsupervised unmixing approach is presented in Chap-

ters 5, 6, and 7. The assessment and validation of the proposed approach are per-

formed using synthetic data sets (Section 5.1) and real hyperspectral images (Section

6.1).

1 http://www.surfaceoptics.net
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There is a great difficulty to simulate images with controlled condition for testing

and validation of unmixing algorithms because hyperspectral images are affected

by several factors such as the spectral variability of the materials, topographic and

atmospheric effects, and noise. In addition, hyperspectral images do not only have

spectral information, these images keep information about the spatial distribution

of materials. In this work, two synthetic data sets are used for the quantitative

assessment of the proposed approach (Section 5.1). The first data set has a single

spatial distribution (a grid of different materials). This data set allows to simulate

different noise levels, and spectral variability. The second data set seeks to simulate

the spatial complexity present in real hyperspectral images. For that, abundances

extracted from real data are employed to generate synthetic data (see Chapter 5).

Using the synthetic data sets, the performance of the proposed approach can be

quantified in term of mean square errors, and spectra angles between extracted and

real endmembers.

The evaluation of the proposed approach with real data is performed using a

methodology inspired by detection theory and classification accuracy analysis (see

Section 6.2). In real scenes, there is no information about abundances or compa-

rable endmembers that allow a quantitative assessment. Thus, this work proposes

a methodology to assess unmixing results for two study case with hyperspectral

image collected over mining and forest scenarios. First, a qualitative analysis is con-

ducted by comparing spectral endmember classes with available spectral libraries,

and comparing abundances with classification maps. Spectral endmembers are com-

pared using the shape of the spectral signatures. The classification maps allow to

know the different components of an image, and provide some information about

endmember spatial distribution. The qualitative analysis provides a relation between

the spectral endmembers classes and the information classes within published classi-

fication maps. The second step in the assessment methodology used these relations

to perform a quantitative evaluation of the detected classes. This assessment is in-
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spired in detection theory and seeks to measure how well each class is detected by

the unmixing algorithm in term of true positive, false positive, and false negative

rates (Section 6.2). In addition, the proposed methodology uses the estimated abun-

dances to build a classification map. This classification map allows to understand

what classes dominate the scene according to the estimated abundances. The new

classification maps are compared with the published classification maps using an

agreement matrix. The between- class agreement, assignment-class agreement, and the

overall agreement allows the quantitative comparison among unmixing results and

the published classification maps. The agreement matrix is inspired by the confu-

sion matrix in classification.

Additionally, obtained results by the unsupervised unmixing approach based on

multiscale representation are compared with other unmixing techniques. The Se-

quential Maximum Angle Convex Cone (SMACC) [33], Vertex Component Analysis

(VCA) [34], and Region-Based Spatial Pre-Processing (RBSPP) [17] algorithms are

selected for this comparison. SMACC and VCA are widely used geometrical meth-

ods. On other hand, RBSPP is the closest spatial-spectral method to the technique

developed in this research, since both do not use spatial kernels. However, RBSPP is

only a preprocessing step that does not extract the endmembers by itself. RBSPP is

combined with VCA [17] to perform the endmember extraction. Methods are com-

pared in terms of extracted signatures and abundances distributions. The assessment

methodology used to evaluate the proposed approach is also used to compare the

different unmixing results (see Chapter 7).

Finally, effects of spatial resolution over the proposed approach are studied using

images collected at different spatial resolutions over the same scene. This study, also

included in the Chapter 6, compares the spectral endmember classes and abundances

obtained using the different resolutions.
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1.5 thesis contributions

The major contribution of this thesis is for the hyperspectral image processing field.

The importance of unmixing for the analysis of hyperspectral imagery is evident.

Unmixing algorithms that take full advantage of the spatial and spectral information

of hyperspectral imagery are required. In addition, there are not reliable algorithms

for the estimation of the number of endmembers. Most approaches used for the

estimation of the number of endmembers are based on the estimation of the rank

of a matrix which in itself is a very difficult problem and neglects spatial informa-

tion. This work contributes in both directions: proposing a new approach for the

estimation of the basic constituents of an image (determine the number of endmem-

ber classes using validity indexes) and using both spatial and spectral information

for unmixing analysis of hyperspectral data.

On the other hand, hyperspectral imagery is an important sensing technology that

is being used across different application domains. This research develops a comput-

ing system for the unsupervised unmixing analysis of hyperspectral imagery that fa-

cilitates the analysis of this type of image for several applications. The development

of unsupervised techniques for hyperspectral image processing is very important.

Remote sensing is usually performed for task where the acquisition of information

through direct contact with the sensing objects is very difficult, too expensive or

time consuming. Therefore, it is necessary to develop algorithms that allows the

extraction of this information remotely, accurate, and efficiently in an unsupervised

fashion. The developed computing system produces usefull abundance maps and

spectral signatures that can be used in different applications of remote sensing. Al-

though the extraction of this information is performed in an unsupervised way, the

interpretation of the results require analyst intervention.
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Finally, the developed assessment methodology is other important contribution of

this work. It is evident the difficult to evaluate unmxing results since there are few

information about the scenes and it is many times limited to classification maps and

spectral libraries. The developed assessment methodology proposed a new way to

perform a quantitative assessment of unmixing results using classification maps.

During the development of this work the follow publications were done:

• Miguel A. Goenaga, M. Torres-Madronero, M. Velez-Reyes, S. Van-Bloem, and

J. Chinea. “Unmixing analysis of a time-series of Hyperion images over the

Guanica dry forest in Puerto Rico,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 2012.

• M. Torres-Madronero, and M. Velez-Reyes. “Unmixing analysis based on mul-

tiscale segmentation,” in Proceedings of 4th Workshop on Hyperspectral Image and

Signal Processing Evolution en Remote Sensing WHISPERS, Jun. 2012.

• M. Torres-Madronero, and M. Velez-Reyes, “Unsupervised unmixing analysis

based on multiscale representation,” in Proceedings of SPIE Vol. 8390, Algorithms

and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII,

Apr. 2012.

1.5.1 Contributions to CISE

This work is part of the research field of Computational Signal and Image Processing

inside of the concentration in Computer Science and Engineering in the Computing

and Information Science and Engineering (CISE) doctoral program at the University

of Puerto Rico [35]. CISE program seeks to integrate engineering, computing and

information science components. In this research these three components can be

identified. The engineering component consists in the design of the spatial-spectral
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model for the unmixing analysis based on multiscale representation. The comput-

ing component is formed by the computing system for the unsupervised unmixing

analysis, and the information science component is related with the information ex-

traction process from hyperspectral imagery in which the problem of estimation of

the basic components (i.e. number of spectral endmember classes) and extraction

of spectral signatures are very important. The developed unmixing technique is a

novel approach that takes advantage of existing techniques of image processing and

data mining such as multiscale representation and clustering for the extraction of

information from hyperspectral imagery.

1.6 thesis outline

Chapter 2 presents a complete review about the state of the art in unmixing analy-

sis of hyperspectral imagery. The linear mixing models is presented in Section 2.2,

and the most widely used algorithm for endmember extraction are reviewed in Sec-

tion 2.3. Section 2.3.3 is devoted to review some of the spatial-spectral methods for

endmember extraction. Least square and sparse regression based methods for abun-

dance estimation are described in Section 2.4. Some attempts to estimate the number

of endmembers are presented in Section 2.5. Then, the concept of scale space and

the basics of multiscale representation are introduced in Section 2.6.

Chapter 3 introduces the new spectral endmember extraction procedure. First,

nonlinear diffusion and multigrid methods are reviewed in Section 3.1. Then, the

spectral endmember extraction approach is described in Section 3.2 and some meth-

ods for scale selection are reviewed and compared in Section 3.2.1.

Chapter 4 aims to compare several clustering algorithms for the spectral endmem-

ber class extraction. Section 4.1 presents a review about cluster analysis. Section 4.2

shows the methodology designed for the spectral endmember class extraction and
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Section 4.3 shows a comparison of several clustering algorithms and validity indexes.

Section 4.3.2 compare the different techniques using a test data set, and then, valid-

ity indexes are evaluated for the estimation of the number of spectral endmember

classes in Section 4.3.3.

Chapter 5 presents a quantitative assessment of the proposed unmixing approach

using synthetic data. Section 5.1 describes the generation of the data used in these

experiments. Section 5.2 described the metrics used for the quantitative assessment,

and Section 5.3 presents the results.

Chapter 6 presents an extended validation and assessment of the proposed un-

mixing approach using hyperspectral images from different scenarios. Section 6.1

describes the data sets employed in these experiments. Section 6.2 describes the

assessment methodology. Section 6.3 shows the unmixing analysis of two hyper-

spectral images and their evaluation using classification maps and spectral libraries.

Finally, Section 6.4 analyzes the spatial resolution effects on the unmixing analysis

based on multiscale representation.

Chapter 7 presents the comparison of the proposed approach with other unmix-

ing techniques. Sections 7.1 and 7.2 show the comparison of SMACC, VCA, RBSPP

and the proposed approach using A.P. Hill and Cuprite hyperspectral images respec-

tively.

Chapter 8 describes the implementation and the complexity analysis for the devel-

oped unmixing algorithm. Chapter 9 aims to analyze ethical issues regarding the

acquisition, processing, and interpretation of remote sensing imagery. Finally, Chap-

ter 10 presents the conclusions of this work as well as indicates possible paths for

future research.



2L I T E R AT U R E R E V I E W

The combined spectral-spatial information captured by hyperspectral images has a

high potential for the remote identification of materials. Several hyperspectral image

processing techniques have been proposed. Most of these techniques only use the

spectral information captured by hyperspectral images. Spatial information has been

incorporated in the hyperspectral analysis using well-known techniques of image

processing such as morphological analysis, spatial kernels, and segmentation.

This chapter presents a general overview of the current state of the arte in hy-

perspectral image processing giving a special emphasis in the linear unmixing and

methods that use both spatial and spectral information. First, an overview of hyper-

spectral imaging is presented. Then, the linear mixing model (LMM) is reviewed in

Section 2.2, endmember extraction algorithms and abundance estimation methods

are described in Sections 2.3 and 2.4 respectively. Algorithms that take advantage of

both spatial and spectral information are reviewed in Section 2.3.3.

Several endmember extraction techniques assume that the number of endmembers

is known a priori. However, it is difficult to determine how many endmembers there

are in a scene. Some attempts to develop approaches for the estimation of the number

of endmembers can be found in the literature. These techniques are reviewed in

Section 2.5. Additionally, Section 2.6 introduces the concepts of scale space and

multiscale representations. Both concepts are fundamental in the development of

the proposed unmixing approach (Figure 1.4).

19
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Figure 2.1: Hyperspectral imagery.

2.1 hyperspectral imagery

Multispectral and hyperspectral remote sensors measure the radiance reflected or

emitted by a surface along of the electromagnetic spectrum. Multispectral remote

sensors are characterized by having a relatively small number of non-contiguous

bands (e.g. less than 25 bands). Instead, hyperspectral sensors capture the radiance

along hundreds of narrow bands sampled continuously across the electromagnetic

spectrum. Spatial and spectral information in hyperspectral images can be visualized

as a cube (see Figure 2.1), where each pixel is a vector which entries correspond to

the intensity of radiance along different wavelengths. The spectral signature for each

material allows the characterization of the different components in a surface [2].

There are several commercial and noncommercial systems for the acquisition of

hyperspectral image. Examples of hyperspectral sensors are summarized in Table

2.1. Airborne sensors such as AVIRIS, HYDICE, AISA Eagle and CASI allow the

acquisition of scenes of different spatial resolution by acquiring imagery at different

altitudes or using different optical configurations. AISA and CASI systems can even
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Table 2.1: Examples of hyperspectral sensors and their technical specifications.

Sensor Num. of Bands Spectral Sampling Spectral Range Spatial Resolution

AVIRISa
224 10 nm 380 to 2500 nm 4m

AISA Eagleb
256 2 nm 400 to 1000 nm 0.6 m

CASI 550
c

288 1.9 nm 400 to 1000 nm 0.5 m

HYPERIONd
220 10 nm 400 to 2500 nm 30 m

HYDICE[36] 210 10 nm 400 to 2500 nm 1 m
ahttp://aviris.jpl.nasa.gov/
b http://galileo-gp.com/aisa_eagle.html
c http://www.itres.com/products/imagers/casi550/
d http://edcsns17.cr.usgs.gov/eo1/sensors/hyperion

capture sub-meter resolution imagery. Hyperion is on board NASA EO-1 satellite,

and therefore, can capture imagery of a same place periodically. However, Hyperion

has a low spatial resolution of 30 meters.

Pixels in hyperspectral images are the result of mixing several components or pure

materials. Mixed pixels are the results of several factors such as the combination of

the distinct materials that occupy a single pixel due to the spatial resolution of the

sensor, the effect of the point spread function of the sensor, or the sensing of a non

homogeneous surface [1][2][3]. Determining what are the materials present in an

image is one of the most important problems in hyperspectral image processing.

The linear mixing model and some algorithms for spectral unmixing are presented

below.

2.2 linear mixing model

Spectral information captured by a hyperspectral remote sensor can be modeled as

the linear combination of several homogeneous materials in the sensor field of view

[3]. The LMM is formulated as:

y = Sa + w (2.1)
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where y ∈ Rn is the radiance measured by the hyperspectral sensor along n spectral

bands, S ∈ Rnxp is a collection of p signatures of basic constituents or endmembers,

a ∈ Rp is a vector whose elements represent the individual contribution of each

endmember in a pixel, i.e. abundance vector, and w ∈ Rn represents the noise. For a

complete image, the mixing model can be expressed in matrix form as:

Y = SA + W (2.2)

where each column of Y ∈ Rnxm is a pixel in the hyperspectral image, m is the

number of pixels, and A ∈ Rpxm represents the abundances.

Unsupervised unmixing algorithms aim at estimating the number of endmembers

p, their spectral signatures (i.e. the endmember matrix S), and their abundances,

A [3]. Abundances are subject to non-negativity, ai ≥ 0, and full additive ∑ ai = 1

constraints. The full additive constraint can be relaxed to sum less or equal to one,

∑ ai ≤ 1, to include shadow endmembers or topographic effects [37].

Several methods have been proposed to solve the unmixing problem. Many algo-

rithms assume that endmember are known a priori. Spectral libraries obtained in

laboratories or collected in the field can be used as endmembers. However in most

cases endmember are unknown. This review is focused on automated unmixing al-

gorithms that extract the endmember signatures from the hyperspectral image itself.

These are known as scene-based endmembers.

Typical unmixing algorithms can be divided in two steps [3]. The first step consists

of the extraction of spectral signatures of endmember from the image. The endmem-

ber extraction algorithms are classified as geometric, parametric, and spatial-spectral

methods. In the second step, abundances are estimated. Once the endmembers

are known, the estimation of abundances is an inversion problem. Inversion tech-

niques based on least square and sparse regression are reviewed. Some unmixing

algorithms estimate the number of endmembers together with the spectral signa-



2.3 endmember extraction algorithms 23

tures. However, most endmember extraction algorithms assume that the number of

endmembers is known a priori. Determining the number of endmembers in hyper-

spectral imagery is a challenging problem. A review of algorithms for the estimation

of the number of endmembers is also included in Section 2.5.

2.3 endmember extraction algorithms

There are several approaches for automatic endmember extraction. The most widely

used algorithms are based on the relation between unmixing with convex geometry.

In addition, parametric model approaches have been proposed for the endmember

extraction problem. Geometric and parametric approaches are reviewed in the next

sections. Techniques described in Sections 2.3.1 and 2.3.2 are per-pixel approaches

that do not take into account the spatial information provided by the hyperspec-

tral images. Section 2.3.3 is dedicated to review the state of the art of endmember

extraction algorithms that use both spatial and spectral information.

2.3.1 Geometric Methods

The unmixing problem is related to a convex geometry problem where the spectral

signatures are seen as points in an n-dimensional scatterplot [5]. Due to the non-

negativity property of radiance and reflectance, spectral data lie in a convex cone

[38]. When the full additive constraint is added, the spectral data lie in a simplex

where the points are linear combinations of its vertices [5]. Figure 2.2 illustrates these

ideas. The relation between the unmixing problem and convex geometry has been

used by many researchers to develop algorithms for the extraction of endmember

signatures. Algorithms such as Pixel Purity Index (PPI [39]), N-FINDR [40] [41], and

Simplex Growing Algorithm (SGA [42]) are based in the simplex model. Some al-
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Figure 2.2: Geometric models for mixed pixels: (a) Simplex (Figure from [44]). (b) Convex
cone models (Figure from [34]).

gorithms explore the convex cone approach such as Convex Cones Analysis (CCA

[38]), and Sequential Maximum Angle Convex Cone (SMACC [33]). Vertex Compo-

nent Analysis (VCA [34]) explores the fact that the projection of the convex cone onto

a hyperplane is a simplex with the vertices corresponding to the endmembers. The

unmixing problem is also related to the Non-negative Matrix Factorization (NMF)

from a geometric point of view [43]. These algorithms are briefly reviewed below.

2.3.1.1 PPI

Pixel Purity Index is the first approach that explores the convex property of LMM

and was proposed by Boardman in [39]. PPI determines a set of candidates for end-

members assuming that pure pixels are present in the image. This is not a fully

automated technique because the final endmembers should be selected by a trained

image analyst. Given a hyperspectral image, a maximum noise fraction (MNF) trans-

form [45] is used to reduce the dimension of the data. The reduced data is projected

onto random unit vectors. The numbers of times that a pixel is an extreme point in

the projection are registered. The accumulated value for each pixel gives the purity
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index. Pixels with the largest purity indexes are candidates for endmembers. Next, a

visualizer of high dimension and experience in image analysis are required to select

the final endmembers from the candidate set. PPI is included in ENVI software 1.

The PPI function in the ENVI creates an image with the purity index. The result of

PPI is then an input for the ENVI n-D Visualizer where the user should select the

final endmembers.

2.3.1.2 N-FINDR

Other widely used geometric algorithm is N-FINDR [40, 41]. N-FINDR seeks the

pixels that form the simplex with the maximum volume that enclosed the data. First,

the MNF [45] transform is used to reduce data dimensionality. Next, a set of pixels

are randomly selected as endmembers. The volume of the simplex is calculated using

the selected pixels as:

V(S) =
abs(|S|)
(p− 1)!

(2.3)

where p is the number of endmembers, abs() is the absolute value and | |denotes

the determinant.

The algorithm iteratively replaces every endmember for each pixel in the hyper-

spectral image calculating the volume. If the volume increases, then the pixel re-

places the endmember. Chang et al. [42] describe the Simplex Growing Algorithm

(SGA) algorithm that improves the computational complexity of N-FINDR. Similar

to N-FINDR, SGA looks for pixels that form the maximum volume simplex. But,

SGA begins with two endmembers, and it selects a new endmember from the hyper-

spectral data such that the simplex volume increases. New endmembers are selected

until the desired number of endmembers is reached. Chang et al. describe in [42] a

procedure to select the initial endmembers. The main problem with the algorithms

1 http://www.ittvis.com/language/en-us/productsservices/envi.aspx
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based in the maximum volume simplex is that results are affected by outliers. N-

FINDR and SGA assume that there are pure pixels in the image.

2.3.1.3 CCA

Convex Cone Analysis (CCA) described by Ifarraguerri and Chang [38] seeks the

boundaries of the convex region that circumscribe the spectral data points. The ver-

tices of this convex region are used as endmembers for the unmixing procedure.

CCA assumes that the number of endmembers is known a priori. First, CCA com-

putes the correlation matrix C of the hyperspectral data. Then, CCA selects the

eigenvectors,
[
v1...vp

]
, corresponding to the p largest eigenvalues of C to form a sys-

tem of equations. The boundaries of the convex cone are found solving the following

equation:

x =

[
v1 · · · vp

]


1

a1

...

ap−1


Va ≥ 0 (2.4)

where V = [v1...vp] and ai are the p− 1 free parameters. CCA seeks a set of coeffi-

cients ai such that these produce a linear combination with p− 1 elements of x that

are exactly zero, and all of the other elements nonnegative. These points represent

the corners of the convex cone [38].

2.3.1.4 SMACC

Sequential Maximum Angle Convex Cone (SMACC) algorithm [33] is also based on

the convex cone model. It is a sequential algorithm that computes simultaneously

both endmembers and fractional abundance maps. SMACC assumes that there are

pure pixels in the image. This algorithm is also included in the ENVI software.
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First, a group of extreme vectors (i.e. pixels that cannot be expressed as positive

linear combination of other pixels in the image) are selected from the image. A

first endmember is selected from the extreme vectors. Then, the abundance for this

endmember is computed. The endmember is removed from all of the vector pixels

by orthogonal projection. A new endmember is identified based on length of its

residual in the actual model, where the residual is the spectral data outside of the

current convex cone. The algorithm updates the abundances of previous endmember

before continue to the next iteration. It terminates when all of the spectral data are

within the convex cone or the number of endmembers is reached [33].

2.3.1.5 VCA

Vertex Component Analysis (VCA) [34] assumes that pure pixels are present in the

hyperspectral image, similarly to other algorithms (e.g. PPI, N-FINDR, SMACC)

and that the number of endmembers is known a priori. VCA exploits the fact that

endmembers are the vertices of a simplex, and that the affine transformation of a

simplex is also a simplex. The pixels of the hyperspectral image lie in a convex cone

contained in a subspace of dimension p. VCA identifies this subspace using SVD

whether the SNR (signal-to-noise ratio) of the data is higher than a given threshold,

otherwise projection is obtained by PCA. The algorithm iteratively projects the data

onto an orthogonal direction to the subspace spanned by the endmembers already

determined, until the number of endmembers is reached. Endmember signatures

correspond to the extremes of the orthogonal projections.

2.3.1.6 NMF

Non-negative Matrix Factorization (NMF) is proposed by Lee and Seung in [46].

Given a non-negative matrix Y ∈ Rnxm
+ (e.g. a spectral image), NMF tries to find

two non-negative matrixes S ∈ R
nxp
+ and A ∈ R

pxm
+ (e.g. spectral endmember and

abundance matrix in unmixing analysis), such that Y = SA. The minimum value of p
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for which the factorization exists is called the positive rank. NMF has been explored

for hyperspectral image analysis in several works such as [47], [48], [49], and [50].

Donoho and Stodden [43] give the geometric interpretation of NMF and related it

to finding the convex cone that contains the spectral data points. The advantage of

this approach over other geometric methods is that NMF does not assume that pure

pixels are present in the hyperspectral image. However, the number of endmembers

or the positive rank should be known a priori.

Given p, unmixing using NMF approximation can be performed by finding S ∈

R
nxp
+ and A ∈ R

pxm
+ such that [49] [50]:

(Ŝ, Â) = arg min
Sij≥0,Aij≥0

‖Y− SA‖2
F (2.5)

Jia and Qian [49] includes smoothness and sparseness constraints in the optimiza-

tion. Masalmah and Velez-Reyes [50] describe the use of constrainted positive matrix

factorization (cPMF) for unsupervised unmixing.

2.3.2 Parametric Methods

The algorithms described previously represent each endmember as a single spec-

trum. Parametric approaches model endmembers and fractional abundances as ran-

dom vectors. Most parametric algorithms assume Gaussian distributions for the

pure constituents [3]. Several parametric models can be found in the literature such

as stochastic mixing model [51], dependent component analysis [52], endmember

detection using the dirichlet process [22], Piece-wise Convex Endmember (PCE [21]),

and reversible jump Markov Chain Monte Carlo algorithm [53].

Geometric models are the most used techniques for unmixing. However, researchers

have demonstrated that not all hyperspectral images follow the convex hull model

[21], and therefore geometric algorithms are not suitable in these cases. Zare and
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Figure 2.3: Piece-wise convex approach. Illustration from [21].

Gader [21] describe an unmixing technique based on the partitioning of spectral data

into several convex regions called PCE algorithm. Figure 2.3 illustrates the approach

of Zare and Gader. The curves around endmembers represent the standard devia-

tion for each endmember distribution. Endmembers are modeled using Gaussian

distributions and the priori distributions for the abundance vectors are polynomial

functions. The number of convex regions are estimated using a Dirichlet process.

Abundance vectors in PCE are sparse since each pixel uses only a subset of the end-

members.

2.3.3 Spectral - Spatial Methods

The algorithms described previously only take into account the spectral information

in hyperspectral imagery (i.e. pixel only approaches). This section reviews some

algorithms that consider both spatial and spectral information for endmember ex-

traction.

2.3.3.1 AMEE

Automated Morphological Endmember Extraction (AMEE) is a fully automated end-

member extraction algorithm proposed by Plaza et al. [9] based on mathematical
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morphology operations extended to multispectral images. AMEE estimates the num-

ber of endmembers and looks for them using spatial kernels. Input parameters to

the algorithm are the minimum and maximum size of the spatial kernel. The ker-

nel K, initially with the minimum size, is moved through all image defining local

neighborhoods around each pixel y(x, y).

Extension of morphological operators (i.e. dilation and erosion) to multispectral

and hyperspectral imagery are used to define a vector ordering relation. Plaza et

al. [9] describes an ordering method based on the spectral purity of a pixel. The

spectrally purest pixels p are related to the dilation operation and spectrally mixed

pixels m are related to the erosion operation. Dilation and erosion are defined for a

pixel y(x, y) and a kernel K as:

p = arg max
(s,t)∈K

{D(y(x + s, y + t), K)} (2.6)

m = arg min
(s,t)∈K

{D(y(x− s, y− t), K)} (2.7)

where D denotes a distance metric given by:

D(h(x, y), K) = ∑
s

∑
t

dist(h(x, y), h(s, t)) ∀(s, t) ∈ K (2.8)

and dist() is the spectral angle distance. The effects of dilation and erosion in spectral

data are illustrated in Figure 2.4. Dilatation expands regions with pure pixels while

erosion shrinks zones with pure pixels.

A morphological eccentricity index (MEI) is obtained by calculating the spectral

angle distance between p and m. MEI is assigned to the maximum pixel in the

neighborhood. This index determines the capacity of a pixel to describe other pixels

in the kernel. The process is repeated for all pixels in the image using kernels of

increasing size until the maximum spatial kernel size is reached. The MEI value is

updated at each one of the iterations. A threshold is applied to the MEI for unsuper-
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Figure 2.4: Automated morphology endmember extraction algorithm. Effects of dilation and
erosion in spectral data. Figure from [9].

vised endmember selection. The number of endmembers correspond to the number

of pixels that are not eliminated from the MEI. A region growing procedure is used

to refine the final selection.

Kernels allow to define local neighborhoods in the search of spectral purity pixels.

Thus, AMEE takes into account the spatial and spectral information of the hyperspec-

tral data for endmember extraction. Dilation and erosion operation are extended to

determine maximum and minimum spectra in term of the spectral purity of pixels.

The MEI index defined by Plaza et al. [9] allows the selection of those pixels with

high spectral purity (determined by the dilation operation) and few mixed (deter-

mined by the erosion operation).
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2.3.3.2 SSEE

Spatial-Spectral Endmember Extraction (SSEE) algorithm described by Rogge et al.

[14] is based on the fact that endmembers with high spectral contrast are easy to

detect using any convex technique. On the other hand, the detection of endmembers

with low spectral contrast with respect to the full image is a more difficult task.

SSEE breaks up the full image into several subsets increasing the relative contrast

of endmembers. SSEE consists of four steps. First, the largest eigenvectors from

the SVD of each subset are selected. This set of eigenvectors explains most of the

spectral variability of the image. Second, the full image is projected onto the selected

eigenvectors. Pixels lying at the extreme are candidates for endmembers. Third,

spectrally similar candidates are averaged if they are spatially related. In the last

step, endmembers are ordered into a list by using the spectral angle such that the

user can identify spectral endmember classes. First endmember is selected as the first

spectra in the ordered list. Spectral endmember classes are determined manually by

the user identifying groups of similar spectra in the ordered list.

Three parameters are required for SSEE: the pixel subset size, the threshold to

select the largest eigenvectors, and the threshold to average similar endmembers in

the third step. Rogge et al. [14] suggest a subset size of 20 pixels, the first threshold

is fixed such that the selected eigenvectors represent the 99% of spectral variability,

and the second threshold is suggested to one degree if the spectral angle distance is

used.

2.3.3.3 SPP

Zortea and Plaza [15] propose a spatial pre-processing (SPP) step to improve end-

member extraction from hyperspectral imagery. This SPP step can be combined with

any spectral endmember extraction algorithm. SPP seeks to enhance the search of

endmembers based on the assumption that it is likely to find endmembers within
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homogeneous regions. A scale factor ρ(i, j) as function of spatial similarity between

the pixel (i, j) and their neighbors is defined in [15] to improve the endmember ex-

traction. This scale factor is used by the spectral endmember extraction algorithms

to seek endmembers in spectrally uniform regions. The scale factor is defined as:

ρ(i, j) =
(

1 +
√

α(i, j)
)2

(2.9)

where:

α(i, j) =
i+d

∑
r=i−d

j+d

∑
s=j−d

β(r− i, s− j)γ(r− i, s− j) (2.10)

and d is determined by the width of the neighborhood window of the pixel (i, j),

γ(r− i, s− j) is a similarity measure between two pixels (r, s) and (i, j) where (r, s)

is a neighbor of (i, j), and β is a weighted factor defined such that neighbors closest

to pixel (i, j) have more weight in the scale factor.

Zortea and Plaza [15] present a simple equation to compute the scaled image Y′:

Y′(i, j) =
1

ρ(i, j)
(Y(i, j)− µ) + µ (2.11)

where µ is the data mean.

Once the scaled image is computed, an endmember extraction technique is ap-

plied to determine the endmembers and their positions. Then, the abundances are

estimated using the spectra associated with the selected positions. The main advan-

tage of this method is than it does not require to modify the endmember extraction

procedures. However, SPP results are dependent on the neighborhood size.
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2.3.3.4 Spatially Adaptive Hyperspectral Unmixing

Canham et al. [16] describes the spatially adaptive hyperspectral unmixing approach

which divides the image into several tiles that are used to identify local endmembers.

The endmember extraction in each tile is performed using per-pixel techniques. In

[16], MAX-D [54] is used for the determination of local endmembers. Abundances

are estimated in each tile using local endmembers and similar endmembers are clus-

tered to determine global abundances. MAX-D requires the number of endmembers

as input, for which Canham et al. use a methodology based on the Gram matrix [16].

This methodology begins by computing the volume of the convex hull formed by the

endmembers extracted using MAX-D. The volume of the convex hull is computed as

the determinant of the local Gram matrix expressed as:

G(i, j) =
〈
(Yk − Yi), (Yk − Yj)

〉
(2.12)

where 〈〉 denotes the dot product, Yi and Yj are two endmembers, and Yk is the mean.

The volume of the convex hull is calculated for several values of p. A property of

Gram matrix is that when the vectors become linearly dependent, the determinant

becomes zero. Thus, the number of endmembers is estimated when the percentage

of the volume of the convex hull is close to a threshold. As the abundances are

estimated locally, a tiling artifact is observed in the final abundances. The algorithms

also depends of the tile size similarly to SPP, SSEE, and AMEE.

2.3.3.5 RBSPP

Region-Based Spatial Pre-Processing (RBSPP) [17] algorithm uses spatial information

to determine the endmembers. RBSPP seeks for the most spectrally pure regions us-

ing unsupervised clustering and orthogonal subspace projection. RBSPP assumes

that pure spectral signatures are presented in spatially homogenous regions and the
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boundaries will contain mixed pixels. Similar to SPP, RBSPP is a pre-processing step

that can be combined with per-pixel techniques for the final estimation of endmem-

bers. Martin and Plaza [17] compare the results of RBSPP using NFINDR and VCA.

The unsupervised clustering is conducted using ISODATA, k-means, and a hierarchi-

cal segmentation algorithm.

Regions are represented by their mean spectrum xk. Using these representative

spectra, an orthogonal projection procedure determines those spectrally distinct re-

gions which will be used as inputs for the per-pixel endmember extraction tech-

niques for the final determination of endmembers. The first region is the one with

the highest intensity spectrum:

R1 = arg max
k

r

∑
k=1

xkxT
k (2.13)

where r is the number of regions (or segments) in the hyperspectral image. Once the

first region is selected, then U = [x1] and iteratively other regions are selected by:

Rj = arg max
k

{(
PUj−1xk

)T (
PUj−1xk

)}
for k = 2...r (2.14)

where PUj = I − Uj(UT
j Uj)

−1UT
j and Uj = [x1...xj] . The orthogonal projections

are repeated until j = c, where c is a predefined number of regions. The spectra

inside the selected regions are the input for the per-pixel technique. The number of

endmembers required for the per-pixel technique is determined by HYSIME [55] and

c is equal to 2p. Unlike the other spatial-spectral algorithms, RBSPP does not require

kernel or spatial windows. However, it does not perform the endmember extraction

by itself.



2.4 abundance estimation algorithms 36

2.3.3.6 Unmixing using Endmember Bundles

Somers et al. [23] describes an unmixing approach to extract multiple endmembers

from hyperspectral imagery using per-pixel techniques. This approach runs some

spectral endmember extraction algorithms in randomly selected subsets of the image.

The idea is to build a spectral library with the endmembers extracted from each

subset. Once the spectral library is built, k-means with Euclidean distance are used to

separate the endmembers into bundles (i.e. sets of endmembers that represent each

ground component). The spectral library is the input for the MESMA algorithm [20]

that performs the abundance estimation. Results of this methodology depend on the

endmember extraction algorithm selected as well as the size and number of subsets.

2.4 abundance estimation algorithms

Once the endmember signatures are known, the next step is abundance estimation

[3]. Abundance estimation is usually performed with constrained least square meth-

ods. However, methods using sparse regression have been proposed recently. Tech-

niques based in sparse signal representation theory are used to find the more ap-

propriated endmembers to model each pixel when multiple spectral signatures per

endmember are used. This section reviews both approaches.

2.4.1 Least Square Methods

Given a spectral vector y and the endmember matrix S, the abundance vector can be

estimated by solving the least square problem:

â = arg min ‖y− Sa‖2
2 (2.15)



2.4 abundance estimation algorithms 37

The abundance represents the percentage area covered by a given endmember Si

in a pixel. Therefore, abundances are subject to non-negativity and full additive

constraints:

ai ≥ 0 (2.16)

∑ ai = 1 (2.17)

The second constrain can be relaxed to sum less than or equal to one to take into

account shadow endmembers or effects of topography [56, 37]:

∑ ai ≤ 1 (2.18)

Iterative algorithms can be found in [56] and [37] to solve the constrained least square

problem. For example, NNSLO solves the problem in Equation (2.15) constraining

the sum of abundances to less than or equal to one (2.18). Instead, NNSTO uses the

sum to one constraint (2.16) [37].

2.4.2 Sparse Regression

Recently, sparse representations have attracted the attention of the remote sensing

community. Several applications of sparse representation for hyperspectral imagery

can be found in the literature (e.g. [57], [58], [59], [60], [61]).

Iordache et al. [60] present a study of sparse unmixing using a spectral library and

endmember extracted from the hyperspectral image with VCA and N-FINDR. When

pixels in a hyperspectral image are expressed as a linear combination of a subset

of endmembers from a very large spectral library S, the unmixing problem can be

reformulated as the problem of seeking the optimal subset of spectral signatures that
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best model each mixed pixel. Under this assumption, the abundance vector becomes

a sparse vector. The sparse unmixing problem can be expressed as:

min
a
‖a‖0 subject to ‖y− Sa‖2 ≤ δ, ai ≥ 0, ∑ ai ≤ 1 (2.19)

where ‖‖0 is the zero-norm and denotes the number of nonzero elements, and δ is a

fitting error threshold.

Iordache et al. [60] explore the use of several algorithms to solve the problem in

Equation (2.19), such as orthogonal matching pursuit and basis pursuit. Among the

advantages of sparse unmixing are that the abundance estimation neither depends

on the availability of pure pixels in the image, nor in the capacity of an endmem-

ber extraction algorithm. However, most of the time the spectral libraries are not

acquired under the same conditions as the spectral image and a correct sparse so-

lution depends on the degree of coherence of the library and the sparseness of the

fractional abundances.

Castrodad et al. [57] present a supervised unmixing algorithm based on dictionary

learning. Unlike Iordache et al [60], they do not use spectral libraries. Given a set

of training samples per class Yi, the algorithm seeks a dictionary D that is used as

the endmember matrix to solve the unmixing problem. The dictionaries Di for each

training sample set Yi are learned solving the problem:

min
Xi,Di
‖Xi‖1 subject to ‖DiXi − Yi‖2 < ε (2.20)

where Xi is the sparse representation, ‖‖1 and ‖‖2 are the norm `1 and `2 respectively,

and ε is a error threshold. The mixing problem is solved for each pixel using the

dictionary D = [D1, D2, ..., Dc] as the endmember matrix.

There are several algorithms to solve the sparse regression problem. For instance,

SUnSAL (spectral unmixing by splitting and augmented Lagrangian) and C-SUnSAL
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(constrained SUnSAL) are based on the alternating direction method of multipliers

[62]. SUnSAL solves the problem:

â = arg min 1
2 ‖Sa− y‖2

2 + λ‖a‖1 subject to 1Ta = 1 and a ≥ 0 (2.21)

where λ ≥ 0 is a control parameter. C-SUnSAL algorithm solves the objective func-

tion given by:

â = arg min ‖a‖1 subject to ‖Sa− y‖2 ≤ δ, 1Ta = 1 and a ≥ 0 (2.22)

2.5 estimation of the number of endmembers

Most unmixing algorithms reviewed in last sections do not estimate the number of

endmembers. Several attempts to estimate the number of endmembers are described

in the literature.

Estimators based on the signal subspace rank assume that the number of endmem-

bers is equal to the rank of the covariance matrix. The sensed data y is the result

of the sum of the original signal x and noise w. Then, the covariance matrix of the

sensed data Ky is equal to the sum of the covariance matrix of the signal Kx and the

covariance of the noise Kw. An estimator based on the signal subspace rank seeks

to estimate the rank of the covariance matrix Kx. Most estimators that use this ap-

proach assume that the noise is an independent and identically distributed random

vector with w = σI . Note that covariance matrix of the sensed signal has full rank.

Rank estimators based on information criteria such as minimum descriptor length

(MDL) or Akaike information theoretic criteria (AIC) are part of this category. These

approaches have been used for the estimation of the number of endmembers [63],

[53]. AIC and MDL were developed in [64] and [65] respectively, and extended for

signals embedded in white noise by Wax and Kailath [66]. The main assumptions
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of these model selection methods are that the observations yi and the noise w are

identical and statistically independent with Gaussian distributions and zero mean.

Wu et al. [67] show that both AIC and MDL do not estimate correctly the number of

endmembers since the noise of hyperspectral images is not statistically independent.

Other approaches assumes that the number of endmembers is equal to the rank of

the image matrix Y that can be estimated using the correlation matrix given by [68]:

RY =
1
m

YTY (2.23)

where m is the number of pixels in the image. Note that rank(Y) = rank(RY)

A widely used procedure to compute the number of endmembers is the virtual

dimensionality (VD) proposed by Chang and Du [63]. VD compares the eigenvalues

from the covariance matrix and correlation matrix to estimate the number of end-

members. However, Bajorski [69] shows that VD is based on incorrect assumptions

and therefore VD is not considered in this work.

The positive rank of the image matrix Y can be also used in the estimator for the

number of endmembers [50]. The positive rank is defined as the least integer p for

which a positive matrix factorization exists [70], i.e.:

Y = SA (2.24)

where S ∈ R
n×p
+ and A ∈ R

p×m
+ .

Bioucas-Dias and Nascimiento propose in [55] the hyperspectral signal identifica-

tion by minimum error (HySIME) algorithm for the estimation of the dimensionality

of a hyperspectral image. First, HySIME estimates the signal and the noise correla-

tion matrices using multiple regression theory. The signal subspace is determined by

selecting a subset of eigenvector of the signal correlation matrix. This subset is deter-

mined by minimizing the mean square error between image and a noise projection.
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Despite the efforts made to address the problem of determining the number of

endmembers from hyperspectral imagery, new techniques that take full advantage

of spatial and spectral information are necessary. Here we present a technique for

the estimation of the number of endmembers using both spatial and spectral infor-

mation. Full automated unmixing algorithms such as AMEE addresses the problem

of the number of endmembers jointly with the spectral signatures (see Section 2.3.3).

However, AMEE performance depends of spatial kernel size and the threshold given

for the MEI image. As far as we know, only the AMEE method use the spatial

information in the estimation of the number of endmembers.

2.6 scale spaces and multiscale representations

Computer vision and image processing aim to extract meaningful information from

an image. The objects of interest is determined by the specific task where the com-

puter vision system is employed and it exists on limited range of scales [24]. For

instance, see the images in the Figure 2.5 which was generated by sub-sampling the

image several times. The image with the finest scale allows to see most details in the

texture of the trunk and the leaves. However, these details are lost in the coarsest

scale image where only the largest objects can be noted such as the path and the trees.

Figure 2.5 illustrates how, as the scale changes, different objects can be observed.

A methodology for dealing with the notion of scale is the generation of multiscale

representations. Multiscale representations build a family of images where fine de-

tails are systematically removed using smoothing operations and where the objects

can be analyzed at different scales [24].
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Figure 2.5: Scale concept. Figure from [24].

A multiscale representation for a image Y(i, j) can be obtained by applying several

Gaussian filters G0,σ with different variances σ2 [25]:

Y(i, j, σ) = Y(i, j) ∗ G0,σ (2.25)

The variances allow to generate different levels of smoothing that defines a scale

space for a image. An example of scale space using Gaussian filters is presented in

Figure 2.6.

The scale spaces should satisfy architectural axioms, morphological requirements,

and stability [71]. Architectural axioms group the causality, recursivity, regularity,

and locality properties. Let a family of transforms Tt which generates a sequence

of images u(t, x) when the transformations are applied to the original image x. The

recursivity property establishes that smoothed image in any scale can be obtained

from the previous one:

Tou = u

Ttu = Tl(Tmu) t = l + m
(2.26)
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where To is the identity. The causality property ensures that a scale is the result of

transformation of previous scales and not of images on higher scales. The regularity

axiom establishes the continuity of the transformation. Let t = nh, then, Tt = Tnh

can be built from the n-th iteration of Th. The regularity property says that the

multiscale representation is independent of the selection of h. Finally, the locality

axiom establishes that Ttu is determined by a small neighborhood around u.

Morphological requirements establish that the multiscale representation should be

invariant to changes of illumination and position:

Grey− Level− Shift Invariance
Tt(0) = 0

Tt( f + C) = Tt( f ) + C

Grey− scale Invariance Tt(h( f )) = h(Tt( f ))

Translation Invariance Tt(τ. f ) = τ.Tt( f )

Finally, the stability condition establishes that new structures should not appear in

the coarsest scale. Coarser structures should be simplification of corresponding struc-

tures at finer scales [71, 24].

Alvarez et al. [71] show that a necessary condition for a scale-space is that it should

satisfy the partial differential diffusion equation given by:

∂Y(i, j, σ)

∂t
=

∂2Y(i, j, σ)

∂i2 +
∂2Y(i, j, σ)

∂j2
= ∇Y(i, j, σ) (2.27)

Equation (2.27) is called isotropic diffusion. Isotropic diffusion diffuses the informa-

tion equally in all directions allowing the reduction of noise, but eliminating edges.

This effect is noted in Figure 2.6 where a gray-scale image was smoothed for different

values of σ.

Perona and Malik [72] propose to use either nonlinear or anisotropic diffusion to

smooth an image while keeping the boundaries between regions or edges. Non-



2.7 summary 44

Figure 2.6: Isotropic diffusion and scale space. Figure from [24].

linear diffusion of hyperspectral imagery is used in this research. An algorithm

proposed by Duarte et al. [26] that employes multigrid methods is used for the

multiscale representation and the endmember extraction. The next chapter presents

details about Duarte’s algorithm and how the endmembers are extracted using the

multiscale representation.

2.7 summary

The state of the art in unmixing analysis evidences the need for most robust algo-

rithms that use the spatial and spetral information contained in a hyperspectral im-

age. Most of the spatial-spectral algorithms found in the literature use spatial kernels

or windows into their procedures. Therefore, the obtained unmixing results depend

on the size of these kernels. On the other hand, the RBSPP [17] algorithm employs
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unsupervised clustering techniques to determine spectrally uniform regions where

endmember are extracted avoiding to use spatial kernels. However, similar to most

of existing spatial-spectral methods, RBSPP [17] does not use the spatial information

for the estimation of the number of endmembers. In addition, RBSPP does not per-

form the endmember extraction. This is a pre-processing step that determines a set

of spectra that are passed to a spectral-only technique for endmember extraction. As

fas as we know, only AMEE [9] uses the spatial information to estimate the number

of endmembers, but as mentioned before its results depend on the size of the spatial

kernels. Therefore, the development of new algorithms that use the spatial and spec-

tral information of hyperspectral imagery for the joint estimation of the number of

endmembers and their spectral signatures that do not use kernels is crucial.



3S P E C T R A L E N D M E M B E R E X T R A C T I O N B A S E D O N

M U LT I S C A L E R E P R E S E N TAT I O N

A spectral endmember extraction approach is presented in this chapter which is built

upon the multiscale representation of hyperspectral imagery using multigrid meth-

ods proposed by Duarte et al. [26]. The developed endmember extraction method

takes advantage of the sampling operation used to build the coarse grids in the multi-

grid method. To introduce this approach, a review of Duarte’s method is presented

where a detailed description of the procedure for building the multigrid is included.

The proposed methodology requires the selection of an image from the multiscale

representation. A study about how to determine a scale in the multiscale representa-

tion is performed. Several methods have been proposed for scale selection. Usually,

these methods are used to determine when nonlinear filters remove the noise in an

image, or when the solution of the nonlinear PDE achieves a stable state. In this

research, these methods are used to determine a scale for endmember extraction.

Experiments comparing different scale selection approaches are performed. Exam-

ples of scale effects and scale selection are presented using different hyperspectral

images.

46
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3.1 multiscale representation of hyperspectral imagery

Nonlinear diffusion for spectral image Y = [y1, ..., ym]Tof n bands and m pixels is

given by the nonlinear PDE [26]:

∂yi
∂t = ∇[g(θ(∇yσg))∇yi] i = 1, ..., m (3.1)

where yσg is a smoothed version of y with a Gaussian filter of zero mean and stan-

dard deviation σg, θ(∇yσg) is a measure of the edge strength given by:

θ(∇yσg) =

√√√√ 1
n

n

∑
j=1

∣∣∣∇yσg j

∣∣∣2 (3.2)

and g is the diffusion coefficient. Duarte et al. [26] used the diffusion coefficient

proposed by Weickert et al. [73]:

g(θ) =

 1 θ = 0

1− e
− 3.31488

(θ/α)8 θ > 0
(3.3)

where α is a threshold parameter to control the diffusion. In addition, Duarte et al.

used a distance (e.g. Euclidian, spectral angle distance) as θ instead of Equation (3.2).

Examples of nonlinear diffusion applied to hyperspectral images are presented in

Figure 3.1. Figure 3.1 shows RGB compositions for two images and their correspond-

ing smoothed images. The first is an AVIRIS image from A.P. Hill and the second

is the False Leaf image collected with the SOC 700. RGB compositions were built

using bands 30 (654 nm), 20 (557 nm) and 9 (451 nm) for A.P. Hill and bands 57 (639

nm), 35 (548 nm) and 13 (460 nm) for False Leaf. The spatial effects of nonlinear

smoothing in the leaves are presented in Figures 3.1(e) and 3.1(f). The smoothed
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images in Figure 3.1 were obtained using Duarte’s algorithm that is reviewed in the

next section.

The semi-implicit discretization of the nonlinear diffusion PDE is expressed in

matrix form as:

(I− µGt)Yt+1 = Yt (3.4)

where µ is the scale step (i.e. µ ≡ ∆t), Yt is the hyperspectral image and G = [gij] is

the diffusion coefficients matrix. Duarte et al. [74] showed that semi-implicit schemes

can solve the nonlinear diffusion of hyperspectral images faster than using explicit

discretization. An algorithm to solve the nonlinear PDE using semi-implicit methods

for hyperspectral imagery using multigrid methods is presented in [26].

Multigrid methods are numerical techniques to solve linear systems of equations.

Multigrid methods aim to build a hierarchical representation of the problem from a

fine grid to a coarse grid, such that the linear system can be solved exactly in the

coarsest grid. Then, the solution is propagated to the fine grid to solve the original

linear system [27]. Algebraic multigrid methods have two main operations: sam-

pling and interpolation. Sampling builds the multigrid structure and interpolation

propagates the solution from the coarse to the fine grid. To build a multiscale repre-

sentation, Equation (3.4) is solved several times using as initial condition the original

image. A multigrid structure is built each time that the PDE is solved. An extended

description of multigrid methods can be found in [27].

The developed endmember extraction method exploits the multigrid structure at

the selected scale to determine the spectral endmembers. A review of the needed

details about the multigrid structure is done below based on [26] and [75]. See [26]

for more details about the solver and the interpolation operation.

The multigrid structure can be visualized as an inverted pyramid (see Figure 1.3)

where each level, s ∈ 0....S, is represented by a graph (Vs, Es) in which Vs is the set
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Figure 3.1: Example of nonlinear diffusion. A.P. Hill image: (a) Original. (b) Smoothed. RGB
composition using bands 30 (650 nm), 20 (557 nm) and 9 (451 nm). False Leaf
image: (c) Original. (d) Smoothed. (f) - (e) Smoothing effects in a leaf. RGB
composition using bands 57 (639 nm), 35 (548 nm), 13 (460 nm).
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of vertices in level s and Es is the set of edges. Each edge (i, j) in Es has a weight

that represents the similarity between the vertices in us
i and us

j . The graph in level

0 is built by setting the pixels in the initial hyperspectral image as the vertices V0,

i.e. u0
i = yi, and the set of edges E0 are formed by connecting each pixel with its

four closest neighbors with weights gs
ij given by Equation (3.3). To solve Equation

(3.4), the initial hyperspectral image is a smoothed version of the original image

yσg . The construction of the multigrid structure is achieved by consecutive sampling

operations which consist of two main steps: the selection of next set of vertices (Vs+1)

and the determination of the edges for the new set of nodes (Es+1).

Let the mass of a vertex ms
i be a measure of how many pixels in the finest grid can

be assigned to the vertex in the coarse grid. The first vertex of Vs+1 is selected as the

vertex in Vs with the biggest mass. Remaining vertices in Vs are sorted in decreasing

order of mass. Then, iterating on the vertices of Vs, a vertex is selected for the new

grid if this satisfies the condition given by:

∑
j∈Vs+1

gs
ij

∑
(i,k)∈Es

gs
ik
≤ τ (3.5)

where i is a vertex in Vs and τ is a threshold parameter that controls the similarity

of vertices in the new grid.

Once the vertices for the new grid are selected, it is necessary to compute the

weights (wij in the Figure 1.3) between the vertices in Vs+1 and the vertices in Vs not

selected as representatives. These weights indicate the dependence between vertices

of the current and the new grid, and are given by:

ws
ij =

gs
ij

∑
k∈Vs+1

gs
ik

(3.6)
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where i is a vertex in Vs not selected as representative (i.e. i ∈ Vs\Vs+1) and j is in

Vs+1. The mass of new vertices is determined by:

ms+1
j = ms

j + ∑
k∈Vs\Vs+1

ms
kws

kj (3.7)

For s = 0, the masses are set equal to 1. Thus, the masses at any level s + 1 are

obtained recursively from the masses at level s.

At each level, the vertices hold the mean of spectral signatures computed by the

expression:

us+1
j =

us
j + ∑

k∈Vs\Vs+1
ws

kju
s
k

1 + ∑
k∈Vs\Vs+1

ws
kj

(3.8)

Finally, the gs+1
ij are computed to connect the vertices in the new grid. For that,

Duarte et al. [26] derived the following expression:

gs+1
ij =



gs
ij if (i, j) ∈ Es

(ws
kig

s
kj+ws

kjg
s
ik)

1+ ∑
k∈Vs\Vs+1

ws
ki

exp(−θ(us+1
i , us+1

j )/α)
if (i, k)and

(k, j) ∈ Es(
∑

p,q∈Vs
ws

pig
s
pqws

qj

)
1+ ∑

k∈Vs\Vs+1
ws

ki
exp(−θ(us+1

i , us+1
j )/α)

if (i, p), (p, q)

and (q, j) ∈ Es

(3.9)

The grid is coarsened until the dependence of a representative on its neighbors is

small. This dependence is calculated by:

Γi =

∑
j∈Vs

gs
ij

ms
i
≤ ε (3.10)
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3.1.1 Input Parameters

The construction of the multigrid structure requires two threshold parameters τ

(Equation 3.5) and ε (Equation 3.10). Parameter τ controls the similarity of vertices

in the new grid and ε determines the similarity of the vertices in the coarse grid.

Parameter α, in Equation (3.9), controls the amount the diffusion. Duarte et al. [26]

suggests to set τ = 0.2, ε = 1e− 5 and 0.005 ≤ α ≤ 0.015. In addition, the variance

for the Gaussian filter used to generate yσg is required.

To find the multiscale representation, additional parameters µ, which corresponds

with the scale step, and final scale T are needed. Duarte et al. [26] suggest µ ≤ 5 and

two steps of nonlinear diffusion (T = 2).

In this work, the parameters determined by Duarte et al. are used for all images.

Only the final scale, T, and the diffusion parameter, α, are varied. The diffusion

parameter is set as the smallest value in 0.005 ≤ α ≤ 0.015 where the Duarte’s

algorithm find a solution for the PDE.

3.2 spectral endmember extraction

Taking advantage of the multigrid structure, the proposed algorithm uses the vertices

in the coarsest grid as the representative spectra in the hyperspectral image. The con-

struction of the multigrid can be related to the problem of determining the distinct

spectral signatures in the image. To see this relation, it is necessary to understand

the selection of a new vertex as expressed in the Equation (3.5). Note that building

a new grid begins with selecting the vertex with the largest mass, and then the most

distinct vertices are added successively to the new grid using condition in Equation

(3.5). Ordering the vertices base on their masses gives priority to those vertices that

represent a large number of points in the previous grid. Rare pixels (i.e. spectra that
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occupy small regions in the image) also are selected because their similarity with

already selected vertices will tend to be small (see Equation (3.5)).

A modification in the mass initialization is done here for endmember extraction to

give priority to pixels that are not in the edges (mixed pixels). Instead of initializing

the masses to 1, the masses are initialized equal to the diffusion coefficients gij. Note

that gij = 1 when the spectrum of a pixel (i, j) is equal to their neighbors (i.e. the

pixel is inside of a very homogeneous region), and gij is close to zero when the pixel

gij is near the edges. Thus, when the masses are sorted in descending order, then the

first pixels will correspond with those inside spectrally uniform regions.

Vertices in the coarse grid have associated a value for uS
j , the spectral signature,

and its position in the fine grid. The spectral endmembers correspond with the sig-

natures of the pixels in the smoothed image Yt determined by the position of the

vertices in the coarse grid. Note that the spectra from the smoothed image Yt are

used as the spectral endmembers instead of the spectra in the original image Y. The

smoothed spectra can be seen as the average of spectrally similar and spatially close

pixels which help to reduce the effect of noise and improve the representation of

the different components in the image. Figure 3.2 shows a subset of the spectral end-

members extracted from the False Leaf image. Figure 3.2(a) shows the corresponding

spectral signatures from the original image. Figure 3.2(b) shows the signatures from

the smoothed image. It is clear how the smoothing helps to reduce the noise and pre-

serve the signature shape. Figure 3.3 shows the methodology used for the spectral

endmember extraction.

The abundance for the spectral endmembers can be computed using one of the

methods reviewed in Section 2.4 depending of the number of spectral endmembers.

If there are more spectral endmembers than bands, then, the inversion problem be-

comes an underconstrained system of equations and sparse regression algorithms

should be used. On the other hand, if the number of spectral endmembers is less

than or equal to the number of bands, then abundance can be obtained using con-
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Figure 3.2: Example of representative spectra for False Leaf image. Spectra from (a) original
and (b) smoothed image.

Figure 3.3: Spectral endmember extraction methodology.
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strained least square methods. In particular, this work uses the NNSLO algorithm

described by [37] for the least square case, and the SunSAL algorithm from [62] for

the sparse regression.

Most of the existing spatial-spectral endmember extraction techniques require to

define a spatial window. In contrast, the proposed approach takes advantage of

the properties of PDE’s and multigrid methods to select the spectral endmember

without the need to define neighborhoods similar to RBSPP algorithm. However, the

proposed approach performs the endmember extraction by itself instead of using

spectral techniques as required by RBSPP.

The proposed method only uses one of the smoothed images from the multiscale

representation for spectral endmember extraction. The next section presents different

methods for scale selection. A comparison of the different methods is performed by

evaluating the effects in the determination of spectral endmembers.

3.2.1 Scale Selection

The multiscale representation obtains a family of smoothed hyperspectral images

{Y1, .., Yt, .., YT} making it necessary to select one the smoothed images for spectral

endmember extraction. Several methods have been proposed to select the optimal

scale T for nonlinear diffusion (see [76, 77, 78, 79, 80]). Most of these methods are

used in filtering applications, and few others have been proposed for image recon-

struction. This section presents a review of these methods and a comparative study is

performed to determine their performance for endmember extraction. As presented

below, most of the scale selection approaches seek the minimum or maximum of

some criterion. However, most of the time, a unique solution is hardly found be-

cause the criterions do not achieve the global minimum or maximum or they do

not provide discriminating information among scales. Most of the criterions form
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a curve with a break point when plotted against scale. The end of the break point

is selected as the optimal stopping scale T̂. This methodology is adopted if a min-

imum or maximum cannot be determined. Additionally, a new stopping criterion

is proposed using the entropy of the difference between the original image and the

smoothed image at step t. This new criterion is compared with the existing methods

described in Section 3.3. For notation, t represents the number of iterations which

are required to solve the PDE in Equation (3.4).

3.2.1.1 SNR Criterion

The stopping time T should be selected before the diffusion process removes signifi-

cant image details such as the edges [76]. Weickert [76] proposed to use the relative

variance between the smoothed image Yt and the desired image X (e.g. free-noise im-

age) to determine the optimal final scale. Obviously, the desired image X is unknown.

However, Weickert [76] assumed that the signal-to-noise ratio (SNR) is known and

then the relative variance can be compute by:

σ2
Yt

σ2
X

=
1

1 + 1
SNR

(3.11)

where σ2
Yt

and σ2
X are the variances of the smoothed and desired image respectively.

Thus, the optimal time T̂ can be determined as the time where the condition:

σ2
Yt

σ2
Yo

=
1

1 + 1
SNR

(3.12)

is met. Here σ2
Yo

is the variance of the original image. Usually, this method requires

the estimation of the SNR, therefore it is not used here.
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3.2.1.2 Minimal Entropy Change

Sporring and Weickert [78] suggested to use the time where the minimal entropy

change is achieved as the optimal stopping time because the minimal entropy change

is an indicator of stable scales. The entropy for a gray-scale image is given by:

S = −
K

∑
i=1

pi log pi (3.13)

where pi is the histogram count for the intensities values from 1 to K. The optimal

time T̂MEC is found by minimizing the entropy change ∆S:

T̂MEC = arg min
t>0

∆S (3.14)

To apply this criterion to vector-valued image, the average entropy across bands is

used as S in Equation (3.14).

3.2.1.3 Decorrelation Criterion

Mrazek and Navarra [77] described a decorrelation method for the estimation of T̂

that consists in minimizing the correlation between the smoothed image in the time

t and the image Yt − Yo:

T̂corr = arg min
t>0

ρ(Yt − Yo, Yt) (3.15)

where ρ is the coefficient of correlation:

ρ(Yt − Yo, Yt) =
cov(Yt − Yo, Yt)√

var(Yt − Yo) var(Yt)
(3.16)

It is expected that the correlation between the smoothed image and Yt − Yo after

some time t decreases as more iterations are performed. If the smoothing operations
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begin to remove significant details from the image, then the correlation begins to

increase. Selecting the time where the correlation is minimum seeks to guarantee

that important details of the image are not removed. In the original formulation

of the decorrelation method [77], Yo is a gray-scale image. A generalization of this

method for vector-value images is found in [79] where the correlation is computed

for each band, and then these are averaged by a weighted sum:

ρ(Yt − Yo, Yt) =
n

∑
i=1

wiρ(Yt(i)− Yo(i), Yt(i)) (3.17)

where n is the number of bands, Yt(i) is band i of the difference between the

smoothed and original image, and wi are selected such that ∑ wi = 1.

3.2.1.4 Diffusion Balance Criterion

Jiabin and Guizhong [80] proposed to use as stopping time the time when the multi-

scale representation arrives to balance. Diffusion balance is achieved when:

|∆EYt | = |∆EDt | (3.18)

where EYt and EDt are the energy of the smoothed image Yt and Dt = Yt − Yo at

time t respectively. Using the criterion proposed in [80], the optimal time given by:

T̂DE = arg min
t>0

||∆EYt | − |∆EDt || (3.19)

The generalization of the diffusion balance to vector-value images is performed

by considering the Frobenious norm of the images as a measure of energy. The

Frobenious norm of a matrix is given by:

‖A‖F =
√

trace(AT A) (3.20)
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3.2.1.5 Entropy Change

The methods presented before do not provide a solution in all the cases because they

do not find global minimums and some times these criteria do not offer discriminat-

ing information among the scales. Thus, other stopping criterion is proposed in this

work.

It is expected that the difference between the smoothed image and the original,

Yt − Yo, has more details as more smoothing iterations are performed. Thus, the

entropy of Yt − Yo increases with the diffusion time. The entropy is seen here as a

measure of information. Then, as more smoothing iterations are performed, more

information is removed from the image. However, the entropy change of Yt − Yo is

significant in the first iterations. Experimentally, we found that the entropy change

forms a smooth curve with a break point. The proposed approach selects the stop-

ping time T̂EC as the point where the entropy changes are small, i.e. selecting the time

at the end of break point. To generalize the procedure for any image, the perceptual

difference between Yt and Yo is used:

YD(i, j, k) =
|Yt(i, j, k)− Y0(i, j, k)|

Y0(i, j, k)
(3.21)

Note that YD will have value between 0 and 1 for any image, and then a threshold

can be set when the entropy change is small (e.g. 0.01).

3.3 experiments

Three images were used to compare the methods for scale selection described in the

previous section. Figure 3.4 presents a RGB composition for each image. The first

is the False Leaf image (Figure 3.4(a)) described in Section 1.4.2. The second image

(Figure 3.4(b)) is a subset of 150x150 pixels of an AVIRIS image captured over Fort.
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Figure 3.4: Test images for comparison of stopping criterions. RGB composition for (a) False
Leaf image using bands 57 (639 nm), 35 (548 nm) and 13 (460 nm), (b) AP Hill
subset using bands 30 (650 nm), 20 (557 nm) and 9 (451 nm). and (c) Guanica
subset using bands 54 (639 nm), 35 (550 nm), and 15 (459 nm).

A. P. Hill, Virginia in September of 2001. The last image is a subset of 150x150 pixels

from an image collected over Guanica Dry Forest in December of 2007. The Guanica

image was collected using the AISA Eagle sensor at 1 meter of spatial resolution. The

AVIRIS image has 224 bands from 380 nm to 2500 nm and the AISA image has 128

spectral bands from 397 nm to 995 nm. These three images represent different levels

of complexity for the selection of an appropriate scale for endmember extraction.

In the False Leaf image, many spectrally uniform regions can be easily identified.

However, in the A.P. Hill and Guanica subsets, the identification of regions is more

challenging because of the heterogeneity of the scenes and fine details.

The images were smoothed using nonlinear diffusion algorithm of Duarte et al.

[26] with a scale step µ = 5 in 20 smoothing iterations. Thus, 20 smoothed images

were obtained for each test image. The diffusion parameter α (in Equation 3.3) was

set experimentally for each image inside the range suggested by Duarte et al [26].

Diffusion parameter was fixed to 0.005, 0.011, and 0.011 for the False Leaf, A.P Hill

subset, and Guanica subset images respectively. In the case of A.P Hill and Guanica

subsets, Duarte et al. algorithm cannot solve the PDE when α < 0.011. The remaining
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parameters of the nonlinear diffusion algorithm were set following the approach

described in Section 3.1.1.

Figure 3.5 shows the results obtained for the different methods. Figure 3.5(a-c)

show the graphs for the entropy change in Yt for the three test images. The entropy

changes obtained for the AP Hill subset and Guanica subset images do not provide

some reasonable criterion to determine an optimal scale as can be noted in Figures

3.5(b) and 3.5(c). On the other hand, the entropy changes obtained for the False Leaf

image has a minimum at iteration 13. However, there is no guarantee that this point

corresponds to a global minimum. Figure 3.5(d-f) present the correlation coefficient

between Yt − Yo and Yt used in the decorrelation method proposed by Mrazek and

Navarra [77]. Similar to the minimum entropy change criterion, the Mrazek decorre-

lation method does not provide discriminative information to determine the optimal

scale for the AP Hill and Guanica subset images. However, the Mrazek decorrelation

criterion allows to select iteration 3 as the optimal scale for the False Leaf image as

presented in Figure 3.5(d). The diffusion balance allows to determine an optimal

scale for the three images as seen in Figures 3.5(g-i). Figures 3.5(g-i) present the en-

ergy change ||∆EYt | − |∆EDt ||with respect to the smoothing iterations. The diffusion

balance method selects the smoothed images obtained in iterations 11, 13 and 12 for

the False Leaf, AP Hill subset and Guanica subset images respectively. Although

there is no guarantee that these correspond to global minimum, it can be seen from

Figures 3.5(g-i) as the nonlinear diffusion reaches a steady state (with respect to en-

ergy) for all three images. Finally, Figures 3.5(j-l) show the entropy change for the

normalized image obtained for Yt − Yo in the three images. Note that the entropy

changes for Yt − Yo does not present a global minimum. However, it is clear that

more information is removed in the first smoothing iterations (before the break point)

and then the smoothing effects significantly decrease. Although, both the minimal

entropy change and the entropy change criterions use in some way the entropy to

measure the smoothing effects along scale steps, only the entropy of Yt − Yo allows
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Figure 3.5: Comparison of scale selection criterions. Scale selection for False Leaf, AP Hill
subset, and Guanica subset images for (a)-(c) minimal change entropy, (d)-(f)
decorrelation methods, (g)-(i) diffusion balance, and (j)-(l) entropy change meth-
ods.
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Table 3.1: Optimal stopping scale for False Leaf, AP Hill subset and Guanica Subset images.

T̂MEC T̂corr T̂DE T̂EC

False Leaf 13 3 11 5

AP Hill subset − − 13 6

Guanica subset − − 12 7

to determine optimal stopping scale for all the three images presenting the expected

behavior. The entropy change criterion determines that iterations 5, 6, and 7 as the

optimal scale for the False Leaf, AP Hill subset and Guanica subset respectively as

illustrated in Figures 3.5(j-l). Table 3.1 summarizes the optimal scales determined by

the four criterions for the three test images.

3.3.1 Scale Effects

Spatial and spectral scale effects are studied by comparing the smoothed image se-

lected using the scale selection criterions. For the False Leaf image, four different

scales (see Table 3.1) are obtained by the scale selection methods. But, for the AP

Hill subset and Guanica subset images, only two scales are obtained. RGB compo-

sitions of the smoothed images are presented to visualize the spatial effects, and

a comparison of the spectral endmember extracted by the proposed methodology

using the selected scales is also performed.

Figures 3.6-3.8 show a comparison among the selected scales for a better under-

standing of scale effects. Figure 3.6 presents the RGB composition (using bands 57

(639 nm), 35 (548 nm) and 13 (460 nm)) of the smoothed images for the False Leaf

obtained in iterations 3, 5, 11 and 13 which were selected by the Mrazek decorre-

lation, entropy change, diffusion balance, and minimum entropy change criterions

respectively. An zoom on a leaf is included in the Figure 3.6 where the scale effects
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can be better appreciated. For instance, see how the small details inside the leaf of

Figure 3.6(i) and 3.6(j) are lost in iterations 11 and 13.

Similarly, Figure 3.7 shows the smoothed images for the AP Hill subset obtained in

iterations 6 and 13, which are selected by the entropy change and diffusion balance

criteria respectively. Figure 3.7 presents the RGB composition using bands 30, 20

and 9. An enlarged portion of the image is also included (Figures 3.7(d-f)). In the

enlarged portion of the image, it can be seen how the path is lost in iteration 13.

Additionally, Figure 3.8 presents the comparison between the smoothed images for

the Guanica subset in iterations 7 and 12 selected by the entropy change and diffusion

balance methods respectively. An enlarged portion of the forest is included in Figures

3.8(d-f). For this image, the scale effects can be noted mainly in the region with soil

and sparse vegetation. Figure 3.8 shows how this highly heterogeneous region losses

many spatial details with the smoothing iterations. Results present in Figures 3.6-3.8

for the False Leaf, AP Hill subset, and Guanica subset images suggest that a good

stopping scale should be found in the few first iterations to avoid removing small

features.

The spectral endmembers were extracted for the False Leaf, AP Hill subset, and

Guanica subset using the proposed methodology to analyze the scale effects in the

spectral signatures. Additionally, abundances were computed for the obtained spec-

tral endmembers in each selected scale. Examples of spectral endmembers and their

corresponding abundances are shown in the Figures 3.9-3.11 for the three test images.

Figure 3.9 shows two spectral endmembers (SE1 and SE2) obtained from the False

Leaf image using scales 3, 5, and 11. For scale 13, these two spectral endmembers

appear mixed (Figure 3.9(d)) which evidences how spectral features can be lost with

too many smoothing iterations. In the Figures 3.9(k-r), an enlarged portion of the

abundance images are presented. The two spectral endmembers can be better dis-

tinguished in these subsets. Figures 3.9(i-j) present the signatures for SE1 and SE2

respectively. Note that in each plot on Figures 3.9(i-j) the spectral endmembers ob-
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Figure 3.6: Comparison of selected scales for the False Leaf image. RGB images for (a) Orig-
inal Image, and smoothed image in: (b) T̂corr = 3, (c) T̂EC = 5, (d) T̂DE = 11, and
(e) T̂MEC = 13. (f)-(j) Comparison of original and smoothed images in a leaf.
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Figure 3.7: Comparison of selected scales for the AP Hill subset image. RGB images for (a)
Original image, and smoothed image in: (b) T̂EC = 6 and (c) T̂DE = 13. (d)-(f)
Comparison of original and smoothed images in an enlarged portion of AP Hill
subset.
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Figure 3.8: Comparison of selected scale for Guanica subset image. RGB images for (a) Origi-
nal image, and smoothed image in: (b) T̂EC = 7 and (c) T̂DE = 12. (d)-(f). Compar-
ison of original and smoothed images in an enlarged portion of Guanica subset.
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Table 3.2: Number of spectral endmembers for False Leaf, AP Hill subset, and Guanica Subset
images.

False Leaf Scale 3: 264 Scale 5: 146 Scale 11: 138 Scale 13: 120

AP Hill subset Scale 6: 113 Scale 13: 104 − −
Guanica subset Scale 7: 108 Scale 12: 99 − −

tained in the scale 13 are included. This spectral endmember illustrates the mixed

spectrum that can result from smoothing operations.

Figure 3.10 shows two spectral endmember (SE1 and SE2) for the AP Hill subset

using scales 6 and 13. SE1 appears invariant with the scale. On the other hand,

SE2 is identified in one single spectrum in scale 6, but in two spectra in scale 13.

The comparison of spectra in Figures 3.10(c) and 3.10(g) shows the consistence in

the signature shape. Although the change of SE2 spectrum along the scales is not

significant, abundance results present remarkable changes.

Finally, Figure 3.11 presents also two spectral endmembers for the Guanica subset

image for scales 7 and 12. The first spectral endmember does not present changes

along scale (Figure 3.11(c)), and the second one has a higher amplitude for scale 12.

Table 3.2 summarizes the number of spectral endmembers obtained for each image

and the different selected scales. As shown in Table 3.2, the number of spectral

endmembers decreases with the scale.

3.3.2 Analysis of Results

Scale selection methods found in the literature such as the decorrelation method and

the minimum entropy change do not work very well for complex images such as

AP Hill and Guanica subset where there is a greater heterogeneity in the surfaces.

Only the diffusion balance and the proposed criterion based on the entropy change of

Yt−Yo allowed to determine an optimal scale for all images. The first one determines
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Figure 3.9: Example of spectral endmembers from False Leaf image. (a)-(c) Abundances for
spectral endmember SE1 for scales 3, 5, and 11. (d) Abundance for mixed spectral
endmember for scale 13. (e)-(g) Abundances for spectral endmember SE2 for
scales 3, 5, and 11. (h) RGB composition original image highlights the portion of
image presented in (k)-(r). (i) SE1 and (j) SE2 spectral endmembers.
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Figure 3.10: Example of spectral endmembers from AP Hill subset image. (a)-(b) Abundances
and (c) signatures for spectral endmember SE1 for scales 6, and 13. (d)-(f) Abun-
dances and (g) signatures for spectral endmember SE2 for scales 6 and 13.
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Figure 3.11: Example of spectral endmembers from Guanica subset image. (a)-(b) Abun-
dances and (c) signatures for spectral endmember SE1 for scales 7, and 12. (d)-(e)
Abundances and (f) signatures for spectral endmember SE2 for scales 7 and 12.



3.4 summary 72

an optimal scale using an energy measure and the second one uses an information

measure.

The scale effects in the spectral endmembers extraction can be several. Some spec-

tral endmembers are not affected by the amount of smoothing iterations. However,

other selected spectral endmembers are mixed. Thus, it is expected that better spec-

tral endmembers extraction can be obtained by stopping at a low scale. This is sup-

ported also by the decreasing of number of spectral endmember with the scale such

as presented in Table 3.2. Although diffusion balance and entropy change criterions

allow to determine a optimal scale for all images, the entropy change criterion tends

to select scales with fewer smoothing iteration than diffusion balance. Both methods

are used in additional experiments in Chapter 6. However, the results indicate that

the proposed method is a good criterion for automatic selection of scale for spectral

endmember extraction.

3.4 summary

Assuming that spectral endmembers are representative signatures of uniform re-

gions, a new spectral endmember extraction approach is proposed taking advantage

of the capabilities of nonlinear diffusion and multigrid methods. Nonlinear diffusion

decreases the local spectral variability allowing the identification of spectral uniform

regions. Different levels of smoothing generate a multiscale representation. The

proposed approach uses one of the images from the family of images of the multi-

scale representation for the spectral endmember extraction. A modified multigrid

structure is used to extract the representative spectra from uniform regions in the

selected image. The multigrid structure builds a hierarchical representation of the

image. The more representative signatures of the image are found in the coarsest

level. These signatures are used as spectral endmembers. The proposed approach
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takes into account the spatial information without the need to define kernels such as

others spatial-spectral methods.

As only one smoothed image is used for the identification of spectral endmembers,

a method based on the entropy of Yt − Yo is developed for the automatic scale se-

lection. This method presents good results even in complex scenarios. Additionally,

this method tends to select scales in the first few iterations of the nonlinear diffusion

avoiding the mixing that occurs at higher iterations.

The developed spectral endmember extraction approach uses all spectra to com-

pute abundances. As this can become tens or hundreds depending of the complexity

of the image, different methods should be used for abundances estimation. If the

number of spectral endmembers is less than the number of bands then constrained

least square techniques are employed. On the other hand, if the number of spectral

endmembers is larger than the number of bands then sparse regresion is used.

The next chapter presents how these spectral endmembers can be grouped to form

spectral endmember classes. The spectral endmember classes seek a better represen-

tation of the components of an image and their spectral variability.
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C L U S T E R I N G

A large number of spectral endmembers can be extracted with the multiscale repre-

sentation approach presented in the previous chapter depending of the complexity of

the scene. These spectral endmembers represent the distinct components in a scene

as well as their spectral variability (see Section 1.2). Thus, it is necessary to group

spectral endmembers into sets with similar spectral features, i.e. meaningful clusters

that represent the distinct materials in the image. These meaningful sets of spectral

endmembers are the spectral endmember classes.

The obvious way to build the spectral endmember classes is by using clustering

techniques. Clustering is widely used in the fields of data mining, statistical analysis,

machine learning, pattern recognition, and others. Clustering has been also used in

hyperspectral imaging for applications in segmentation, classification, change detec-

tion, and unmixing (e.g. [16, 23, 81, 82, 83, 84]). Most of previous works have used

clustering over the full image. In this work, cluster analysis is conducted in a small

subset of spectra: the spectral endmembers. Thus, the computational cost is far less

than in the other applications. Some unmixing methods have employed clustering to

form sets of endmembers such as Canham et al. [16] and Somers et al. [23].

In this chapter, a comparative study of clustering techniques for building spectral

endmember classes is performed. A brief review of clustering techniques is pre-

sented in Section 4.1. There are many references and books devoted to clustering.

The reader can find more information in the book of Jain and Dubes [28], and the

papers of Jain et al. [29] and Wu and Wunsch [30]. One of the most challenging

74
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problems in clustering analysis is the determination of the number of clusters that

in the proposed approach corresponds to the number of spectral endmember classes.

Validity indexes are used for this task. Validity indexes are metrics to assess the

clusters obtained from different methods or configuration of clustering methods (e.g.

different number of clusters) [28, 31, 32]. Experiments using spectral endmembers

from the False Leaf image are presented in the Section 4.3 to compare different clus-

tering algorithms and several validity indexes in the estimation of the number of

spectral endmember classes.

4.1 cluster analysis

Clustering divides a collection of patterns into several subsets, the so called clusters,

based on some criterion of similarity [28, 29, 30]. Hard partition clustering seeks a

k-partition, C = {C1, C2, .., Ck}, of a dataset S = {s1, s2, .., sm}, with k ≤ m, such that

each sample of S belongs to one single partition Ci [30]. On the other hand, fuzzy

clustering allows samples to belong to several clusters with a degree of membership.

The scope of this review is limited to hard partition techniques, referred as clustering

techniques hereinafter.

Clustering algorithms can be hierarchical, partitional, or graph-theory based approaches.

Most of these approaches perform clustering using a pair-wise distance matrix in-

stead of the dataset. Thus, an adequate selection of the similarity metric is very

important [28].

Clustering analysis is divided in four stages [29]. Initially, feature extraction or

feature selection techniques can be used to improve the representation of the data.

Second, calculate the similarity matrix. Using similarity measures, the clustering

algorithm performs the separation of the samples into meaningful subsets. Finally,

clustering results are assessed to determine how well the algorithms find the hidden
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Table 4.1: Similarity metrics for hyperspectral data.

Metric Equation

Euclidian Distance (ED) dED =
√
(sA − sB)

T(sA − sB)

Spectral Angle [85] (SAM) dSAM = 1− sT
AsB√

(sT
AsA)(sT

BsB)

Spectral Correlation [86] (SCM) dSCM = 1− (sA−s̄A)
T(sB−s̄B)√

(sA−s̄A)
T(sA−s̄A)

√
(sB−s̄B)

T(sB−s̄B)

where s̄ = ∑ si
n

Spectral Information Divergence [87] (SID) dSID =
n
∑

i=1
pi log

(
pi
qi

)
+

n
∑

i=1
qi log

(
qi
pi

)
where p(i) = sAi

n
∑

j=1
sAj

and q(i) = sBi
n
∑

j=1
sBj

data structure. This can be done using validity indexes. The next sections review

different similarity metrics, clustering algorithm techniques, and validity indexes.

4.1.1 Similarity Metrics

In hyperspectral imaging, different metrics are used to compare two spectral signa-

tures and determining how similar they are. Among of similarity metrics widely

used for hyperspectral data are the Euclidian Distance (ED), the Spectral Angle

(SAM) [85], the Spectral Correlation Measure (SCM [86]), and the Spectral Infor-

mation Divergence (SID [87]). Table 4.1 summarized these four similarity measures

for two spectral with n bands: sA = (sA1, ..., sAn)
T and sB = (sB1, ..., sBn)

T.

4.1.2 Clustering Algorithms

Several clustering algorithms had been developed. These can be classified into hierar-

chical, partitional, and graph-theory based approaches. Implementations of hierarchical

and partitional algorithms using graphs exist in the literature [28]. However, graph-

theory based approaches, in this review, refer to algorithms that use the spectrum



4.1 cluster analysis 77

Figure 4.1: Dendrogram example for hierarchical clustering algorithms.

of the graph (Section 4.1.2.3) to perform the clustering. Next, the principles of these

three types of clustering are briefly summarized.

4.1.2.1 Hierarchical Algorithms

Hierarchical clustering algorithms build a family of nested partitions which are usu-

ally represented by a dendrogram like the one shown in Figure 4.1. The greatest

advantage of hierarchical approaches is that they do not require the number of clus-

ters since the dendrogram can be broken an any level obtaining different partitions

of the data [29, 30].

Hierarchical clustering algorithms can be agglomerative or divisive [30]. The first

ones start with several clusters formed with one single sample, and then successive

merge operations are performed using the similarity matrix until a single cluster

with all samples is obtained. Divisive approaches start with a single cluster with all

samples and perform division operations. Divisive hierarchical algorithms are rarely

used since they are computationally expensive [30].
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There are several criterions to conduct the merge operations among which stand

single, complete, and average linkage. Single linkage defines the distance between

two clusters as the minimum distance between all pairs of samples from the clusters.

This tends to produce elongated clusters and it is very sensitive to outliers. On the

other hand, complete linkage uses the maximum distance between all pair of samples

from two clusters producing compact clusters. Average linkage employs the distance

between centroids as the distance between clusters seeking a balance between both

single and complete criterions [29]. The implementations of hierarchical algorithms

found in MATLAB as part of the Statistic Toolbox1 are used in this research. The

computational complexity of hierarchical clustering (including single, complete and

average linkage) is O(N2) [30], where N is the number of points or samples. These

algorithms are very inefficient for large datasets. But for the current application, it is

expected that the computational cost of hierarchical algorithms not to affect the over-

all performance of the technical approach since the obtained spectral endmembers is

a relatively small dataset of few hundreds signatures.

4.1.2.2 Partitional Algorithms

Unlike hierarchical algorithms, partitional approaches obtain a single partition of

the data which is of great advantage in large datasets [29]. Partitional clustering

minimizes some criterion function to find the optimal partition of the data. The most

common partitional algorithms are based on the squared error criterion [29, 30]. Let

a set of m samples si organized into k clusters. The squared error is given by [30]:

J(Γ, M) =
k

∑
i=1

m

∑
j=1

γij
∥∥sj −mi

∥∥2 (4.1)

1 http://www.mathworks.com/help/stats/clusterdata.html
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where Γ = {γij} is a partition matrix such that:

γij =


1 if sj ∈ cluster i

0 otherwise
(4.2)

and M is a matrix with the centroid of each cluster.

The most used partitional algorithm is k-means. k-means clustering stars with a

random partition and iteratively reassigns the samples to the clusters according to

the similarity between the sample and the cluster’s centroid until convergence. It is

very sensitive to outliers and noise [30]. The MATLAB function kmeans is used in this

research, which is part of the Statistic toolbox2. The computational time of k-means

is O(NKd) where d is the number of features of the dataset [30], N is the number

of samples, and K the number of clusters. Usually, k-means is run several times with

different initial partitions. The partition with the minimum square error J (Equation

4.1) is selected.

4.1.2.3 Graph Based Algorithms

Let the similarity graph G = (V, E), where each vertex represents a sample and

the edges are built by the connection of very similar vertices. The problem of clus-

tering can be viewed as the task of partitioning the graph G such that the con-

nection between subgraphs are weak (i.e. have low weights) and the connection

within subgraphs are strong [88]. There are several criteria to build the edges in

the similarity graph G = (V, E). The most widespread similarity graphs are the ε-

neighborhood graph, k-nearest neighbor graph, and fully connected graph [88]. The

ε-neighborhood graph connects all points whose similarity are smaller than ε. The k-

nearest neighbor graph connects each vertex with its k closest vertices. A symmetric

similarity graph is necessary. Thus, k-nearest neighbor graph connects the vertices

2 http://www.mathworks.com/help/stats/kmeans.html
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vi and vj either vi is one of the k-nearest neighbors of vj or vj is one of the k-nearest

neighbors of vi. Other type of similarity graph is the fully k-nearest neighbor graph

where the vertices vi and vj are connected if vi is one of the k-nearest neighbors of vj

and vj is one of the k-nearest neighbors of vi . The fully connected graph connects

all points using a function that holds the local neighborhood relations. For instance,

the Gaussian similarity function, exp
(
−
∥∥xi − xj

∥∥2/2σ2
)

, is frequently used to build

fully connected graphs.

The most promising graph-theory based methods are the spectral algorithms which

use the eigenvalues and eigenvectors of the graph Laplacian for clustering [89, 90, 88].

Here the basics about spectral clustering are described. A complete presentation of

spectral graph theory is found in [89], and in the review papers of Ng et al. [90] and

Luxburg [88].

There are different algorithms to perform spectral clustering, which vary according

to the Laplacian employed. G is assumed to be an undirected weighted graph with

adjacency matrix W and degree matrix D given by:

D =



d1

d2

. . .

dn


(4.3)

where di is the degree of the vertex vi defined as:

di =
n

∑
j=1

wij (4.4)
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Table 4.2: Spectral clustering algorithm. Algorithm based on [88].

Inputs: similarity matrix S and number of clusters k.

- Construct the similarity graph W.

- Compute the Laplacian L.

- Compute the first k eigenvector of S: u1...uk.

- Let the matrix U ∈ Rnxk which columns are u1...uk

and yi be the vector corresponding to the i− th row of U.

- Cluster with k-means algorithm into P1...Pk clusters.

Output: Clusters C1...Ck where Ci = {j
∣∣yj ∈ Pi }

The unnormalized Laplacian is defined as [88]:

LUN = D−W (4.5)

and the normalized Laplacian [88] is given either by:

LN1 = D−1/2LUND−1/2 = I−D−1/2WD−1/2 (4.6)

or by [88] :

LN2 = D−1LUN = I−D−1W (4.7)

The eingenvalues and eigenvector of L are used to perform clustering of the

dataset. The multiplicity of the eigenvalue 0 of L is related to the number of con-

nected components [88]. The algorithms are refered as un-normalized if they employ

LUN, and normalized if they use LN1 [91] or LN2 [90]. Spectral clustering algorithm

is summarized in Table 4.2. In this work, the similarity graph G = (V, E) is built

using k-nearest neighbor, and the three spectral clustering algorithms are compared

to form spectral endmember classes.
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4.1.3 Validity Indexes

One of the biggest problems in cluster analysis is how to determine the validity of

clustering results. A way to quantify the performance of a clustering algorithm is

by using validity indexes. Validity indexes are metrics that allow the assessment

of clustering results obtained by different methods or by the same method with

different input parameters [28, 31, 30, 32, 92].

Validity indexes can be external, internal or relative [30, 32, 92]. External indexes

employ a priori information of the dataset, such as previous partitions, to assess the

performance of clustering algorithms. For example, two external indexes are used

in Section 4.3.2 to compare several clustering algorithms for the spectral endmem-

ber class extraction from synthetic data. The employed indexes quantify the cluster

homogeneity and spectral endmember class preservation [93]. On the other hand,

internal indexes do not depend on a priori information. These measure how well a

clustering technique recovers the structure of the data. An example of an internal in-

dex is the Cophenetic correlation coefficient [28] that is used in hierarchical algorithms to

compare the recovered structure within the dendrogram and the structure of the sim-

ilarity matrix. Finally, relative indexes are metrics to compare different algorithms

or configuration of algorithms in order to determine which one provides the best

results.

Most of the relative indexes seek to measure two criterions: compactness and

separability [32, 92]. Compactness is an indicator of how close are the elements

within the clusters, and separability determines how different clusters are. Both

criterions can be measured in several ways. Thus, different validity index can be

formulated. Next, some validity indexes are reviewed. These are used to determine

the number of spectral endmember classes in Section 4.3.3.
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4.1.3.1 Dunn’s Index

Dunn’s index [94] uses the fact that well formed and separated clusters should

present large distances between clusters and small diameters. Dunn’s index em-

ploys the minimum distance between all pairs of samples within two clusters as the

distance among clusters which is given by:

δ(Ci, Cj) = min{dist(sk, sl)} sk ∈ Ci, sl ∈ Cj (4.8)

where dist is a distance metric. The diameter is defined as the maximum distance

between all pairs of samples within a same clusters:

∆(Ci) = max{dist(sj, sk)} sj, sk ∈ Ci (4.9)

Dunn’s index is determined by the ratio:

vD(k) = min
1≤i≤k

 min
1≤j≤k j 6=i

 ∂(Ci, Cj)

max
1≤l≤k

∆(Cl)


 (4.10)

where k is the number of clusters.

The optimal number of clusters is determined by maximizing vD:

ĉ = max vD(k) for k = 2...cmax (4.11)

4.1.3.2 Davies and Bouldin Index

Davies and Bouldin [95] proposes a metric to select the number of clusters by using

the average similarity of each cluster with its most similar cluster. The similarity
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between clusters i and j, Rij, is a function of a dispersion measure, di, and a distance

measure, Mij. Rij can be defined in several ways. Usually, Rij is defined as:

Rij =
di + dj

Mij
(4.12)

The dispersion measure di is given by:

di =
1

mi

mi

∑
j=1

dist(sj, µi) (4.13)

where µi is the centroid of the cluster i, mi is the number of elements in cluster i, and

dist is a similarity metric. Mij is the distance between the centroids of cluster i and j.

The Davies and Bouldin DB index is defined as:

DB(k) =
1
k

k

∑
i=1

Ri (4.14)

where k is the number of clusters and Ri = max
j

Rij.

The number of clusters can be determine by minimizing DB:

ĉ = min DB(k) for k = 2...cmax (4.15)

4.1.3.3 Kim’s Index

Kim et al. [31] uses the mean intra-cluster distance Vu and the over-partition measure

function Vo to determine the optimal number of clusters. The mean intra-cluster

distance Vu is given by:

Vu(k) =
1
k

k

∑
i=1

∑
s∈Ci

dist(s, µi)

mi
(4.16)

where k is the number of clusters, mi is the number of samples in cluster i, and µi

is the centroid of cluster i. When the dataset is under-partitioned, i.e. less clusters
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than the optimal number, then the intra-cluster distance Vu is large. As the number

of partitions gets closer to the optimal value then Vu decreases.

The over-partition measure function Vo is given by:

Vo(k) =
k

dmin
(4.17)

where dmin is the minimum distance between cluster centers. The behavior of the

over-partition function is opposite to Vu. Vo is large when there are few clusters, and

it decreases abruptly when the number of clusters is larger than the optimal.

Kim’s index combines both the mean intra-cluster distance Vu and the over-partition

measure function Vo. First, both metrics are normalized since Vu and Vo have differ-

ent scales, then, Kim’s index is computed as follow:

Vsv(k) = Vu(k) + Vo(k) (4.18)

and the number of cluster is determined by:

ĉ = min Vsv(k) for k = 2...cmax (4.19)

Kim and Ramakrishma [96] provides an alternate definition for the Kim index to

consider the effects of clusters formed by unnecessary merging. The modified Kim

index redefines the mean intra-cluster distance Vu as:

Vu(k) = max
i=1...k

∑
s∈Ci

dist(s, µi)

mi
(4.20)

4.1.3.4 SD Index

Halkidi et al. [97] proposed the SD validity index in function of the average scattering

for clusters, Scat, and the total separation between clusters, Dis. The average scatter-
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ing for clusters uses the cluster variance instead of a distance metric to quantify the

compactness of the clusters. The SD validity index is given by:

SD(k) = αScat(k) + Dis(k) (4.21)

where the average scattering for clustering is defined as:

Scat(k) =
1
k

k

∑
i=1

∥∥σ2(Ci)
∥∥

‖σ2(S)‖ (4.22)

with σ2(S) as the variance of all samples, σ2(Ci) as the variance of the cluster i, and

k as the number of clusters. The total separation between clusters is defined as:

Dis(k) =
Dmax

Dmin

k

∑
i=1

(
k

∑
j=1

dist(Ci, Cj)

)−1

(4.23)

where Dmax and Dmin are the maximum and minimum distance between cluster

respectively, and dist is a distance measure. The scale factor α in Equation (4.21) is

selected equal to Dis(cmax), where cmax is the maximum number of clusters.

The number of clusters can be determined by minimizing the SD index:

ĉ = min SD(k) for k = 2...cmax (4.24)

Kim and Ramakrishma [96] also presented a modified SD index where the scatter-

ing for clustering is defined as:

Scat(k) = max
i=1..k

{∥∥σ2(Ci)
∥∥

‖σ2(S)‖

}
(4.25)
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4.1.3.5 Calinski and Harabask Index

Calinski and Harabask (CH) index [98] measures the separation between clusters.

CH is formulated in terms of the separation between clusters and the separation

within clusters. CH can be written as [32]:

CH(k) =

k
∑

l=1
mi ‖µl − µ‖

k− 1

/ k
∑

l=1

mi
∑

j=1
‖si − µl‖

mi − k
(4.26)

where mi is the number of samples in cluster i, k is the number of clusters, µl is the

centroid of cluster l, and µ is the centroid of the data set.

The number of clusters can be determined by maximizing the CH index:

ĉ = max CH(k) for k = 2...cmax (4.27)

4.2 spectral endmember classes

Using the cluster analysis methodology described in [29], the spectral endmember

classes can be built by the procedure described in Figure 4.2. The input data cor-

respond with the spectral endmembers extracted by the multiscale representation

approach, and the output is a set of labels that associate each spectral endmember to

one spectral endmember class. The estimation of the number of spectral endmember

classes is included as part of the cluster analysis process. The procedure requires

the maximum number of clusters cmax. Feature extraction or selection is an optional

step. In the experiments shown here, feature extraction or selection is not performed.

Future work can be conducted to study feature extraction and selection methods

to improve the spectral endmember class extraction. Experiments in the next sec-

tion aim to select the appropiate similarity metric, clustering technique, and validity

index for the spectral endmember class extraction.
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Figure 4.2: Spectral endmember class extraction using clustering.

4.3 experiments

This section presents experiments for comparing different clustering algorithms, and

studying validity indexes for the estimation of the number of spectral endmember

classes. Spectral endmembers from the False Leaf image are used to build a Test

Data Set which is used to evaluate different clustering configurations.

4.3.1 Test Data Set

A test data set with 7 spectral endmember classes is built from the spectral end-

members extracted from the False Leaf image using the scale selected by the entropy

change approach (5 smoothing iteration, Section 3.3.1). 61 spectra from the 146 spec-

tral endmembers are used to build the test data. These spectra are manually grouped

into 7 spectral endmember classes which represent uniform spectral regions on the

image. The manual grouping was based on the position of the endmembers in the

image and signature shape. The spectral endmember classes used are: Wall and Mug
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Figure 4.3: Localization of spectra for each spectral endmember classes of Test Data.

Table 4.3: Number of spectra per spectral endmember class of Test Data.

Label Name Number of Spectra

c1 Wall and Mug 32

c2 Camera 8

c3 Cover Camera 2

c4 False Leaf 2

c5 Vase 1

c6 Top Mug 1

c7 Leaf 15

(c1), Camera (c2), Cover Camera (c3), False Leaf (c4), Vase (c5), Top Mug (c6), and Leaf

(c7) and these are indicated in Figure 4.3. The spectral signatures for each spectral

endmember class are presented in Figure 4.4. Note that Wall and Mug are a single

spectral endmember class since the spectral responses of these regions (red points

in the Figure 4.3) are very similar. Table 4.3 shows the number of samples per spec-

tral endmember classes. Some spectral endmember classes have one single spectral

endmember such as Vase and Top Mug. These cases correspond to highly spectrally

uniform regions or small regions in the image. Clustering methods can see these

spectral signatures as outliers affecting the performance of the algorithms. In these

experiments, it is expected to find some algorithms that allow the determination of

spectral endmember classes with these features.
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Figure 4.4: Test Data set.
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4.3.2 Comparison of Clustering Algorithms

Complete and average linkage are used with the four similarity metrics reviewed

in Section 4.1.1 (ED, SAM, CORR, SID) to form eight configurations for hierarchical

clustering. K-means clustering results also are included for comparison purposes. Ad-

ditionally, twelve spectral clustering configurations are also compared. The k-nearest

neighbor affinity matrices formed with 15 neighbors are built from the similarity ma-

trix obtained from the ED, SAM, CORR, and SID metrics. Unnormalized and normal-

ized spectral clustering algorithms [91, 90, 88] are employed. k-means is repeated 500

times in the last step of spectral clustering (Section 4.1.2.3) and the result is selected

as the trial with the minimum square error (Equation 4.1).

The comparison of clustering algorithms is done by analyzing the homogeneity

of the clusters and the preservation of the spectral endmember classes [93]. It is

expected that samples from the same spectral endmember class are assigned to the

same cluster. Thus, if a cluster has less than 95% of the samples from the same

spectral endmember class then it is considered a mixed cluster. If the clustering

results are highly homogeneous, few mixed clusters should be obtained [93]. Each

cluster is assigned to the spectral endmember class to which most of its samples

belong. The preservation of the spectral endmember classes is measured by counting

the detected spectral endmember classes [93].

First, six spectral endmember classes were randomly selected from the test data set.

Samples in the selected spectral endmember classes were randomly swapped, and

then, the different clustering configurations were used to determine the clusters. This

process was repeated five times. For all algorithms, the number of clusters was set to

six because the objective of this experiment was to select the algorithms capable to

determine the known clusters. Section 4.3.3 studies methods for the estimation of the

number of clusters. Table 4.4 shows the results obtained with the different clustering
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algorithms over the test data in the different trials. In addition, Table 4.4 shows the

number of detected spectral endmember classes (class column in Table 4.4) and the

obtained number of mixed clusters (mixed column in Table 4.4). The algorithms that

obtained the six classes and less than 1 mixed cluster are highlighted in the table.

Spectral clustering techniques and k-means present poor results in comparison with

hierarchical techniques. Most of the spectral clustering configurations obtained 2 or

more mixed clusters, and only detected 4 or fewer spectral endmember classes. On

the other hand, the best results were obtained with the hierarchical configurations

using SAM with both average and complete linkage. These identified all six spectral

endmember classes for the five trials and only generated a single or any mixed cluster.

Single linkage using SAM, and complete linkages using SID detected the six spectral

endmember classes for the trials 1, 3, and 4. And, single and average linkage using

SID detected the six spectral endmember classes for the trials 1, 3, 4, and 5.

In other experiment, the seven endmember spectral classes were used to compare

the clustering algorithms. The number of clusters was set to seven in all algorithms.

This experiment was performed once. Table 4.5 shows the results obtained with the

different clustering algorithms over the test data. The extracted clusters are labeled

with the letters A-G and the spectral endmember classes are labeled from c1-c7. Table

4.5 includes the percentages of samples from the same spectral endmember class in

each cluster (columns 2 to 7). The last two columns present the number of detected

spectral endmember classes and mixed clusters respectively. The algorithms with

the best results are highlighted in the table.

Similar to the result obtained for six spectral endmember classes, spectral cluster-

ing techniques present poor results in comparison with hierarchical techniques using

the full test data. Most of the spectral clustering configurations obtained 3 or more

mixed clusters, and only detected 4 or fewer spectral endmember classes. Classes

c1 and c7 were split in several clusters or mixed with other classes by the spectral

clustering approaches. The spectral endmember classes c4 and c3 were mixed in the



4.3 experiments 93

Table 4.4: Clustering results for six spectral endmember classes from Test Data Set. Columns
1-5 show the number of detected spectral endmember classes (class columns) and
the number of mixed clusters (mixed columns) for the five trials.
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Table 4.5: Clustering results for the seven spectral endmember classes from the Test Data
set. Columns A-G show the percentages (%) of samples belong to each spectral
endmember class (c1-c7). Last two columns present the number of detected spectral
endmember classes and mixed clusters.
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Figure 4.5: Mixed cluster from hierarchical clustering and SAM.

same cluster by most of the spectral configurations. Similarly, k-means obtained poor

results detecting 4 classes and a single mixed cluster. Spectral endmember classes

c1 and c7 were divided into several clusters, and mixed cluster were formed with

samples from spectral endmember classes c1, c2, c3, c4 and c5.

The best results were obtained with the hierarchical configurations using SAM

with both average and complete linkage. Both complete and average linkages ob-

tained the same clusters. These identified all seven classes and only generated a

single mixed cluster with samples from c3 (Cover Camera) and c4 (False Leaf ). Spectra

in the mixed clusters are shown in Figure 4.5. Hierarchical clustering with ED and

complete and average linkage only detected 4 spectral endmember classes generat-

ing several clusters for the spectral endmember classes c1 and highly mixed clusters

with samples from the spectral endmember classes c2, c3, c4 and c5. All single link-

age configurations obtained six classes similar to complete and average linkage with

SCM. On other hand, average and complete linkage using the SID similarity metric

obtained 7 spectral endmember classes but two mixed clusters. Both average and

complete linkage with SID mixed c3 and c4 in a single cluster as well as samples

from spectral endmember classes c2 and c1.

As the seven spectral endmember classes are formed by average and complete link-

ages and SAM, and the data is labeled, clustering results for these configurations can
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Table 4.6: Confusion matrix for clustering results of average and complete linkages using
SAM in Test Data set. Both algorithms get exactly the same results.

be seen as a supervised classification where each cluster corresponds with the class

with the highest number of samples within the cluster. Table 4.6 presents a "confu-

sion matrix" for the clustering results obtained for both configurations: average and

complete linkages. The obtained overall accuracy for hierarchical clustering using

complete and average linkage with SAM was as high as 98.36%, and the obtained

kappa statistic was 97.45%. Both experiments, using six and seven classes from the

test data, show that the hierarchical clustering using average and complete linkages

with SAM are a good methodology for the extraction of spectral endmember classes.

Both configurations allow to detect spectral endmember classes with single or few

spectra such as the Vase and Top Mug for the test data set. Note that these classes

with single spectrum can be found in real data into very homogeneous and small

regions. For the previous experiments, the number of clusters was set manually. The

next section compares several validity indexes for the estimation of the number of

clusters.

4.3.3 Estimation of the Number of Spectral Endmember Classes

The use of validity indexes described in Section 4.1.3 to determine the number of

spectral endmember classes is evaluated using the Test Data set and the full set of
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Table 4.7: Estimated number of clusters for Test Data set.

Compl+SAM Aver+SAM

ĉ Index ĉ Index

Dunn 8 0.3194 8 0.3194

DB 9 1.7e-16 10 1.53e-16

Kim 8 0.0517 8 0.0636

Mod. Kim 8 0.089 11 0.1412

SD 7 515.4 7 417.3

Mod. SD 6 2.01e3 6 1.5e3

CH 6 46.1 6 46.1

spectral endmembers extracted from the False Leaf image. These experiments are

used to select one of these validity indexes to estimate the number of spectral end-

member classes within the proposed unsupervised unmixing methodology. In these

experiments, only hierarchical clustering algorithms using the complete and average

linkages jointly with SAM are used since these were the methods that showed the

best performance for spectral endmember class estimation. Most of the validity in-

dexes employ a similarity metric to compute the compactness or separability of the

clusters. Then, the same metric used for the clustering is used to calculate the index.

Extracted spectral endmember classes and their estimated abundances are used to

establish what validity index has the best performance.

4.3.3.1 Results using Test Data

Number of clusters is varied from 2 to 20 for clustering analysis of the Test Data. The

seven validity indexes are presented in Figure 4.6. Each plot presents the validity in-

dexes for average and complete linkage with SAM. Table 4.7 summarizes the optimal

number of clusters selected for each criterion.

Figure 4.6(a) plots the Dunn’s index as a function of the number of clusters. The

optimal number of clusters ĉ is selected equal to 8 for average and complete linkage
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Figure 4.6: Validity indexes for Test Data set. (a) Dunn’s, (b) Davies and Bouldin, (c) Kim,
(d) modified Kim, (e) modified SD, (f) SD, and (g) CH indexes. Plots show the
validity indexes for both clustering configurations: complete and average linkage
using SAM.
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using SAM. Clusters obtained by average and complete linkages are the same when

the number of clusters is between 5 and 8.

Figure 4.6(b) shows the Davies and Bouldin index as a function of the number of

clusters. This criterion decreases as the number of clusters increase. As the number

of clusters increase unnecessary partitions are created, and the similarity of each

cluster with its most similar clusters becomes smaller. Davies and Bouldin index

does not present a global minimum. DB forms a L shape curve with respect to the

number of clusters. The optimal number of clusters is selected as the end of the

break point of the curve. This point is automatically selected as the point where the

change of DB is small. A threshold of 0.01 is set for these experiments. The optimal

number of clusters estimated by Davies and Bouldien index is 9 and 10 using SAM

with and complete and average linkage respectively.

Figures 4.6(c) and 4.6(d) present the plots for the mean-intra cluster distance Vu

computed from the Kim and modified Kim indexes respectively. Both graphs are

approximately a parabola as described by [31]. ĉ from Kim index is 8 for both average

and complete linkages. The estimated number of clusters is 8 or 11 according to

modified Kim index for complete and average linkages respectively.

Figure 4.6(e) and 4.6(f) show the SD and modified SD indexes. These indexes

decrease quickly as the optimum number of clusters is approached and then begin

to grow slowly, allowing the identification of a global minimum. This behavior is the

results of the compensation between the scattering and total separation terms in the

SD index. The scattering, Scat, decreases as the number of clusters increases since

each cluster becomes more compact. On the other hand, the total separation, Dis

increases with the number of clusters because the inverse of the distance between

the centroids is used to compute the total separation. The selected optimal number

of clusters is 7 for both average and complete linkages for the original SD index. For

the modified SD index, the number of clusters is 6.
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Figure 4.7: Spectral endmember classes for Test Data with ĉ = 8.

Figure 4.6(g) shows the CH index which presents several local maximums. CH is

a measure of the separation among clusters. This index estimates 6 as the optimal

number of cluster for both complete and average linkage using SAM.

Only the SD index estimated ĉ = 7 for the Test Data for both complete and average

linkage. Both clustering obtained the same results with one mixed cluster that is

presented in the Figure 4.5. Figure 4.7 shows the spectral endmember classes for

ĉ = 8. Similar to the clustering results for ĉ = 7, average and complete linkage

obtained the same results. The mixed cluster obtained with ĉ = 7 is splited in two
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Table 4.8: Estimated number of clusters for False Leaf image.

Compl+SAM Aver+SAM

ĉ Index ĉ Index

Dunn 30 0.076 7 0.053

DB 14 9.12e-4 9 0.0037

Kim 8 0.26 14 0.1795

Mod. Kim 13 0.4631 14 0.2604

SD 4 490 7 424

Mod. SD 8 961 6 904

CH 5 77.36 6 83.28

class (EC3 and EC8) for ĉ = 8. Kim, modified Kim, and Dunn’s indexes estimated

ĉ = 8 for the Test Data.

4.3.3.2 Results using False Leaf image

The 146 spectral endmembers selected by the endmember extraction approach based

on multiscale representation are used in this next experiment. The number of clus-

ters is varied from 2 to 30. Figure 4.8 presents plots of the different criterions, and

Table 4.8 summarizes the selected optimal number of clusters for both average and

complete linkage.

It is expected that a higher number of spectral endmember classes is estimated

for the full set of spectral endmembers than for the Test Data. Additional spectral

endmember classes should include representations for parts of leaves that are not in

the Test Data (e.g. small lighted regions) as well as the labels for the camera, the

mug, shadows, and others. However, note that in Table 4.8 the number of clusters

estimated by SD, modified SD, and CH indexes are less than or equal to 8. Even

more, some of those indexes estimated fewer clusters for the False Leaf than for the

Test Data such as SD and CH indexes with complete linkage. The significant poor

performance of SD, modified SD and CH indexes illustrates the problem of clustering

with poorly separated groups. As the False Leaf image has more samples per clusters
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Figure 4.8: Validity indexes for the all spectral endmembers for the False Leaf Image: (a)
Dunn’s, (b) Davies and Bouldin, (c) Kim, (d) modified Kim, (e) modified SD,
(f) SD, and (g) CH indexes. Plots show the validity indexes for both clustering
configurations: complete and average linkage using SAM.
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than the Test Data, it is expected that the variability of each cluster increases at

the same time as the distance among clusters decreases. The modified Kim index

(Figure 4.8(d)) estimated 13 and 14 clusters for the False Leaf data using complete

and average linkage respectively. On the other hand, Dunn’s index estimated 30 and

7 as the optimal number of clusters. But, there are no guarantees that vD achieves a

global maximum in 30 since this is the maximum number of clusters considered in

these experiments, and similar to SD and CH indexes, Dunn’s index estimated fewer

spectral endmember classes for the False Leaf data than for the Test Data when

average linkage is used. Finally, the Davies and Bouldin index selects 14 and 9 as the

optimal number of clusters using the end of the break point as with the Test Data.

The plot of DB shows the behavior expected for this index: decreasing until reaching

zero.

Figures 4.9 - 4.12 show the spectral endmember classes obtained by the clustering

algorithms with ĉ = 14, which is the value estimated by Davies and Bouldin for

clustering using complete linkage, and by Kim and modified Kim for clustering

using average linkage.

Figure 4.9 presents the 14 spectral endmember classes from the clustering results

obtained with complete linkage and SAM similarity metric. It is evident that there

are some mixed clusters. For example: EC3, EC4, EC8 and EC9 have spectral sig-

natures that do not correspond to the same spectral endmember classes (see the

different shape of spectra in these classes). Also mixed clusters are obtained for the

average linkage and SAM as shown in Figure 4.11. EC3, EC8 and EC9 are examples

of these mixed clusters. Figures 4.10 and 4.12 present the abundances corresponding

to each of the classes. The abundances are computed by adding the individual abun-

dances of the spectral endmembers belonging to the same cluster. In Figures 4.10 and

4.12, it is clear how the spectral endmember class EC4 from complete linkage mixes

part of the false leaf with a part of a real leaf. EC8 mixes the label of the camera with

a shadow in the real leaves. EC9 mixes other part of the false leaf with the cover
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Figure 4.9: Spectral endmember classes for False Leaf image with ĉ = 14 using complete
linkage and SAM.
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Figure 4.10: Spectral endmember class abundances for False Leaf image with ĉ = 14 using
complete linkage and SAM.
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Figure 4.11: Spectral endmember classes for False Leaf image with ĉ = 14 using average
linkage and SAM.
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Figure 4.12: Spectral endmember classes abundances for False Leaf image with ĉ = 14 using
average linkage and SAM.
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of the camera. However, most of the uniform regions within the False Leaf image

have good representation in the spectral endmember classes obtained using ĉ = 14.

For instance, spectral endmember classes EC1 and EC2 from both complete and av-

erage linkage represent the vase in the False Leaf image. There are several spectral

endmember classes related with the real leaves: EC5, EC6, and EC12. Even EC12 is

the representation of the small and brightest part of leaves. EC10 in both clustering

results mixed the labels in the camera and the mug. Complete linkage obtained an

additional spectral endmember class for the leaves (EC13) but this clustering mixed

the false leaf with some part of the real leaves in EC4.

4.3.4 Discussion of Results

The comparison between clustering techniques showed that hierarchical techniques

perform better than spectral and partitional clustering algorithms. Complete and av-

erage linkages were able to extract the seven spectral endmember classes for the Test

Data. The results obtained with the full set of spectral endmembers from the False

Leaf showed that the hierarchical clustering with average and complete linkage and

spectral angle metric are suitable for the extraction of spectral endmember classes.

Validity indexes were compared for the estimation of the number of spectral end-

member classes. Dunn, SD, modified SD and CH indexes presented poor results

with the False Leaf image. Even some of these indexes estimated fewer spectral end-

member classes for the False Leaf image than for the Test Data. Thus, Dunn, SD,

modified SD, and CH indexes are not considered furthermore for the estimation of

the number of spectral endmember classes. On other hand, Davies and Bouldin, Kim

and modified Kim indexes obtained good results for both Test Data and False Leaf.

Test Data is well separated for complete and average linkage using SAM with

ĉ = 8, which is the estimate obtained by Kim and Modified Kim indexes. In the case
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of False Leaf, the best clustering result is obtained with ĉ = 14, which is estimated

by Davies and Bouldin using complete linkage and also by Kim and modified Kim

indexes for average linkage. For the False Leaf data, complete and average linkage

with ĉ = 14 obtained different spectral endmember classes both with few mixed

clusters.

It is interesting to note how the spectral angle measure and the different linkage

approaches generated mixed cluster EC8 for the False Leaf image. Despite the notice-

able difference of the shape of the spectra, SAM does not allow their discrimination.

The cosine distances between the spectral signatures within EC8 of the Figures 4.11

is just 0.0064 being 0 and 1 the minimum and maximum value for SAM. SAM is

the distance most used for hyperspectral data since it compares spectral shapes. In

the comparison among different clustering configuration, those that used SAM and

hierarchical clustering presented the best performance. However, this metric is not

always able to differenciate the spectra although they are so different such as in the

spectral endmember class EC8.

The spectral endmember classes obtained using clustering represent the different

components in the image. Note that these classes are extracted automatically based

on the spectral similarity. However, the assignation of labels that related the spectral

endmember classes with known materials requires the interpretation and analysis

of experts. The developed unsupervised unmixing approach is a tool that automati-

cally extracts information from the hyperspectral image, and these results require of

analysts to bring the information to a higher level of abstraction.

4.4 summary

Spectral endmembers extracted by the proposed approach are grouped into spectral

endmember classes allowing a better representation of the distinct components of
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the hyperspectral image. Clustering algorithms were compared in this chapter to

select the appropriate methods for spectral endmember class extraction.

Hierarchical, partitional, and spectral clustering were compared using a test data

set generated from the spectral endmembers extracted from the False Leaf image.

Hierarchical clustering with complete and average linkage outperforms partitional

and spectral clustering results. Different distances were employed obtaining the best

results with the spectral angle measure.

Complete and average linkage were used in the comparison of validity indexes

for estimation of the number of spectral endmember classes. Validity indexes are

metrics that allow the comparison of different configuration of clustering. Davies

and Bouldin, Kim and the modified Kim indexes presented the best results for the

estimation of the number of spectral endmember classes in the data used.

Additional experiments are conducted in Chapter 6 with hyperspectral imagery

from more complex scenarios where Davies and Bouldin, Kim and modified Kim

indexes are compared as well as average and complete linkage. Davies and Bouldin

index shows consistent results for those images used in Chapter 6, especially for

clustering obtained by complete linkage.
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The simulation of the different conditions present in real hyperspectral images is a

very difficult task. Spectral variability, topographic and atmospheric effects, noise,

and spatial complexity are some of the phenomena that affect real hyperspectral im-

ages. Most of the synthetic data used in published work consist of data point clouds

generated randomly (e.g. [34, 48, 49, 42]). In this synthetic data, parameters such

as abundances, noise level, and number of endmembers are controlled. But, these

dataset do not include spatial complexity. Since the proposed approach takes ad-

vantage of spatial information, it is necessary to generate synthetic data with spatial

distribution. Some spatial-spectral approaches had used synthetic data generated

with simple spatial distributions with rectangular regions (e.g. [9, 16, 15]). Other

works used complex synthetic data generated using fractals (e.g. [17, 99]). In this

work, two sets of synthetic data are generated for the quantitative assessment of the

unmixing approach based on multiscale representation. The first set is an image with

a simple spatial distribution that consists of a grid arrangement of different materi-

als with a very small spatial complexity. However, this dataset allows the control of

noise and spectral variability. The second set simulates the spatial complexity in a

scene based on abundances extracted from real data. The following section presents

the details about the generation of the synthetic data and the metrics used in the

assessment. Then, the unmixing results for the two sets of images are presented. A

comparison with SMACC, VCA, and RBSPP unmixing techniques is also included.

111
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5.1 synthetic data sets

The first data set (Synthetic Data I) was built using a grid arrangement of four ma-

terials using signatures from the USGS spectral library1. These spectra and the grid

arrangement are shown in Figure 5.1. Square regions of 47 x 47 pixels for each ma-

terial are generated. A scale parameter γ multiplies the spectral signature of each

pixel to generate spectral variability. The scale parameters γ are randomly generated

with a Beta distribution with parameters [10, 1]. The generated image had 188 x 188

pixels with 224 spectral bands. An average mask was passed through the image

without overlapping to generate mixed pixels. The final image had 46 x 46 pixels.

Gaussian distributed uncorrelated noise was added to the final image producing sig-

nal to noise ratios (SNR) of 50 db, 40db, and 30 db. The SNR was calculated by the

expression [34]:

SNR ≡ 10log10
E[YTY]
E[nTn]

(5.1)

where Y is the noise-free image and n is the noise. RGB compositions for the original

and final images are shown in Figure 5.1. Bands 185 (2120 nm), 195 (2220 nm), and

205 (2319 nm) where used in those RGB compositions.

The second data set seeks to simulate the spatial complexity of real hyperspectral

images. For that, abundance maps extracted from real hyperspectral images are used

to generate the synthetic data. Abundance maps preserve the spatial distribution of

the materials. Generating data from these maps preserve the spatial features and at

the same time that endmembers and abundances are known. Abundances extracted

from the A.P. Hill AVIRIS image (see Chapter 6) are used to build three images.

Two images are generated using spectra from the USGS spectral library using 125

spectral bands from the 1280 nm to 2500 nm with 7 (Synthetic Data I I, Figure 5.2)

1 http:// speclab.cr.usgs.gov/spectral-lib.html
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Figure 5.1: Synthetic Data I with a grid arrangement of four materials. (a) RGB composi-
tion using 185 (2120 nm), 195 (2220 nm) and 205 (2319 nm) bands. (b) Spectral
signatures for the selected endmembers. (c) Abundances for each endmember.
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and 8 (Synthetic Data I I I, Figure 5.3) endmembers, respectively. Both images, I I

and I I I, have 201 x 201 pixels and correspond to different regions of the A.P. Hill

image (see Chapter 6). The linear mixing model in Equation 2.2 was used to generate

the synthetic data. RGB compositions for both images are shown in Figures 5.2 and

5.3. Figure 5.4 presents the sum of abundances for each image. Notice that the

abundances used to generate the synthetic data satisfy a less than or equal to one

constraint. The minimum abundances are 0.4326, and 0.3450 for Synthetic Data I I

and I I I, respectively. This is a way to include topographic effects in synthetic data.

5.2 assessment metrics

Experiments presented in this chapter try to assess the accuracy of the abundances

estimated by the proposed approach as well as to compare the extracted spectral end-

members with the spectra used to generate the data. The accuracy in the abundance

estimation is measured using the mean square error (mse):

mse(Â) =
∑ (ai − âi)

2

m
(5.2)

where m is the number of pixels, ai is the known abundances, and âi is the esti-

mated abundance in the ith pixel. The standard deviation of the error, σse(Â), is also

computed.

The accuracy in the abundance estimation is also measured by the relative error

norm given by:

e(Â) =

∥∥A− Â
∥∥

‖A‖ × 100% (5.3)

where ‖ ‖ is the Frobenious norm.
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Figure 5.2: Synthetic Data II with 7 endmembers and abundances from real data. a. RGB
composition using 185 (2120 nm), 195 (2220 nm) and 205 (2319 nm) bands.. b.
Spectral signatures for the selected endmembers. c. Abundances for each end-
member.
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Figure 5.3: Synthetic Data III with 8 endmembers and abundances from real data. a. RGB
composition using 185 (2120 nm), 195 (2220 nm) and 205 (2319 nm) bands.. b.
Spectral signatures for the selected endmembers. c. Abundances for each end-
member.

Figure 5.4: Sum of abundances used for Synthetic Data: (a) I I, and (b) I I I.



5.3 unmixing analysis of synthetic data 117

The extracted spectral endmembers are compared with the original spectral using

the spectral angle distance (see Table 4.1). The mean and standard deviation for

SAM distance are computed for the different spectra that belong to the same spectral

endmember class.

5.3 unmixing analysis of synthetic data

The experiment with the synthetic data is divided in two parts. The first part studies

the effects of noise in the abundance estimation and endmember extraction using

the synthetic data with the grid configuration. In the second part of these experi-

ments, the synthetic dara generated from abundances of real imagery are employed

to assess the proposed approach. A comparison of unmixing results obtained by the

proposed approach and the results from SMACC, VCA, and RBSPP are included in

both simulation studies.

5.3.1 Experiments with Grid Synthetic Data

The first experiment with Synthetic Data I consists of the comparison of unmixing

results for different noise levels. Gaussian noise was added to Synthetic Data I such

that SNR = 50 dB, 40 dB, and 30 dB are obtained. The proposed approach was used

to perform the unmixing analysis of Synthetic Data I fixing the diffusion parameter

α = 0.01 and the maximum number of spectral endmember classes to 20. Table

5.1 presents the mean square errors (mse(Â)) and the standard deviation (σse(Â))

calculated for the estimated abundance from the unmixing of Synthetic Data I with

different noise levels after 10 repetitions of the experiment. The mean square errors

obtained for the image with noise are larger than the obtained with the noise-free

image as expected. Similar errors for the estimated abundances were obtained at
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Table 5.1: Mean square errors (standard deviations) for the estimate abundance from Syn-
thetic Data I.

end1 end2 end3 end4 average

noise-free 0.0007 (0.0036) 0.0003 (0.0015) 0.0005 (0.0035) 0.0002 (0.0009) 0.0004

50 db 0.0031 (0.0301) 0.0019 (0.0181) 0.0019 (0.0182) 0.0009 (0.0083) 0.0020

40 db 0.0020 (0.0215) 0.0013 (0.0142) 0.0017 (0.0215) 0.0010 (0.0119) 0.0015

30 db 0.0021 (0.0278) 0.0010 (0.0132) 0.0015 (0.0178) 0.0009 (0.0114) 0.0014

different noise levels. For instance, the mean square error for the abundance of end1

is 0.0007 for the noise-free image and between 0.0020 and 0.0031 for the three noise

levels. The mean square error is of 0.0002 for the abundance of end4 for the noise-free

image and this error is up to 0.0010 for the noise image. Table 5.1 also includes the

average of the mean square error obtained from the different abundances. In this

average, it can also be noted that the relative error was similar for all noise levels.

For the noise-free image, the average mse was 0.0004. In the case of noise images,

the average mse were 0.0020, 0.0015, and 0.0014 for the 50 db, 40 db, and 30 db cases

respectively. The difference between of mse from the noise-free and noise images are

small. However, it can be noted in Table 5.1 that the standard deviation of this error

increased in the case of noisy images.

Table 5.2 presents a comparison of the relative error calculated using Equation 5.3.

For the noise-free image, an average error of 4.42% was obtained for all abundances.

The average errors for the estimated abundances from the noisy images were of 7.94%

in the case of 50 db and 7.27% in both 40 db and 30 db. Figure 5.5 shows an example

of the estimated abundances for each endmember and noise level. In this figure, it

can be noted the effect of the noise as a small estimated abundance (up to 10%) in

regions with zero abundances. These small abundance (blue pixels) increased with

the noise level.

The spectra angle distance between the estimated and original endmembers are

presented in the Table 5.3. These distances correspond to the average of the distances
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Table 5.2: Relative error (%) for the estimate abundance from Synthetic Data I.

end1 end2 end3 end4 average

noise-free 5.62 3.98 4.75 3.32 4.42

50 db 11.22 6.76 8.65 5.12 7.94

40 db 7.66 7.94 7.94 6.33 7.27

30 db 9.11 6.36 7.64 5.97 7.27

Figure 5.5: Abundances estimated from Synthetic Data I at different noise levels.
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Table 5.3: SAM (σ) for the extracted spectral endmembers and original endmembers for Syn-
thetic Data I.

end1 end2 end3 end4 average

noise-free 0.0016 (0.0030) 0.0031 (0.0067) 0.0016 (0.0030) 0.0000 (0.0000) 0.0016

50 dB 0.0012 (0.0024) 0.0012 (0.0029) 0.0011 (0.0024) 0.0012 (0.0029) 0.0012

40 dB 0.0013 (0.0024) 0.0013 (0.0023) 0.0013 (0.0024) 0.0012 (0.0021) 0.0013

30 dB 0.0020 (0.0030) 0.0020 (0.0035) 0.0019 (0.0028) 0.0019 (0.0034) 0.0020

to each spectral endmembers belonging to the same spectral endmember class and

the original endmembers. The variances are also included in the Table 5.3, and

it can be seen as a measure of the spectral variability obtained for each spectral

endmember class. Note that the spectral angle distance, as defined in Table 4.1,

has a maximum value of 1 (i.e. very distinct spectra) and a minimum value of 0

(i.e. very similar spectra). All obtained distances are less than or equal to 0.0020.

The obtained standard deviation are in the same order as the mean with values up

to 0.0067. Examples of spectral signatures are shown in Figure 5.6. Note that the

obtained spectra are not noisy even for the image with a SNR of 30 dB. This is a

result of the smoothing operations used for building the multiscale representation.

Most of the noise is removed by the nonlinear diffusion filtering, and the effects of

noise in the unmixing analysis are then reduced. In Figure 5.6, it can be noted that

an additional spectrum is extracted from the image (a mixed signature) in the case

of 30 dB.

The second experiment with Synthetic Data I consists of the comparison of un-

mixing results obtained by the proposed approach and SMACC, VCA, and RBSPP

algorithms. Synthetic Data I with a SNR = 30 dB was used in this experiment. Simi-

larly to the first experiment, the unmixing analysis was repeated 10 times, and each

time Gaussian noise was added to Synthetic Data I.

Tables 5.4 and 5.5 summarize the mean square errors and the relative errors com-

puted from the estimated abundances and original abundances. The smallest abun-
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Figure 5.6: Spectral endmember classes extracted from Synthetic Data I at different noise
levels.
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Table 5.4: Mean square errors (standard deviations) for the estimate abundance from Syn-
thetic Data I using the proposed approach, SMACC, VCA, and RBSPP.

end1 end2 end3 end4 average

Proposed App. 0.0021 (0.0278) 0.0010 (0.0132) 0.0015 (0.0178) 0.0009 (0.0114) 0.0014

SMACC 0.0023 (0.0045) 0.0013 (0.0026) 0.0017 (0.0035) 0.0013 (0.0025) 0.0033

VCA 0.0015 (0.0030) 0.0007 (0.0014) 0.0004 (0.0009) 0.0009 (0.0019) 0.0008

RBSPP 0.0009 (0.0022) 0.0006 (0.0014) 0.0003 (0.0007) 0.0006 (0.0014) 0.0006

Table 5.5: Relative error (%) for the estimate abundance from Synthetic Data I using the
proposed approach, SMACC, VCA, and RBSPP..

end1 end2 end3 end4 average

Proposed App. 9.11 6.36 7.64 5.97 7.27

SMACC 9.80 7.39 8.57 7.38 8.28

VCA 7.39 5.42 4.05 5.72 5.64

RBSPP 5.95 4.98 3.52 4.93 4.85

dance errors were obtained by the RBSPP algorithm combined with VCA. The mean

square error for the estimated abundances by this algorithm was 0.0006, and the rela-

tive error was 4.85%. The proposed approach obtained a mean square error of 0.0014

and a relative error of 7.27%. SMACC and VCA obtained relative errors of 8.28%

and 5.64%, respectively. Although the mean square errors obtained for the proposed

approach are comparable with the errors obtained by the other techniques, it can

be noted in the Table 5.4 that the proposed approach obtained the highest standard

deviations for the square errors indicating that larger errors are obtained in some

pixels by the proposed approach.

Table 5.6 shows the spectral angle distances between the extracted endmembers

and the original endmembers. The smallest distances were obtained by the proposed

approach. The average for the spectral angle distances was 0.0020 for the proposed

approach in comparison with the 0.2631, 0.2318, and 0.2648 obtained for SMACC,

VCA, and RBSPP, respectively. The smaller spectral angle distances obtained for the

proposed approach can be due to the reduction of the noise by the smoothing oper-
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Table 5.6: SAM for the extracted spectral endmembers and original endmembers for Syn-
thetic Data I.

end1 end2 end3 end4 average

Proposed App. 0.0020 0.0020 0.0019 0.0019 0.0020

SMACC 0.3154 0.2274 0.2193 0.2903 0.2631

VCA 0.2272 0.2087 0.2388 0.2524 0.2318

RBSPP 0.2325 0.2170 0.2556 0.2803 0.2464

ation, and the integration of the spectral variability. SMACC does not perform any

procesing over the spectra obtaining noisy signatures. VCA performs a projection

where noise is also filtered.

5.3.2 Experiments with Synthetic Data Including Spatial Complexity

This experiment aims at identifying the advantages and limitations of the proposed

approach. For that, Synthetic Data I I and I I I include spatially uniform regions as

well as small regions with significant topographic effects. Although Synthetic Data

I I and I I I include more complex spatial distribution than the previous experiments,

this image did not include spectral variability on the endmembers. Results included

in this section use the synthetic data without noise. For each image, unmixing also

was done using SMACC, VCA, and RBSPP. The diffusion parameter was fixed in

0.007 and the maximum number of spectral endmember classes is set to 20 for the

proposed approach.

Table 5.7 presents the estimated number of spectral endmember classes by the

proposed approach for both Synthetic Data I I and I I I . Table 5.7 also includes

the estimated number of endmembers by HySIME [55], and the estimated ranks

for the covariance and correlation matrices (see Section 2.5). HySIME estimated 7

endmembers for Synthetic Data I I and 8 endmembers for Synthetic Data I I I. The

ranks of covariance (K) and correlation (R) matrices were 3 for Synthetic Data I I. For
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Table 5.7: Comparison of estimated number of endmembers for Synthetic Data I I and I I I.

HySIME Rank(K) Rank(R) End. Classes

Synthetic Data II 7 3 3 13

Synthetic Data III 8 6 4 13

Synthetic Data I I I, the rank of the covariance (K) was 6 and for the correlation (R)

was 4. The proposed approach estimated 13 spectral endmember classes for both

synthetic data sets.

Figure 5.7 presents the abundances estimated from Synthetic Data I I by the pro-

posed approach, SMACC, VCA, and RBSPP algorithms. The corresponding endmem-

bers are shown in Figure 5.8. Figure 5.9 shows the six additional spectral endmember

classes extracted by the multiscale approach. It can be seen in Figure 5.9 that End8,

End9, End10, and End12 appear to be additional partitions of endmember End1 (see

Figure 5.8). In addition, End11 and End13 are related with the endmembers End3

and End5, respectively. These additional partitions are the results of the clustering

algorithm (i.e. hierarchical algorithm with complete linkage) employed in the pro-

posed approach. Despite the additional spectral endmember classes, it can be seen in

Figure 5.7 that the proposed approach resolved the spatial distribution of most ma-

terials in the image. Endmembers End1, End4, End5, and End7 are the best estimated

by the proposed approach.

Table 5.8 summarize the mean square errors for the estimated abundances and

Table 5.9 shows the spectral angle distances for the extracted endmembers. The pro-

posed approach extracted End6 with an average spectral angle distance of 0.0014.

But, the estimated abundance for this endmember had a mean square error as high

as 0.0618. The abundances for endmembers End1, End4, End5, and End7 had errors

of 0.0097, 0.0058, 0.0262, and 0.0102, respectively. Their corresponding spectral angle

distances were 0.0011, 0.0018, 0.0012, and 0.0011. Table 5.9 also includes the stan-

dard deviations for each spectral endmember class. The spectral endmember classes
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Figure 5.7: Estimated abundances for Synthetic Data I I.



5.3 unmixing analysis of synthetic data 126

Figure 5.8: Extracted endmembers for Synthetic Data I I.
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Figure 5.9: Additional spectral endmember classes for Synthetic Data I I.

with most spectral variability corresponds to endmembers End1 and End4. SMACC

algorithm obtained the best results for Synthetic Data I I. The average of the mse

for the estimated abundance with this algorithm was 0.0073. The average mse for

the estimated abundance by VCA, RBSPP and the proposed approach were of 0.019,

0.0215, and 0.0217.

Histograms for the errors of the estimated abundances by the proposed approach

and SMACC are presented in Figure 5.10. It can be noted in the histograms that

the proposed approach obtained comparable errors to SMACC. The estimated abun-

dances for endmembers End2 and End6 have the largest errors in the proposed ap-

proach.

A similar analysis was performed for the unmixing results for Synthetic Data III.

This second experiment is included to show the behavior of the algorithms with

different spatial distributions. Figure 5.11 presents the abundances estimated from
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Table 5.8: Mean square error and standard deviation for the estimate abundances from Syn-
thetic Data I I.

End1 End2 End3 End4 End5 End6 End7 average

Proposed mse 0.0097 0.0274 0.0058 0.0262 0.0111 0.0618 0.0102 0.0217

Approach σse 0.0211 0.0423 0.0476 0.0627 0.0702 0.1290 0.0628

SMACC mse 0.0000 0.0052 0.0043 0.0004 0.0331 0.0060 0.0014 0.0073

σse 0.0002 0.0163 0.0161 0.0023 0.1212 0.0179 0.0044

VCA mse 0.0001 0.0028 0.0002 0.0414 0.0032 0.0104 0.0319 0.0129

σse 0.0004 0.0053 0.0013 0.0781 0.0128 0.0188 0.0529

RBSPP mse 0.0007 0.0114 0.0039 0.0515 0.0242 0.0548 0.044 0.0215

σse 0.0020 0.0427 0.0185 0.0989 0.0803 0.1172 0.0082

Table 5.9: SAM (σ) for the extracted spectral endmembers and original endmembers for Syn-
thetic Data I I.

end1 end2 end3 end4 end5 end6 end7 average

Proposed SAM 0.0011 0.0010 0.0015 0.0018 0.0012 0.0014 0.0011 0.0013

Approach σ 0.0015 0.0010 0.0007 0.0016 0.0016 0.0006 0.007

SMACC SAM 0.0000 0.0000 0.0000 0.0000 0.0055 0.000 0.000 0.0007

VCA SAM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RBSPP SAM 0.0000 0.0000 0.0119 0.0000 0.0046 0.0074 0.000 0.0034
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Figure 5.10: Histograms for the absolute errors of the estimated abundance from Synthetic
Data I I using the proposed approach and SMACC.
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Synthetic Data I I I by the four algorithms: the proposed approach, SMACC, VCA,

and RBSPP. Figure 5.12 shows the corresponding endmembers. In addition, Figure

5.13 shows the five additional spectral endmember classes extracted by the proposed

approach. Endmembers End11, End12, and End13 appear to be additional partitions

of endmember End1 (see Figure 5.12) since these have similar spectral features (see

Figure 5.12). In addition, End10 is related with endmember End5. These additional

partitions are the results of the clustering algorithm. The endmembers End1, End3,

End5, End7, and End8 are the better estimated by the proposed approach.

Table 5.10 summarizes the mean square error for the estimated abundances and

Table 5.11 shows the spectral angle distances for the extracted endmembers. For

this image, the proposed approach also obtained a high error for endmember End6.

The average spectral angle distance was of 0.0020 and the mean square error for the

estimated abundance was 0.0734 for End6. The abundances for endmembers End1,

End3, End5, End7, and End8 have errors of 0.0166, 0.0030, 0.0225, 0.0298, and 0.0018

respectively. Their corresponding spectral angle distances were 0.0001, 0.0010, 0.0006,

0.0014, and 0.00053. Table 5.11 also includes the standard deviation for each spectral

endmember class. The spectral endmember classes with most spectral variability

correspond to endmembers End2, End4, and End7. The RBSPP algorithm obtained

the best results for Synthetic Data I I I. The average mse for the estimated abundance

with this algorithm was 0.0026. The average mse for the estimated abundance by

SMACC, the proposed approach, and VCA were equal to 0.0241, 0.0262, and 0.0521

respectively.

For this second example, histograms for the errors in the estimated abundances

are also included (see Figure 5.14). The histograms show the distribution of the

errors for the estimated abundances by the proposed approach and RBSPP. Using

the histogram, a better comparison of the errors can be done. The histogram shows

clearly the small errors obtained by the RBSPP algorithm. In addition, it can be seen



5.3 unmixing analysis of synthetic data 131

Figure 5.11: Estimated abundances for Synthetic Data I I I.
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Figure 5.12: Extracted endmembers for Synthetic Data I I I.
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Figure 5.13: Additional spectral endmember classes for Synthetic Data I I I.

Table 5.10: Mean square errors and standard deviations for the estimate abundance from
Synthetic Data I I.

End1 End2 End3 End4 End5 End6 End7 End8 average

Proposed mse 0.0166 0.0221 0.0030 0.0405 0.0225 0.0734 0.0298 0.0018 0.0262

Approach σse 0.0394 0.0422 0.0180 0.0981 0.0921 0.1578 0.1000 0.0085

SMACC mse 0.0001 0.0150 0.0074 0.0332 0.0750 0.0321 0.0246 0.0051 0.00241

σse 0.0004 0.0309 0.0215 0.0684 0.2032 0.0579 0.0384 0.0226

VCA mse 0.0124 0.0316 0.0337 0.0380 0.0448 0.2224 0.0310 0.0033 0.0521

σse 0.0257 0.0624 0.1151 0.0908 0.1440 0.2929 0.0928 0.0132

RBSPP mse 0.0004 0.0043 0.0001 0.0041 0.0004 0.0016 0.0095 0.0003 0.0026

σse 0.0018 0.0160 0.0008 0.0185 0.0023 0.0058 0.0305 0.0016
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Table 5.11: SAM (σ) for the extracted spectral endmembers and original endmember for Syn-
thetic Data I I I.

end1 end2 end3 end4 end5 end6 end7 end8 average

Proposed SAM 0.0001 0.0017 0.0010 0.0019 0.0006 0.0020 0.0014 0.0053 0.0017

Approach σ 0.0002 0.0016 0.0015 0.0017 0.0005 0.0011 0.0014 0.0024

SMACC SAM 0.000 0.0000 0.0000 0.0055 0.0251 0.0000 0.0000 0.0019 0.0041

VCA SAM 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0002

RBSPP SAM 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0019 0.0002

the good results obtained with the proposed approach with endmember End1, End3,

End5, End7, and End8.

5.3.3 Analysis of Results

Unmixing results from Synthetic Data I and the proposed approach show that simi-

lar abundance errors are obtained for different noise levels. The proposed approach

reduces the noise effects because nonlinear diffusion is used in the first stage of the

unmixing. In addition, the extracted spectral endmembers correspond with signa-

tures from the smoothed image (see Section 3.2), and thus different levels of noise

are filtered before abundance estimation. This fact explains the small differences ob-

tained among the errors for the estimated abundance from the synthetic data with

SNR of 50 dB, 40 dB, and 30 dB. In the case of 30 dB, a mixed spectrum was selected

by the multigrid procedure as a spectral endmember for End1 (see Figure 5.6).

RBSPP obtained the best unmixing results for Synthetic Data I according the mean

square error and the relative error, and the multiscale approach obtained the small-

est spectral angle distance between the extracted spectral endmembers and original

signatures. Although the errors of the proposed algorithm are larger than errors

of VCA and RBSPP these are not far away. In addition, the spectral endmember

extracted with the proposed approach are more similar according the spectral an-
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Figure 5.14: Histograms for the absolute errors of the estimated abundance from Synthetic
Data I I using the proposed approach and RBSPP.
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gle distance to the original signatures since the proposed approach filters the image

when performs the smoothing reducing noise levels.

The proposed approach extracted several spectral endmembers for each original

endmember from Synthetic Data I I and I I I (see Figure 5.8 and 5.12). Given that these

synthetic data were generated using a single spectra, but the proposed approach pre-

serve spectral variability along the unmixing analysis, some errors in the estimated

abundance can be expected because of the difference of amplitude in the extracted

endmembers. However, the extracted spectral endmembers should preserve the spec-

tral features of the materials used to generate the data, and their abundances should

show relation with the original distributions. It can be noted that the better esti-

mated endmembers using the proposed approach corresponds with endmembers

that show high abundances in the original abundance maps, i.e. belong to spectrally

uniform regions. For instance, see endmembers End3, End5 and End7 for both Syn-

thetic Data I I and I I I. This also can be noted in endmember End8 of Synthetic Data

I I I. Although this endmember does not occupy a large image region, it is highly

concentrated in a small region.

SMACC and RBSPP algorithms showed better results for Synthetic data I I and

I I I than the proposed approach. Since SMACC and RBSPP assumed a single repre-

sentation for each material, then the way as the synthetic data was generated favors

these algorithms. These comparisons allow to see some of the limitations of the pro-

posed approach with low abundance materials. For instance, endmember End6 in

Synthetic Data I I is the worst estimated by the proposed approach (see Figure 5.7).

However, the difference between of errors obtained with SMACC, RBSPP, VCA, and

the proposed approach are comparable. Although the proposed unmixing approach

performs the analysis in an unsupervised fashion, the obtained errors are compa-

rable to those obtained by SMACC, RBSPP, and VCA where important parameters

such as the number of endmembers are needed a priori.
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The additional spectral endmember classes extracted using the proposed approach

are overpartitions due to the clustering algorithms. These additional spectral end-

member classes helped to increase the errors.

5.4 summary

This chapter presented a quantitative assessment of the proposed approach using

synthetic data. It is very difficult to generate data that include the several conditions

found in real images such as the topographic effects, noise, and spectral variability.

Thus, two separate experiments were performed to assess the proposed approach.

The first experiment sought to determine the effects of noise in the unmixing results.

These experiments allowed to see that the proposed approach is not significantly

affected by noise since the nonlinear diffusion used in the first step removed most

of the noise in the image. The proposed approach extracted the spectral endmem-

ber more similar to the original signatures in comparison with RBSPP, SMACC and

VCA. Since the multiscale unmixing smoothes the image then reduces the noise ef-

fects. The second experiment sought to simulate the spatial complexity found in real

hyperspectral data. For that, two synthetic data were generated using abundances

previously extracted from real data. These abundances maps allow to preserve the

spatial complexity in the image. However, single endmembers were used to gener-

ate the data. SMACC and RBSPP obtained the best results for these images. The

proposed approach is capable of detecting all materials. Some of the abundance

achieved higher errors due to the mixed cluster produced by the clustering. Also the

abundance estimation errors are affected because the spectral endmember classes

had several spectra to represent the spectral variability that is not considered in the

generation of the images. However, the results obtained by the proposed approach

are comparable with the results of SMACC, and RBSPP. Next chapter presents a
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quantitative assessment of the proposed approach using real hyperspectral data. A

new assessment methodology is developed to able the comparison of unmixing re-

sults with classification maps.



6E X P E R I M E N T S W I T H R E A L H Y P E R S P E C T R A L I M A G E

This chapter presents experiments to evaluate the performance of unsupervised un-

mixing analysis based on multiscale representation using real hyperspectral images.

Additional examples presented in Chapters 3 and 4 were included to demonstrate

the capabilities of the proposed approach and the techniques for scale selection and

estimation of the number of spectral endmember classes. Four images are used in

this chapter: A.P. Hill, Cuprite, and two images from the Guanica Dry Forest. A de-

tailed description of these images is presented in Section 6.1. A.P. Hill and Cuprite

are used in Section 6.3 to study the performance of the proposed approach. For this

purpose, a comparison of the spectral endmembers with available spectral libraries

is performed as well as a quantitative comparison of the distribution of materials

and classification maps is conducted. Finally, this chapter presents a study of the

effects of spatial resolution in the spectral endmember extraction and abundance es-

timation using two AISA images from the Guanica Dry Forest at two different spatial

resolutions.

6.1 data sets

Four hyperspectral images were selected for the experiments. A.P. Hill and Cuprite

were selected because of the availability of published spectral libraries and classifica-

tion maps that allow assessment of unmixing results. Two images from the Guanica

Dry Forest are also used in this chapter. These images were selected because they

139
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were collected at two different resolutions, 1 and 4 meters, allowing the study of

spatial resolution effects over the proposed approach.

6.1.1 A.P. Hill

An image captured over Fort. A.P. Hill, Virginia in September of 2001 using the

AVIRIS sensor is used to evaluate the proposed unmixing approach. The image con-

sists of 224 bands from 380 to 2500 nm with a spatial resolution of 3.5 meters. Only

197 bands are used for the unmixing analysis. Water absorption bands (bands 107

to 114 (1353 nm to 1422 nm), and 153 to 167 (1811 nm to 1939 nm)) were removed.

Figure 6.1(a) presents the RGB composition using bands 30 (654 nm), 20 (557 nm)

and 9 (451 nm). A classification map for the A.P. Hill image from [100] is used in

here as a reference. The classification map (Figure 6.1(b)) shows 14 different classes:

three types of soil (soil ag field #1, soil ag field #2, soil ag field #2), eight types of vege-

tation (summer deciduous forest, loblolly pine, autumn deciduous #1, autumn deciduous #2,

autumn deciduous #3, green ag field #1, shaded vegetation, and grass field), two made man

classes (generic road and gravel), and river water. In addition, there is a spectral library

documented in [101] (Figure 6.2). Only the plots for the spectral library are available,

then a quantitative assessment of the spectral signatures cannot be performed. How-

ever, the plots are visually compared with the spectral endmember classes obtained

with the proposed approach. The spectral library of [101] contains image-derived

endmembers.
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Figure 6.1: A.P. Hill hyperspectral image. (a) RGB composition using bands 30 (654 nm), 20

(557 nm) and 9 (451nm), and (b) classification map from [100].

Figure 6.2: Spectral library for A.P. Hill. Figure from [101].
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6.1.2 Cuprite

Cuprite is an AVIRIS image captured over a mining district in Cuprite, NV. The

data is available online1 and it corresponds with a flight conducted in 1995. This

image has 224 bands and a spatial resolution of 20 meters. Figure 6.3 presents a RGB

composite (bands 181 (2080 nm), 191 (2180 nm) and 201 (2280 nm)) of the image used

to evaluate the proposed approach. Only 51 spectral bands and a subset of 400 x 400

pixels are employed here. Spectral bands between 2009 nm to 2507 nm (bands 174

to 224) are used since these are the wavelengths employed in mineral identification2.

A classification map from the USGS is used as references here. Figure 6.4 shows the

map which was derived from the AVIRIS image collected in 1995 using the spectral

region from 2000 to 2500 nm. The map in Figure 6.4(a) includes 25 classes. Figure

6.4(b) shows the region corresponding to the image used in the experiment. More

information about this classification map can be found in the webpage of the USGS

Speclab3. Spectroscopy of the different minerals in the mining district can be found in

the USGS spectral library4. This image is selected to evaluate the proposed approach

since it is a complex scenerario with small spectral uniform regions and several

materials. Several materials within Cuprite do not meet the main assumption of the

proposed algorithm of local uniformity (see Section 1.2). Then, this image allows to

understand the limitations of the proposed algorithm.

6.1.3 Guanica Dry Forest

The Guánica Dry Forest is located in southwestern Puerto Rico. It is a tropical dry

forest designated as a UNESCO man and Biosphere Reserve in 1981, and the core

1 ftp://ftpext.cr.usgs.gov/pub/cr/co/denver/speclab/pub/cuprite/
2 http://speclab.cr.usgs.gov/map.intro.html
3 http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.html
4 http:// speclab.cr.usgs.gov/spectral-lib.html
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Figure 6.3: Cuprite hyperspectral image. RGB composition using bands 181 (2079 nm), 191

(2179 nm) and 201 (2279 nm) from original data cube.

Figure 6.4: Classification map for Cuprite. (a) Map from USGS derived from AVIRIS
image of 1995 using the spectral region from 2000 to 2500 nm. Map from
http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.html. (b) Map
subset of the area covered by the hyperspectral image.
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Figure 6.5: Guanica Forest hyperspectral image. RGB composition using bands 54 (639 nm),
35 (550 nm), and 15 (459 nm) for (a) 1 meter and (b) 4 meters of spatial resolution.

site of the Atlantic Neotropical Domain of the US National Ecological Observatory

Network (NEON). AISA images collected over the forest in December of 2007 are

used in this work. These image consists of 128 spectral bands from 397 nm to 995

nm. These images are part of the hyperspectral remote sensing mission conducted

over Southwestern Puerto Rico [102]. The data was collected at two different spatial

resolutions: 1 and 4 meters. The available AISA data cover the complete forest. Only

a spatial subset shown in Figure 6.5 is used in this work to study spatial resolution

effects. The image with 1 meter spatial resolution has 396 x 600 pixels, and the

image with 4 meters has 99 x 150 pixels. This subset was selected because a detailed

description of this region is found in [68]. RGB composites were built using bands

54 (639 nm), 35 (550 nm), and 15 (459 nm). There are not classification maps for the

forest. However, the Guanica Forest has been widely studied by faculty and students

at the University of Puerto Rico. Santos [68] presents a description of the region

used in this study based on field work conducted in the area in 2009 (Figure 6.6).

The Guanica image is composed of tall and low vegetation, with a region covered by

grass. Two types of roads are in the scene: paved road, and dirt road. A building is

located near the center of the scene (see Figure 6.6).
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Figure 6.6: Composition of Guanica Forest scene. Figure from [68].

6.2 assessment methodology

Most of the times, hyperspectral datasets have documented classification maps and

spectral libraries such as A.P. Hill and Cuprite images. But, there is no ground truth

about abundance maps. The lack of this information becomes a great limitation

for any effort to determine the reliability and accuracy of unmixing results. Com-

monly, unmixing results are evaluated by computing the spectral angle between the

extracted endmembers and spectral references, and using the reconstruction error

that compares the image reconstructed from the estimated abundances and endmem-

bers (Ỹ = SA) and the original image [103]. But, the comparison between extracted

endmembers and spectral references is limited to the fact that the extracted endmem-

bers are image-derived signatures and the spectral references correspond usually to

laboratory spectra. In addition, the reconstruction error only assess the fitting error

but not the accuracy of the estimated abundances or endmembers.

In this work, a new quantitative assessment methodology is proposed that uses

the information within classification maps. It is expected that a single or a combi-
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nation of spectral endmember classes can be related to information classes within

classification maps. Using these relations, a quantitative assessment methodology

can be performed to determine how well the unmixing algorithm detects the distinct

components of an image. The methodology follows two ways to assess the unmix-

ing results. The first one is inspired in detection theory and seeks to establish if the

materials that are part of an information class are detected or are not. The second

is based on classification accuracy analysis. A classification map is obtained using

the estimated abundances and majority vote criterion. Then, an agreement analysis

between the generated classification map and the reference map is performed. Be-

fore performing the quantitative assessment, it is necessary to identify the relation

between spectral endmember classes and information classes. For that, a qualitative

comparison between abundances and classification maps is performed. Next sections

describe each step of the assessment methodology.

6.2.1 Qualitative Evaluation

The qualitative evaluation relates the spectral endmember classes with the informa-

tion classes. For that, two analyses are conducted. First, a comparison of the spectral

endmember classes with available spectral libraries from the distinct images is per-

formed. The comparison is done using the shape of the spectral signatures, and

validated using the spectral angle (see 4.1) when the reference spectra is available

(e.g. Cuprite spectral library). Second, abundance maps are compared to classifi-

cation maps. The classification maps allow to know the different components of an

image, and these provide some information about the spatial distribution of the mate-

rials. Then, it can be expected that similar distribution are obtained in the estimated

abundance. This step of the assessment methodology requires the intervention of an

image analyst.
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Table 6.1: Contingent Matrix.

True Class

C1 C2

Ĉ1 True Positives False Positives

Ĉ2 False Negatives True Negatives

Note that one or more spectral endmember classes can be related to one or more

information classes. For the next step in the assessment methodology, spectral end-

member classes related to the same information classes are combined, as well as, if

an extracted spectral endmember class is related to several information classes, then

the information classes are combined into a single class. Recall that the proposed

approach is a machine-based approach so it may confront difficults in separating

spectrally similar classes.

6.2.2 Quantitative Assessment of Detected Classes

In the assessment of detection systems, we seek to quantify the ability to discriminate

between information patterns (called targets) and random patterns (called noise) [104].

The problem can be set as a two-class problem, where the first class (C1) represents

when the target is present and the second class (C2) when the target is not present.

Thus, the response of detection systems can be categorized into four types [104]:

choose C1, given that the target is present (C1 is correct), is called a Hit or a True

Positive; choose C2, given that the target is not present (C2 is correct), is called a

Correct Rejection or a True Negative; choose C2, given that C1 is correct, is a Miss or

a False Negative; and choose C1, given that C2 is correct, is a False Alarm or a False

Positive. These outputs can be organized in a contingent matrix or confusion matrix

such as that presented in Table 6.1 [104].
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The assessment methodology for the unmixing algorithm use the matrix in Table

6.1 to quantify how well the algorithm detects the materials that are part of an in-

formation class. Once the spectral endmember classes are related to the information

classes, each class is used to set a detection problem. Let C1 be class l in the map,

and let Al be the abundance maps related to the endmember class l. The True Pos-

itives corresponds with the number of pixels that have the label l in the reference

map and have abundances different from zero. The False Positives are the number

of pixels with labels different than l in the reference map and have abundances Al

different from zero. The False Negatives are the number of pixels that have label l in

the reference map and have abundances in Al equal to zero. The True Negatives are

the number of pixels that have labels different than l in the reference map, and have

abundances Al equal to zero. True positive rate (P), false positive rate (FP) and false

negative rate (FN) are computed for the quantitative assessment of the unmixing

algorithm using the following expressions:

P(%) =
True Positive

Number of Pixels in Class l
x100 (6.1)

FP(%) =
False Positive

Number of Pixels in Other Classes
x100 (6.2)

FN(%) =
False Negative

Number of Pixels in Class l
x100 (6.3)

It is very important to note that False Positives cannot be considered errors as in

detection theory. Since the classification maps do not provide full information about

the different materials presents in a single pixels, it is expected that pixels belonging

to different classes have abundances different to zero for all classes present. But, it
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is expected that smaller abundances will be estimated in these pixels than the one

for the class assumed. Histograms for the abundances of the True Positives and False

Positives are computed to compare their distributions.

6.2.3 Agreement Assessment of Classification Maps

A second way to assess the unmixing results is generating a classification map that

can be compared with the reference map using an agreement matrix. A majority

vote criterion is used to generate a classification map from the estimated abundance.

The agreement matrix is built similarity to the confusion matrix used to evaluate

a supervised classifier. Three statistics are computed from the agreement matrix:

the between-class agreement that indicates the percentage of pixels labeled as l in the

reference map assigned to the class l in the new classification map (equivalent to

the producer’s accuracy in the confusion matrix), the assignment-class agreement that

indicated the percentage of pixels assigned to the class l in the new classification

map that correspond with pixels labeled as l in the reference map (equivalent to the

user’s accuracy in the confusion matrix), and the overall agreement that is indicated

the percentage of pixels with the same label in both the reference map and the new

classification map.

6.3 unmixing analysis of a .p. hill and cuprite

A.P. Hill and Cuprite are analyzed using the approach presented in Figure 1.4. First,

the multiscale representation and scale selection are described in Section 6.3.1. Then,

spectral endmembers are extracted using the multigrid approach and spectral end-

member classes are built using clustering algorithms. Section 6.3.2 presents the ob-
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Figure 6.7: Scale selection for A.P. Hill. (a) Diffusion balance and (b) entropy change criteri-
ons. Blue points indicate the selected smoothing iterations.

tained spectral endmember classes. Finally, the unmixing results are evaluated in

Section 6.3.3 using the proposed methodology.

6.3.1 Multiscale Representation and Scale Selection

AVIRIS images from A.P Hill and Cuprite were smoothed using the nonlinear diffu-

sion algorithm reviewed in Section 3.1. The scale step µ was set to 5 for both A.P.

Hill and Cuprite images. The final scale was set to 70 and the diffusion parameter

α to 0.005 for the A.P. Hill image. Only 14 smoothed images were obtained for the

multiscale representation for A.P. Hill due to memory limitations. The final scale

was fixed to 100 and the diffusion parameter α to 0.005 for the Cuprite image. In this

case, 20 smoothed images were obtained for the multiscale representation. Remain-

ing parameters of the PDE solver were set to the values suggested by Duarte et al.

(see Section 3.1.1, [26]).

Diffusion balance and entropy change methods were used for the scale selection.

Figure 6.7 presents the criterion curves for A.P. Hill. The blue dots indicate the

selected smoothed images. Diffusion balance selected the image in the eleventh

iteration and the entropy change in the fifth iteration. For the Cuprite image, entropy



6.3 unmixing analysis of a .p. hill and cuprite 151

Figure 6.8: Scale selection for Cuprite. (a) Diffusion balance and (b) entropy change criterions.
Blue points indicate the selected smoothing iterations.

change selected the thirteenth iteration and the diffusion balance did not produce a

scale. Diffusion balance and entropy change criterions for Cuprite are plotted in

Figure 6.8.

Similar to the results presented in Section 3.3, entropy change approach selected

the smoothed image with fewer iterations than diffusion balance. The behavior of

this criterion is very consistent for different types of hyperspectral images. Smoothed

images selected using entropy change are employed in the unmixing analysis. Figure

6.9 presents RGB composites of smoothed images in the fifth iteration for A.P. Hill

and the thirteenth iteration for Cuprite.

6.3.2 Spectral Endmember and Spectral Endmember Class Extraction

The spectral endmembers for A.P. Hill and Cuprite are extracted using the method-

ology described in Section 3.2 based on the multigrid structure and the selected

smoothed images. Using the proposed approach, 176 spectral endmembers were ex-

tracted from A.P. Hill and 287 from Cuprite. Spectral endmembers were clustered

into the spectral endmember classes using average and complete linkage. Spectral

angle was employed as the similarity metric. The number of clusters was varied



6.3 unmixing analysis of a .p. hill and cuprite 152

Figure 6.9: Smoothed A.P. Hill and Cuprite images. (a) Smoothed A.P. Hill image with fifth
iterations and (b) Smoothed Cuprite image with thirteenth iterations.

between 2 and 30 for both A.P. Hill and Cuprite. Davies and Bouldin, Kim, and mod-

ified Kim indexes were calculated for determing the number of spectral endmember

classes.

Figures 6.10 and 6.11 show the validity indexes computed for A.P. Hill and Cuprite,

respectively. Table 6.2 summarizes the estimated number of clusters. Kim and mod-

ified Kim indexes estimated values less than or equal to 10 spectral endmember

classes for A.P. Hill. It is expected that at least 14 materials are present in this image

according to the available classification map (Figure 6.1(b)). Davies and Bouldin in-

dex estimated 14 spectral endmember classes using the complete linkage with SAM.

This index estimated only 9 clusters using average linkage.

Cuprite is a very difficult image to analyze, and extracting all materials presents in

the image is a hard task due to the large number of materials and their distribution.

Many of the materials present in Cuprite are within small regions or are mixed with

other materials. There are 25 materials identified by the classification map (Figure

6.4). However, Davies and Bouldin index estimated 17 spectral endmember classes

using complete linkage with SAM. The estimated number of spectral endmember
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Figure 6.10: Validity indexes for the estimation of the number of spectral endmember classes
for the A.P. Hill data. (a) Davies and Bouldin, (b) Kim and (c) modified Kim
indexes using complete and average linkages with spectral angle measure.
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Figure 6.11: Validity indexes for the estimation of the number of spectral endmember classes
for the Cuprite data. (a) Davies and Bouldin, (b) Kim, and (c) modified Kim
indexes using complete and average linkages with spectral angle measure.

classes was equal to 12 and 11 according to Kim and modified Kim indexes respec-

tively.

Note that Davies and Bouldin with complete linkage and SAM estimated the

largest number of spectral endmember classes for both A.P. Hill and Cuprite im-

age (see Table 6.2) as well as for the False Leaf image analyzed in Section 4.3.3.2. The

spectral endmember classes obtained by complete linkage and the number of spec-

tral endmember classes estimated by Davies and Bouldin index are used in Chapter

7 to compare the proposed unmixing approach with other existing algorithms. But

first, an evaluation of these results is presented in Section 6.3.3.
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Table 6.2: Estimated number of spectral endmember classes using validity indexes for A.P.
Hill and Cuprite.

Compl+SAM Aver+SAM

ĉ index ĉ index

A.P. Hill

DB 14 2.12e-15 9 3.30e-15

Kim 10 0.0943 8 0.0727

Mod. Kim 10 0.1037 7 0.1028

Cuprite

DB 17 0.0016 11 0.0010

Kim 12 0.2760 11 0.2842

Mod. Kim 9 0.2705 10 0.3172

Table 6.3: Comparison of estimated number of endmembers for A.P. Hill and Cuprite images.

HySIME Rank(K) Rank(R) End. Classes

A.P. Hill 21 5 5 14

Cuprite 6 5 6 17

Figures 6.12 and 6.13 show the spectral endmember classes and abundances for

A.P. Hill using ĉ = 14. Figure 6.14 illustrates the spectral endmember classes for

Cuprite using ĉ = 17 and Figure 6.15 presents their corresponding abundances.

Table 6.3 presents the estimated number of endmembers using HySIME [55], and

the estimated ranks for the covariance, and correlation matrices (see Section 2.5).

HySIME estimated 21 endmembers for A.P. Hill and only 6 for Cuprite. Instead,

the ranks of covariance (K) and correlation (R) matrices are estimated only up to 6

endmembers for both images.

6.3.3 Assessment of Unmixing Results

Evaluation of unmixing results is performed using the assessment methodology pre-

sented in Section 6.2. First, the evaluation of unmixing results is performed by com-

paring extracted spectral endmember classes and estimated abundances with pub-
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Figure 6.12: Spectral endmember classes for A.P. Hill using proposed approach with com-
plete linkage and ĉ = 14.
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Figure 6.13: Abundances of spectral endmember classes for A.P. Hill using proposed ap-
proach with complete linkage and ĉ = 14.
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Figure 6.14: Spectral endmember classes for Cuprite using proposed approach with complete
linkage and ĉ = 17.
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Figure 6.15: Abundances of spectral endmember classes for Cuprite using proposed ap-
proach with complete linkage and ĉ = 17.
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lished spectral libraries and classification maps in Section 6.3.3.1. Then, the quantita-

tive assessment is performed using the true positive rate, false positive rate, and false

negative rate in Section 6.3.3.2. Finally, classification maps are generated from the

estimated abundance, and these are compared with the reference maps in Section

6.3.3.3.

6.3.3.1 Qualitative Evaluation of A.P. Hill and Cuprite Unmixing Results

Figure 6.16 presents a comparison between some spectral endmember classes ex-

tracted from A.P. Hill using the proposed approach and the reference classification.

Figure 6.16(a) shows spectral endmember class EC1 which is related to the loblolly

pine class. Note the consistence in the distribution of this constituent as well as the

similarity between the spectra in the spectral endmember class and the spectral li-

brary. Similarly, Figure 6.16(b) presents the comparison of spectral endmember class

EC2 with the summer deciduous forest class. The distribution of this material in the

image is consistent with the classification map as well as the retrieved endmember

spectra have similar shapes to the reference spectrum.

Spectral endmember classes EC6 and EC7 are compared with the classification

map and spectral library in the Figures 6.16(c) and 6.16(d). EC6 is clearly related to

green ag field 1 and EC7 represents grass field. Similar comparisons can be conducted

for EC5, and EC8 which correspond to shaded vegetation and autumn deciduous classes

respectively. Spectral endmember class EC5 has spectra with lower amplitude than

other vegetation types and its abundance map shows that this material is scattered

across the scene. A single autumn deciduous spectral endmember class (EC8) was

obtained by the proposed approach instead of the three autumn deciduous classes

shown in the classification map (Figure 6.1(b)). However, the spectra obtained for

this class are consistent with the signatures in the spectral library as well as the

distribution of this material along the scene. This single spectral endmember class

can be a result of the similarity between the signatures.
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Table 6.4: Relation between spectral endmember classes and information classes for A.P. Hill.

Spectral Endmember Information Group

Class Class Name

EC1 loblolly pine loblolly pine

EC2 summer deciduous summer deciduous

EC3, EC4, EC12 soil ag field, generic road, gravel soil

EC5, EC9, EC10 shaded vegetation shaded vegetation

EC6 green ag field green field

EC7 grass field grass field

EC8 autumn deciduous autumn deciduous

EC11, EC13, EC14 river water water

The river water is divided into EC11, EC13, and EC14 spectral endmember classes.

The generic road is detected in spectral endmember class EC3 and it is also mixed

with gravel in class EC4. Comparing the spectra of EC3 and EC4 in Figure 6.12 and

generic road and gravel in the spectral library presented in Figure 6.2, the similarity

among the signature shapes can be noted. Spectral endmember class EC9 has a single

spectra that appears to be the result of mixing different components. It is very similar

to shaded vegetation (EC5) except in the first few bands. The spectral endmember class

EC10 is related to the shaded vegetation close to the river. The soil ag field is detected

only in spectral endmember class EC12. But this spectral endmember class is formed

by two very distinct spectral signatures. Most of the pixels that are labeled as some

type of soil ag field in the classification map (Figure 6.1(b)) are mixed with vegetation.

Then, the proposed approach cannot was not capable of extracting these spectra.

Using the comparison presented above, the spectral endmember classes are related

to the class such as summarized in Table 6.4. The classes soil ag field, generic road, and

gravel are grouped into a single one since their spectral signatures are similar and

the extracted spectral endmember classes EC3, EC4, and EC12 mix these signatures.

A similar comparison between abundance maps, spectral endmembers, and the

reference classification maps and reference spectra library was performed for Cuprite.
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Figure 6.16: Evaluation of unmixing results from A.P. Hill for endmembler classes (a) EC1

(loblolly pine), (b) EC2 (summer deciduous forest), (c) EC6 (green ag field 1), and (d)
EC7 (grass field).
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For instance, Figures 6.17 – 6.19 present the validation for 9 of the 17 extracted

spectral endmember classes.

Figure 6.17(a) shows endmember classes EC2 and EC15 which are related to kaoli-

nite wxl and kaolinite pxl in the classification map (Figure 6.4(a)). The arrows indicate

points where the material is present in both the abundance and the classification

maps. In addition, comparisons among the spectral endmembers belonging to these

spectral endmember classes and the two spectra of kaolinite (black spectra in Figure

6.17(a)) are included. The extracted spectral endmembers keep the spectral features

of these materials. A difference can be noticed between the amplitudes of the ex-

tracted spectral endmembers and signatures from the spectral library since both are

measured under different conditions.

Figure 6.17(b) shows the comparison between spectral endmember classes EC5

and EC12 with the chalcedony class in the classification map (Figure 6.4(a)). The com-

parison between the spectral endmembers within EC5 and the reference spectra in

the spectral library of the USGS shows that EC2 mixs the spectra of chalcedony with

another material. However, the comparison of the abundance of EC2 and the clas-

sification map shows the unmixing algorithm detected chalcedony with abundances

close to 100% in the region where this material is indicated by the reference map.

This grouping of different materials within the same spectral endmember class is

due to the clustering algorithm.

Figure 6.18 shows a similar analysis using spectral endmember classes EC11 and

EC17 with calcite and muscovite classes respectively. Both spectra (black spectra in

Figure 6.18(a) and 6.18(b)) are in the spectral library of the USGS. In the case of

EC17, the spectral endmembers are very similar to muscovite reference spectrum.

But, the spectral endmember of EC11 presents a significant difference with the calcite

spectrum. But, the distribution of abundances of EC11 shows the relationship of this

spectral endmember class with calcite.
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Figure 6.17: Evaluation of unmixing results for Cuprite: kaolinite and chalcedony. Comparison
of abundance maps and spectral endmembers for spectral endmember classes
(a) EC2 and EC15 with kaolinite, and (b) EC5 and EC12 with chalcedony.

Figure 6.19 presents spectral endmember classes EC13, EC9, and EC8 related to

kaolinite+smectite and alunite. EC13 corresponds to kaolinite+smectite (Figure 6.19(a)),

and EC9 and EC8 to alunite (6.19(b)). Note that the spectral endmember class EC13

is related to the different types of alunite of the classification map.

The comparison between the abundances and the classification map allows the

identification of six classes: kaolinite (Figure 6.17(a)), chalcedony (Figure 6.17(b)), cal-

cite (Figure 6.18(a)), muscovite (Figure 6.18(b)), kaolinite+smectite (Figure 6.19(a)), and

alunite (Figure 6.19(b)). Kaolinite class includes both kaolinite wxl and kaolinite pxl

classes of the classification map. Muscovite includes the classes label as chlorite +

montmorillonite or muscovite, low-Al muscovite, med-Al muscovite, and high-Al muscovite

in the classification map. Similarly, alunite class groups the K-alunite 150c, K-alunite
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Figure 6.18: Evaluation of unmixing results for Cuprite: calcite and muscovite. Comparison of
abundance maps and spectral endmembers for spectral endmember classes (a)
EC11 with calcite, and (b) EC17 with muscovite.
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Figure 6.19: Evaluation of unmixing results for Cuprite: kaolinite-smectite and alunite. Com-
parison of abundance maps and spectral endmembers for spectral endmember
classes (a) EC13 with kaolinite-smectite and (b) EC8 and EC9 with alunite.
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Table 6.5: Relation between spectral endmember classes and information classes for Cuprite.

Spectral Endmember Information Group Name

Class Class

EC2, EC15 kaolinite wxl, kaolinite pxl kaolinite

EC5, EC12 chalcedony chalcedony

EC11 calcite calcite

chlorite + montmorillonite or muscovite,

EC17 low-Al muscovite, med-Al muscovite, muscovite

high-Al muscovite

EC13 kaolinite+smectite kaolinite+smectite

EC8, EC9 K-alunite 150c, K-alunite 250c, alunite

K-alunite 450c, alunite+kaolinite

250c, K-alunite 450c, and alunite+kaolinite. The spectral endmember classes are related

to the class such as summarized in Table 6.5.

Table 6.6 presents the spectral angle between the spectral endmembers classes in

Table 6.5 and the reference spectra for kaolinite, chalcedony, calcite, muscovite, kaolin-

ite+smectite, and alunite that are part of the USGS spectral library. The blue color

highlights the average of the spectra angles between the spectral endmember and

reference spectra of the classes related by the comparison of the abundances and the

classification map (see Table 6.5). Note that EC5 and EC12 have smaller spectral an-

gle with kaolinite+smectite than with chalcedony in Table 6.6. However, the abundance

distribution of EC5 and EC12 related these spectral endmember classes to chalcedony

class. Similarly, EC17 has a smaller angle with kaolinite+smectite than with muscovite

reference spectrum, and EC11 has a smaller angle with chalcedony than with calcite.

These can due to several reasons. The grouping the spectra from different materials

into the same spectral endmember class for the clustering algorithm can result in that

the spectral endmember classes are related to two or more information classes. In

addition, the different conditions in the acquisition of spectral endmembers, which

are image-derived spectra, and laboratory reference spectra, can result in errors in
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Table 6.6: Spectral angle between spectral endmembers and reference spectra.

kaolinite chalcedony calcite muscovite kaol.+smectite alunite

EC2 0.0014 0.0049 0.0079 0.0051 0.0029 0.0058

EC15 0.0020 0.0092 0.0133 0.0067 0.0061 0.0039

EC5 0.0075 0.0014 0.0045 0.0106 0.0011 0.0075

EC12 0.0062 0.0013 0.0045 0.0097 0.0012 0.0077

EC11 0.0101 0.0016 0.0044 0.0133 0.0021 0.0092

EC17 0.0031 0.0038 0.0065 0.0036 0.0023 0.0099

EC13 0.0047 0.0021 0.0049 0.0065 0.0009 0.0075

EC8 0.0046 0.0065 0.0105 0.0101 0.0034 0.0019

EC9 0.0052 0.0111 0.0153 0.0127 0.0085 0.0014

material identification (e.g. see Figure 6.18(a)). Finally, the similarity between the

different spectra can also result in errors in material identification. The identified

relations summarize in Table 6.5 are used for the next steps in the assessment.

6.3.3.2 Quantitative Assessment of Detected Classes in A.P. Hill and Cuprite Results

In the previous section, the spectral endmember classes extracted from A.P. Hill and

Cuprite images were related with the information classes documented in the classifi-

cation maps. The next step in the assessment methodology described in Section 6.2

performs a quantitative evaluation of the detected classes. For that, three statistics

are computed: true positive rate, false alarm rate, and false positive rate.

Figures 6.20 and 6.21 show a comparison among abundances (first column), masks

generated for each information class from the classification map (second column),

and masks that identified the true positive, false positive, and false negative pixels

for A.P. Hill classes (third to fifth column). Table 6.7 summarizes the true positive

rate, false positive rate, and false negative rate for each class. In addition, Table

6.7 includes the average and standard deviation, σ, of the abundances in the pixels

identified as true positives and false positives. Figure 6.22 shows the histogram for

the abundances of true positive and false positive pixels.
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Figure 6.20: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of loblolly pine, summer deciduous, soil, shaded vegetation
classes from A.P. Hill.

Table 6.7: True positive, false positive, and false negative rates for A.P. Hill classes.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A loblolly pine 89.9 0.53 0.31 37.7 0.31 0.29 17.1

B sum. deciduous 91.8 0.54 0.28 67.3 0.36 0.26 8.2

C soil 98.9 0.68 0.26 22.3 0.06 0.10 1.1

D shaded veg. 86.4 0.40 0.23 39.7 0.18 0.16 13.6

E green field 68.3 0.39 0.25 52.9 0.24 0.22 31.7

F grass field 97.6 0.70 0.23 14.1 0.21 0.23 2.4

G autumn deciduous 74.8 0.31 0.24 20.8 0.12 0.13 25.3

H water 97.3 0.58 0.30 19.1 0.09 0.11 2.7
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Figure 6.21: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of green field, grass field, autumn deciduous, and water
classes from A.P. Hill.
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Figure 6.22: Histogram for the abundances of true positive and false positive pixels of A.P.
Hill classes.
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Soil, grass field, and water obtained true positive rates higher than 97%. The true

positive rate for loblolly pine, summer deciduous, and shaded vegetation classes are larger

than 80%. Green field and autumn deciduous classes have true positive rates equal

to 68.3% and 74.8% respectively. The average estimated abundances from true pos-

itive pixels within loblolly pine, summer deciduous, soil, grass field, and water classes

are higher than 0.5 with standard deviation between 0.2 and 0.3. Smaller averages

of estimated abundances for true positive pixels are obtained for shaded vegetation,

green field, and autumn deciduous classes which are between 0.3 and 0.4 with standard

deviation of 0.2.

The highest false positive rate is obtained for summer deciduous class (67.2%). Com-

paring the mask of the false positives of summer deciduous and the abundance map

(Figure 6.20) can be note that several false positive pixels correspond to pixels with

low abundances. This can be also noted in the histogram (Figure 6.22) where the con-

centration of pixels with abundances less than 0.4 is bigger than pixels with higher

abundances. The abundance mean for the false positive pixels of summer deciduous

was of 0.36 with a standard deviation of 0.26. Green field also obtained a higher false

positive rate (52.9%) with an abundance mean of 0.24 and standard deviation of 0.22.

Comparing the mask of false positives of green field (Figure 6.21) with the abundance

map, it can be noted that most of the false positive pixels have also low abundances.

The histogram in Figure 6.22 shows that most of these pixels have abundances less

than 0.2. Loblolly pine and shaded vegetation classes have false positive rates equal to

37.7% and 39.7% respectively. Abundance mean for the false positive pixels of loblolly

pine is 0.31 and for the shaded vegetation class is 0.18. Soil, grass field, autumn deciduous,

and water classes have false positive rates smaller than 22%. False positive pixels

within soil and water classes have abundance mean lower than 0.09 that evidence

that several of the false positive pixels of these classes have small abundances (see

histogram in Figure 6.22).
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Table 6.8: True positive, false positive, and false negative rates for Cuprite classes.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A kaolinite 62.42 0.22 0.24 29.99 0.09 0.13 47.88

B chalcedony 87.45 0.66 0.28 68.39 0.23 0.21 12.55

C calcite 75.94 0.41 0.29 55.64 0.16 0.17 24.06

D muscovite 76.09 0.39 0.28 43.22 0.09 0.12 23.91

E kaolinite+smectite 88.70 0.28 0.19 65.21 0.22 0.20 11.30

F alunite 91.83 0.36 0.23 36.87 0.06 0.09 8.17

In general, the endmember classes obtained from the A.P. Hill image present a

good correspondence with the information provides by the reference map which can

be noted by comparing the true positive masks with the mask generated from the

classification map (Figures 6.20 and 6.21). In addition, the pixels that the algorithm

does not detect in each class are few as can be seen in the false negative masks.

The different classes preserve the spatial distribution of the information classes. In

addition, the comparison of the false positive pixels and the abundance maps shows

that most of these pixels have small abundances. These can be also seen in the

histograms shown in Figure 6.22 where it is clear that the true positive pixels have

larger abundances than the false positives pixels.

A similar analysis was performed for Cuprite classes. Figure 6.23 shows a com-

parison between abundances (first column), masks generated for each information

class from the classification map (second column) and masks that identified the true

positive, false positive, and false negative pixels for Cuprite (third to fifth column).

Table 6.8 presents the true positive rate, false alarm rate, and false positive rate for

each class of Cuprite results. Figure 6.24 shows the histogram for the abundances of

true positive and false positive pixels.

Alunite class obtained a true positive rate equal to 91.83%. The true positive pix-

els have an abundance mean of 0.36 with a standard deviation of 0.23. Chalcedony
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Figure 6.23: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of Cuprite classes.
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Figure 6.24: Histogram for the abundances of true positive and false positive pixels of Cuprite
classes.
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and kaolinite+smectite classes obtained true positive rates equal to 87% and 88% re-

spectively. True positive pixels within the chalcedony class have an abundance mean

of 0.66, and true positive pixels within the kaolinite+smectite class obtained an abun-

dance mean equal to 0.28. The true positive rate of calcite, muscovite, and kaolinite

classes were 75%, 76% and 63%, respectively. True positive pixels within calcite have

an abundance mean of 0.41. And the true positives of muscovire and kaolinite have

abundance means of 0.39 and 0.22 respectively. Note that most of the abundance

mean of true positive pixels are smaller than 0.4 (Table 6.8). Chalcedony is the only

class that obtained an abundance mean higher than 0.5. However, chalcedony is the

class with the higher number of false positive pixels obtaining a false positive rate

of 68.39%. The comparison between chalcedony estimated abundance and the mask

of false positive pixels (Figure 6.23) shows that most of the false positive pixels have

abundances smaller than the true positive pixels. It can also be seen in the histograms

of abundance (Figure 6.24). Kaolinite+smectite class also obtained a false positive rate

as high as 65% with an abundance mean of 0.22. The comparison of the abundance

map and the mask for the false positives of kaolinite+smectite (Figure 6.23) shows that

these pixels have similar abundance that the true positives pixels which can be also

noted in the histogram (Figure 6.24). The spectra of kaolinite+smectite class are simi-

lar to spectra of chalcedony and muscovite classes (see spectral angle in Table 6.6), and

then, the inversion process estimates abundances of those materials in pixels that are

not part of the kaolinite+smectite class in the reference map. The false positive rate

for calcite, muscovite, alunite, and kaolinite were 55%, 43%, 36% and 36% respectively

(Table 6.8). The comparison of calcite, muscovite, and alunite histograms (Figure 6.24)

shows that false positive pixels have smaller abundances than the true positive pixels.

For kaolinite class, the true positive pixels have smaller abundances with a mean of

0.22, and the false positive pixels have an abundance mean of 0.09.

Similar to the results obtained for A.P.Hill classes, the Cuprite results shows good

true positive rates. Although, the false positive rates can be as high as 68% , most of
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the classes show that the false positive pixels have smaller abundances than the true

positive pixels. Note that the false positives can be the result the different factors (see

Section 6.2.2) such as the similarity among the spectra, the lack of information about

mixing materials in the reference map, and the grouping the spectra from different

materials into a same spectral endmember class.

6.3.3.3 Agreement Assessment of Classification Maps

The next step in the assessment methodology generates classification maps using the

estimated abundances and the relation of spectral endmember classes and informa-

tion classes (Tables 6.4 and 6.5). The resulting classification maps and the reference

maps are compared using agreement matrices, which are built similar to the con-

fusion matrix. Confusion matrices are employed to evaluate supervised classifiers.

Three statistics are computed from agreement matrices: between-class agreement,

assignment-class agreement, and the overall agreement (see Section 6.2.3).

Figure 6.25 shows the classification maps for A.P Hill. Figure 6.25(a) shows the

classification map obtained from the reference map (Figure 6.1(b)) by merging some

classes as indicated in Table 6.4. Figure 6.25(b) shows the classification map gen-

erated from the abundance maps estimated by the proposed algorithm. Table 6.9

presents the agreement matrix.

The classification map obtained from the unmixing results of A.P. Hill has an over-

all agreement of 50.5% with the reference map. Soil, grass field, and water classes

have between-class agreements higher than 73%. This high agreement can be also

noted in the Figure 6.25. Loblolly pine and summer deciduous classes obtained between-

class agreements equal to 51.22% and 57.02% respectively. Many pixels that belong

to loblolly pine in the reference map are assigned to summer deciduous (43673 pixels).

Also, it can be seen in the agreement matrix that most of the false positive pixels of

summer deciduous identified in Figure 6.20 belong to the loblolly pine class (see column

B in Table 6.9). In addition, many pixels that belong to summer deciduous class in the
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Figure 6.25: Classification map from unmixing results of A.P. Hill. (a) Reference map, (b)
Classification map using the abundances and the majority vote criterion.

Table 6.9: Agreement matrix between reference map and generated classification map from
unmixing results of A.P. Hill.
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reference map are assigned to loblolly pine (12798 pixels). This confusion between

loblolly pine and summer deciduous is the result of the similarity among their spec-

tral signatures (see Figure 6.12). Shaded vegetation, green field, and autumn obtained

between-class agreements smaller than 45%. Many pixels that belong to shaded vege-

tation in the reference map are assigned to summer deciduous (4393 pixels), green field

(3831 pixels), and loblolly pine (2192 pixels). Most of the pixels labeled as green field

in the reference map are assigned to summer deciduous (9728 pixels), and most of

the pixels labeled as autumn deciduous in the reference map are assigned to green field

(15707 pixels). Many pixels labeled as autumn deciduous are also assigned to grass field

(4862 pixels), and summer deciduous (4029 pixels). Autumn deciduous is the class that

presents most confusion in the new classification map. The highest assignment-class

agreement were obtained for the Class A (loblolly pine), Class C (soil), and Class G

(autumn deciduous) which are higher than 76%. Class F (grass field) and Class H (wa-

ter) obtained 69% and 68% of assignment-class agreements respectively. The other

classes (Class B, Class D, and Class E) have assignment-class agreements between 15%

and 48%.

Figure 6.26 shows the classification maps for Cuprite. Figure 6.26(a) shows the

classification map obtaining from the reference map (Figure 6.4), and Figure 6.26(b)

shows the classification map generated from the estimated abundance. Table 6.10

presents the agreement matrix.

The overall agreement between the classification map generated from the unmix-

ing results and the reference map of Cuprite was of 46.12%. Chalcedony was the

class with the best between-class agreement (78.88%). Calcite and alunite obtained

69% and 66% of between-class agreement respectively, and kaolinite, muscovite, and

kaolinite+smectite obtained between-class agreement smaller than 43%. Many pixels

that belong to calcite in the reference map were assigned to chalcedony (1036 pixels),

kaolite+smectite (781 pixels), and muscovite (534 pixels). Many pixels labeled as alunite

in the reference map were assigned to kaolinite (3302 pixels), chalcedony (2653 pixels),



6.3 unmixing analysis of a .p. hill and cuprite 180

Figure 6.26: Classification map from unmixing results of Cuprite. (a) Reference map, (b)
Classification map using the abundances and the majority vote criterion.

Table 6.10: Agreement matrix between reference map and generated classification map from
unmixing results of Cuprite.
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and kaolinite+smectite (1317 pixels). Kaolinite was the class with the lowest between-

class agreement. Most of the pixels belonging to kaolinite were assigned to chalcedony

(7026 pixels), and kaolinite pixels also were assigned to kaolinite+smectite (3201 pixels),

alunite (1559 pixels) and calcite (1407 pixels). Many muscovite pixels were assigned

to kaolinite+smectite (15787 pixels), chalcedony (8323 pixels) and calcite (4561 pixels).

Kaolinite+smectite pixels are assigned to chalcedony (7552 pixels) and muscovite (3358

pixels). The high number of pixels assigned to chalcedony class that are not part of

this class in the reference map are the result of the grouping of different spectra

inside of the spectral endmember class EC5 (see Figure 6.17(b)) that is part of chal-

cedony class (see Table 6.5). It is expected that pixels labeled as kaolinite+smectite in

the reference map are found into muscovite class since the reference map indicates

that this material is in some of these pixels according the classification map (Figure

6.4). In general, the mixing of materials present in Cuprite make it difficult the iden-

tification of information classes without overlapping of information. The similarity

among spectra (e.g. kaolinite+smectite, muscovite, and chalcedony), and the clustering

of different spectral endmembers into the same spectral endmember class (e.g. EC5

belong to chalcedony class) difficult obtaining a better overall agreement.

6.3.4 Analysis of Results

The entropy change method proposed for the selection of an optimal scale in Section

3.2.1.5 presents a consistent performance for A.P. Hill and Cuprite. The proposed

method selected a smoothed image in the firsts few iterations (fifth iteration) for

A.P. Hill image. In the case of Cuprite, the proposed method selected the thirteenth

iteration. However, the diffusion balance did not allow to select a scale for Cuprite.

The entropy change criterion shows a behavior similar to that obtained with the

images in Section 3.3 regardless the complexity of A.P. Hill and Cuprite scenes.
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Davies and Bouldin validity index obtained an adequate number of spectral end-

member classes for both images. This index estimated 14 spectral endmember classes

for A.P. Hill and 17 for Cuprite using complete linkage. Note that 14 and 25 classes

are identified in the reference maps. In addition, Davies and Bouldin index also

estimated the best number of spectral endmember classes for the False Leaf image

in Section 4.3.3.2 using complete linkage. Thus, this validity index is selected for

the estimation of the number of spectral endmember classes within the proposed

approach.

Comparing the estimated number of spectral endmember classes by the validity

index with other methods for estimation of the number of endmembers such as

HySIME and the rank of the covariance and correlation matrices (Table 6.3), the

advantage of using spatial information is clear. The rank of the covariance and

correlation matrices only estimated up to 6 endmembers for both images. On the

other hand, HySIME estimated 21 endmembers for A.P. Hill, but only 6 for Cuprite

image.

Unmixing results obtained for the proposed approach from A.P. Hill and Cuprite

were evaluated using the proposed methodology in Section 6.2. First, spectral end-

member classes and their abundances were analytically compared to published clas-

sification maps and spectral libraries. 9 of the 14 classes of A.P. Hill were detected

using the unsupervised unmixing analysis. The class autumn deciduous was grouped

into one single spectral endmember class and the water river was split into several

spectral endmember classes. However, the spatial distribution of the abundances in

A.P. Hill were consistent with the classification map as well as the shape of extracted

spectral endmembers were very similar to the spectra in the library. For Cuprite, 6

distinct materials were clearly identified and related to 14 of the classes of Cuprite.

Once the relations between the spectral endmembers classes and the information

classes in the classification map were established, the quantitative assessment based

on detection theory (Section 6.3.3.2) allows to compute three statistics to characterize
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the unmixing results: true positive rate, false positive rate, and false negative rate.

Most of the classes in both images have true positive rates higher than 70%, and

false positive rates between 15% and 65%. In the comparison between abundance

and mask from the false positive pixels (Figures 6.20, 6.21, and 6.23) was clear that

most of the false positive pixels have smaller estimated abundances than true positive

pixels. This can also be noted in the histograms of estimated abundances (Figure 6.22

and Figure 6.24).

Finally, new classification maps were generated using the estimated abundance by

the proposed approach and a majority vote criterion for both A.P. Hill and Cuprite.

The overall agreements between the new classification maps and the published ref-

erence maps were of 50% and 46% for A.P. Hill and Cuprite respectively. The dif-

ferences found between the new classification and the published maps are due to

several reasons. For instance, the grouping of different materials into a same end-

member class by the clustering algorithm because spectral similarity produces lower

assignment-class agreement such as the obtained for the chalcedony class of Cuprite

and the summer deciduous class of A.P. Hill. In addition, the accuracy of published

classification maps is not available allowing us only to do relative analysis. Despite

the low percentages of agreement between the classification maps, the agreement

analysis is very important for the comparison of the proposed algorithm with other

unmixing techniques as will see in the next chapter.

6.4 spatial resolution effects

Unmixing results for two images from the Guanica Forest (see Section 6.1.3) collected

at 1 (I1) meter and 4 (I4) meters are used to evaluate the performance with respect to

spatial resolution. Multiscale representation using the nonlinear diffusion algorithm

of Duarte et al. [26] was done for both images. The scale step µ was set in 5 and
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the final scale to 100 obtaining 20 smoothed images for both I1 and I4. The diffusion

parameter α was set to 0.005 for I4 and 0.01 for the image I1. Values of diffusion

parameter were selected experimentally as described by Duarte et al. [26]. Entropy

change was used to select the adequate scale for the unmixing analysis. The sixth

iteration was selected for I1 and the fifth iteration for I4 (see Figure 6.27(a) and

6.27(b)). RGB composites for the selected smoothed images are presented in Figures

6.27(c) and 6.27(d) using bands 54 (639 nm), 35 (550 nm), and 15 (459 nm). Using

the proposed spectral endmember extraction process, 447 spectral endmembers were

extracted from I1 and 148 from I4. Complete linkage and SAM were used to build

the spectral endmember classes. The number of spectral endmember classes was

estimated using the Davies and Buildin index obtaining 11 and 9 spectral endmember

classes for I1 and I4 respectively. Figure 6.28 presents the validity index graphs.

The spectral endmember classes were organized in four groups to compare the

results. Figure 6.29 presents the abundances estimated from the spectral endmember

classes for both Guanica images. The first group shows the spectral endmember

classes related with vegetation: EC1 to EC3 from I1, and EC1 to EC4 from I4. The

second group presents the spectral endmember classes for soil. This group includes

the dirty road and is formed by the spectral endmember classes EC4 to EC6 from I1,

and EC5 to EC6 from I4. The next group includes the spectral endmember classes

related with manmade materials such as buildings and paved road. This group is

formed by the spectral endmember classes EC7 to EC9 for I1 and EC7 to EC9 for I4.

Other two spectral endmember classes were obtained for I1: EC10 and EC11. Figure

6.30 presents the spectral endmembers corresponding to each spectral endmember

class.

EC1 spectral endmember class from I1 identified the grass or low vegetation and

EC2 is related with the forest vegetation (tall vegetation). The spectra of vegetation

spectral endmember classes have a high variability for image I1. Spectral endmember

classes EC4 to EC6 detected the dirt road and regions with open soil. The three
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Figure 6.27: Scale selection for Guanica images. Entropy change criterions for Guanica im-
ages to (a) 1 meter and (b) 4 meters. RGB composition of selected scale using
bands 54, 35, and 15 for images to (c) 1 meter and (d) 4 meters.

Figure 6.28: Estimation of the number of spectral endmember classes for Guanica images.
Davies and Bouldin validity index for Guanica images to (a) 1 meter and (b) 4

meters.
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Figure 6.29: Abundances for extracted spectral endmember classes of Guanica images. Left:
abundance from 1 meter Guanica image. Right: abundance from 4 meters
Guanica image.
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Figure 6.30: Extracted spectral endmember classes for Guanica images. Left: abundance from
1 meter Guanica image. Right: abundance from 4 meters Guanica image.
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groups of spectra are consistent and similar. Spectral endmember class EC8 detected

the building in the center of the image (see Figure 6.6) and spectral endmember

classes EC7 and EC9 detected the paved road.

Unlike the three vegetation spectral endmember classes identified from I1, spec-

tral endmember classes from I4 detected three spectral endmember classes associ-

ated with the forest vegetation and one with the grass. This over-partition of the

forest can be due to topographic effects. This can be noted in the RGB composite

of the scenes (see Figure 6.5) that there are shadows over the forest vegetation. Two

spectral endmember classes associated with soil were detected in I4. The building is

identified in EC8 and the road in EC7 and EC9. Less variability of spectra within the

spectral endmember classes is obtained from I4 than for I1.

The spatial resolution affects significantly the extraction of spectral endmember

classes related with vegetation. For instance, Figure 6.31 presents a comparison be-

tween the spectral endmember class EC2 for image I1 with the spectral endmember

classes EC1 and EC2 for image I4. The topography effects can be noted in the Fig-

ure 6.31 for the spectral endmember classes from the lower spatial resolution image.

Figure 6.32 presents the sum of abundance from spectral endmember classes related

with vegetation in both image I1 and I4. Note the consistence between the distribu-

tions of vegetation in both images. Although, the spectral endmember classes related

to vegetation individually presents differences such as the shown in Figure 6.31, the

complete vegetation in both images is correctly extracted by the proposed unmixing

approach..

6.4.1 Analysis of Results

Vegetation spectral endmember classes are affected significantly by shadows and

topographic effect in the 4 meters image. Forest vegetation is divided in several
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Figure 6.31: Comparison of vegetation spectral endmember classes from Guanica images.

Figure 6.32: Estimated vegetation from Guanica images.
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spectral endmember classes with abundances related to the shadows observed in the

RGB composite of the image. Vegetation results from 1 meter Guanica were more

consistent with the description of this scene found in [68]. Two types of vegetation

were identified by the proposed approach over 1 meter Guanica: forest vegetation

and grass. Other components of the image such as the roads and soil are repre-

sented very consistently at both spatial resolutions. A high variability within the

vegetation spectral endmember classes were observed for the unmixing results of 1

meter Guanica as expected due to the higher spatial resolution.

6.5 summary

Hyperspectral images from different scenarios were used to study the performance

of the proposed unsupervised unmixing approach based on multiscale representa-

tion. A.P. Hill and Cuprite images allowed the assessment of the proposed scale

selection method using entropy change. Smoothed images with fewer iteration were

selected by the entropy change criterion in comparison with diffusion balance. In

the estimation of the number of spectral endmember classes, the best results were

obtained using the Davies and Bouldin index with complete linkage and spectral

angle measure. Thus, the entropy change and Davies and Bouldin index are selected

for the implementation of the computational system. Unmixing results for A.P. Hill

and Cuprite extracted several materials identified in the classification maps. It is

important to highlight that the proposed unmixing approach is an unsupervised

method that only uses the information within the hyperspectral image. The con-

sistency among spectral endmember classes and the classification maps showed the

capabilities of the proposed approach for application were little information about

the basic components is available.
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Unmixing analysis of Guanica images showed that vegetation spectral endmember

classes are affected by topographic effects. Other spectral endmember classes such

as manmade and soils appear not affected by the spatial resolution. Results obtained

from the image at 1 meter were consistent with the description of the image found

in [68].

The proposed approach presented good results for the different scenarios regard-

less of the complexity of the scene. In addition, entropy change criterion and Davies

and Bouldin index appear adequate methods for the scale selection and the estima-

tion of number of spectral endmember classes respectively. These procedures help to

automate the proposed approach as illustrated in Figure 1.4. The implementation of

a computational system based on the proposed approach for the automatic unmixing

analysis of hyperspectral imagery is described in the Chapter 8. In the next chapter,

the assessment methodology is used to compare the proposed approach with other

unmixing techniques.
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This chapter presents a comparison among the proposed unmixing approach, SMACC

[33], VCA [34] and RBSPP [17] algorithm using A.P. Hill and Cuprite. These algo-

rithms were selected for several reasons. First, SMACC and VCA are widely used

geometric approaches which require only the number of endmembers, and RBSPP is

a spatial-spectral approach that does not depend of spatial kernels similar to the pro-

posed approach. In addition, these algorithms assume that endmembers are pixels

in the image similar to the developed unmixing approach.

RBSPP is compared with different geometrical and spatial-spectral approaches in

[17]. N-FINDR [40, 41], OSP [105], and VCA [34] are used by Martin and Plaza

to assess the capabilities of RBSPP. In addition, results from SPP [15], SSEE [14] and

AMEE [9] are used by Martin and Plaza to compare RBSPP results. Spectral similarity

among extracted endmember and the spectral library of Cuprite are used to compare

these algorithms. Endmembers extracted by RBSPP are comparable with results from

the other unmixing techniques [17]. The experiments with Cuprite [17] showed that

RBSPP helps to reduce the reconstruction errors for OPS and VCA regardless the

clustering algorithm employed for segmenting the image. Further, AMEE and SSEE

results presented larger reconstruction errors in several pixels than RBSPP combined

with VCA, N-FINDR, or OSP [17].

SMACC is included in the ENVI software and a MATLAB implementation of VCA

is found on the web page of J. Bioucas-Dias1. SMACC extracts the endmembers

as well as performs abundance estimation. However, the abundances used in the

1 http://www.lx.it.pt/ bioucas/publications.html
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comparison are estimated by the function NNSLO available in MATLAB (see Sec-

tion 2.4.1) from the extracted endmembers with ENVI. This function is employed

for the three algorithms to ensure equal conditions for all algorithms. RBSPP was

implemented following the description presented in [17]. RBSPP requires a cluster-

ing algorithm and a segmentation procedure to find the spectrally uniform regions.

ISODATA and segmentation functions of ENVI were used. The minimum number

of clusters was set to p (the number of endmembers) and the maximum to 2 ∗ p as

suggested in [17]. The segmentation results were used in MATLAB where the orthog-

onal projection was implemented for the selection of the more distinct regions. VCA

was used to extract endmembers using as input the pixels within selected regions.

For all algorithms, the number of endmembers p was set equal to the number of

spectral endmember classes estimated using the proposed approach: 14 for A.P. Hill

and 17 for Cuprite.

7.1 unmixing analysis of a .p. hill

Unmixing results of A.P. Hill using SMACC, VCA and RBSPP combined with VCA

are presented in Section 7.1.1. Then, the assessment methodology presented in Sec-

tion 6.2 is used to evaluate SMACC, VCA, and RBSPP results (Section 7.1.2). The

quantitative analysis based on detection theory and classification agreement provides

diferents statistics allowing to compare the performance of the proposed approach

with SMACC, VCA, and RBSPP.

7.1.1 Unmixing using SMACC, VCA, and RBSPP for A.P. Hill

SMACC, VCA, and RBSPP were used to extract the endmembers for A.P Hill setting

the number of endmembers to 14. NNSLO was used to estimate the abundances.
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Figure 7.1: Extracted endmembers from A.P. Hill using SMACC.

Figures 7.1 to 7.6 present the unmixing results obtained for SMACC, VCA, and RB-

SPP combined with VCA for A.P. Hill. Figures 7.1, 7.3, and 7.5 present the spectra

for the extracted endmembers, and Figures 7.2, 7.4, and 7.6 present the estimated

abundance using NNSLO.



7.1 unmixing analysis of a .p. hill 195

Figure 7.2: Abundances for extracted endmembers from A.P. Hill using SMACC.
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Figure 7.3: Extracted endmembers from A.P. Hill using VCA.
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Figure 7.4: Abundances for extracted endmembers from A.P. Hill using VCA.
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Figure 7.5: Extracted endmembers from A.P. Hill using RBSPP combined with VCA.
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Figure 7.6: Abundances for extracted endmembers from A.P. Hill using RBSPP combined
with VCA.
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7.1.2 Assessment of Unmixing Results

Unmixing assessments of SMACC, VCA, and RBSPP results for A.P. Hill are per-

formed using the methodology presented in Section 6.2. First, a comparison among

the extracted endmembers and estimated abundances with published spectral li-

braries and classification maps is performed (Section 7.1.2.1). Then, the quantita-

tive assessment is performed using true positive rate, false positive rate, and false

negative rate described in Section 7.1.2.2. These statistics are used to compare the

performance of the proposed approach with the other unmixing techniques. Finally,

classification maps are generated from the estimated abundance, and these are com-

pared with the reference maps in Section 7.1.2.3.

7.1.2.1 Qualitative Evaluation

Unmixing of A.P.Hill using SMACC extracted endmembers (Figure 7.1) related to

the classes of green field (endmember E1), summer deciduous forest (endmember E6),

loblolly pine (endmember E8), and grass field (endmembers E9 and E12). Endmember

E9 is very similar to E12 but its abundances is less than 20% along the whole im-

age. Endmember E5 is related with gravel class and has a signature very similar to

the spectrum in the spectral library (Figure 6.2). However, the abundance for E5 is

less than 20% for pixels identified as gravel for the classification map. Endmembers

E11 and E7 are related to generic road class but their abundances also are less than

20%. Endmember E3 includes river water and shaded vegetation. The remaining end-

members are very difficult to relate with the classes in the classification map and the

spectral library of A.P. Hill since the shapes or abundance do not correspond with

any of the classes.

VCA presents poor results for A.P. Hill image. Endmembers E5 to E14 (Figure 7.3)

have signatures very similar to river water. Any endmembers extracted with VCA
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Table 7.1: Relation between endmembers extracted by SMACC and RBSPP, and information
classes for A.P. Hill.

Information Group SMACC RBSPP

Class Name Endmembers Endmembers

loblolly pine loblolly pine E8 E9

summer deciduous summer deciduous E6 E11

soil ag field, generic road, gravel soil E2, E5, E7, E11 E2, E5

shaded vegetation shaded vegetation E4, E13, E14 E3

green ag field green field E1 NOT DETECTED

grass field grass field E9, E12 E4

autumn deciduous autumn deciduous NOT DETECTED NOT DETECTED

river water water E3 E1, E7, E8, E10

have the shape of a vegetation signature. VCA results are not taken into account

for the quantitative comparison of A.P. Hill unmixing results. RBSPP preprocessing

algorithm helps to improve a little bit the results obtained by VCA. RBSPP combined

with VCA identified endmembers (see Figure 7.5) related with grass field (endmember

E4), summer deciduous forest (endmember E11), loblolly pine (endmember E9), gravel

(endmember E2), and shaded vegetation (endmember E3). Endmember E5 is related

with generic road, and endmembers E1, E7, E8, and E10 are related with river water.

Any other endmember cannot be related with the information in the classification

map and the spectral library.

Table 7.1 presents a summary of the relation among the endmembers extracted

by SMACC and RBSPP, and the information classes. VCA is not taken into account

for this analysis since the obtained unmixing results are poor, and these cannot be

related with the classes in the classification map. Autumn deciduous class is not ex-

tracted by neither SMACC or RBSPP. In addition, green field is not extracted by RBSPP.

Figure 7.7 presents a comparison of two classes detected by all unmixing algo-

rithms including the proposed approach. Figures 7.7(a-d) present the estimated

abundances corresponding with the loblolly pine class. The endmembers are shown
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Figure 7.7: Comparison of loblolly pine and gravel endmembers. Abundances and endmem-
bers for loblolly pine (a)-(h) and gravel (i)-(p) extracted using SMACC, VCA, RB-
SPP, and the proposed approach.

in Figures 7.7(e-h). Only SMACC and the proposed approach based on multiscale

segmentation obtained spectra consistent with the signatures in the spectral library

for loblolly pine. In addition, Figures 7.7(i)-(l) present the estimated abundances for

the endmembers closest to gravel class and Figure 7.7(m)-(p) present their respec-

tive spectral signatures. Endmember E2 of RBSPP (Figure 7.7(o)) and the spectral

endmember class E4 (Figure 7.7(p)) extracted by the proposed approach are clearly

related to gravel. However, extracted spectra by SMACC and VCA are not consistent

with gravel signature in the spectral library (Figure 6.2).
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Figure 7.8: Reconstruction error from unmixing results of A.P. Hill. (a) SMACC, (b) VCA,
(c) RBSPP combined with VCA, and (d) proposed approach based on mutliscale
representation.

The reconstruction error from the unmixing results of SMACC, VCA, RBSPP and

the proposed approach were calculated. These are presented in Figure 7.8. The

largest errors were obtained for VCA as expected since this algorithm did not extract

any endmember related with classes in the classification map; most of the extracted

endmembers correspond to water signatures. SMACC obtained errors around 30%

for some pixels of water. Both spatial-spectral algorithms, RBSPP and the proposed

approach, obtained the lowest reconstruction errors.

7.1.2.2 Quantitative Assessment of Detected Classes

Figures 7.9, 7.10, and 7.12 show the comparison among the estimated abundances

(first column), the masks generated from the information classes within the classifi-

cation map (second column), and the masks that identified the true positive, false

positive, and false negative pixels (third to fifth column) for A.P. Hill using SMACC

(Figures 7.9 and 7.10), and RBSPP (Figure 7.12). Tables 7.2 and 7.3 summarize the
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Figure 7.9: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of loblolly pine, summer deciduous, soil, shaded vegetation
classes extracted using SMACC.

true positive rate, false positive rate, and false negative rate for each information

class. In addition, Tables 7.2 and 7.3 include the average and standard deviation of

estimated abundances for true positive and false positive pixels. Figures 7.11 and

7.13 show the histogram for the estimated abundances corresponding to true posi-

tive and false positive pixels obtained from SMACC and RBSPP results respectively.

SMACC extracted loblolly pine, summer deciduous, soil, green field, and grass field

classes with true positive rates larger than 96%. But, the estimated abundances for

loblolly pine, green field, and grass field are small with averages of 0.21, 0.19, and 0.34

respectively. On the other hand, shaded vegetation and water classes extracted using

SMACC obtained 13% and 57% of true positive rates. A high false positive rate is
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Figure 7.10: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of green field, grass field, and water classes extracted
using SMACC.

Table 7.2: True positive, false positive, and false negative rates for A.P. Hill classes extracted
using SMACC.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A loblolly pine 97.98 0.21 0.09 53.74 0.25 0.17 2.01

B sum. deciduous 99.63 0.55 0.16 88.35 0.45 0.21 0.23

C soil 99.98 0.38 0.15 58.10 0.03 0.05 0.02

D shaded Veg. 13.80 0.15 0.13 16.86 0.08 0.08 86.20

E green field 96.91 0.19 0.09 48.07 0.09 0.08 3.06

F grass field 99.57 0.34 0.09 26.39 0.12 0.11 0.43

G autumn decid. ~ ~ ~ ~ ~ ~ 100

H water 57.22 0.004 0.04 56.63 0.07 0.05 42.78
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Figure 7.11: Histogram for the abundances of true positive and false positive pixels of A.P.
Hill classes extracted using SMACC.
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Figure 7.12: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of loblolly pine, summer deciduous, soil, shaded vegetation,
grass field, and water classes extracted using RBSPP.
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Table 7.3: True positive, false positive, and false negative rates for A.P. Hill classes extracted
using RBSPP.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A loblolly pine 89.01 0.38 0.22 42.35 0.39 0.28 10.99

B sum. deciduous 100 0.60 0.09 74.69 0.42 0.24 0

C soil 99.80 0.65 0.15 17.12 0.20 0.16 0.20

D shaded veg. 18.47 0.21 0.19 1.20 0.11 0.12 81.53

E green field ~ ~ ~ ~ ~ ~ 100

F grass field 100 0.63 0.09 97.50 0.27 0.19 0

G autumn decid. ~ ~ ~ ~ ~ ~ 100

H water 87.08 0.49 0.34 1.42 0.14 0.13 12.92

Figure 7.13: Histogram for the abundances of true positive and false positive pixels of A.P.
Hill classes extracted using RBSPP.
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obtained for the summer deciduous class. Loblolly pine, soil, and green field obtained

false positive rates between 48% and 58%. Grass field was the best detected class by

SMACC with 99.57% of true positive rate, and 26.39% of false positive rates. Note

that the abundances obtained for shaded vegetation, green field, grass field, and water

(Figures 7.9 and 7.10) are small for both true positive and false positive pixels. In-

stead, summer deciduous obtained high abundances for both true positive and false

positive pixels with averages equal to 0.55 and 0.45 respectively. It is expected that

the estimated abundances of true positive pixels become larger than the estimated

abundances of false positive pixels. However, some classes extracted using SMACC

obtained similar abundances for both true positive and false positive pixels (e.g. sum-

mer deciduous and loblolly pine classes in Table 7.2).

Green field and autumn deciduous classes are not extracted by RBSPP algorithm. On

the other hand, most of the classes detected by RBSPP obtained high true positive

rates. For instance, summer deciduous and grass field obtained true positive rates as

higher as 100%. And loblolly pine, soil, and water classes obtained true positive rates

higher than 87%. The lowest true positive rate was obtained for shaded vegetation class

(18%). Despite the high true positive rates for summer deciduous and grass field classes,

their false positive rates are also high with values equal to 74% and 97% respectively.

In addition, the estimated abundances for false positive pixels of summer deciduous

are close to the values obtained for the true positives. Similarly, loblolly pine class has

a 42.35% false positive rate with an abundance mean of 0.39 for the false negatives

pixels compared to 0.38 for the true positives. The best detected class by RBSPP was

water with 87% true positive rate and a false positive rate of 1.42%.

Table 7.4 presents a comparison between the true positive and false positive rates

obtained from the unmixing results of the proposed approach (Section 6.3.3.2), SMACC

and RBSPP. Loblolly pine, summer deciduous, soil, and grass field were the classes with

highest number of true positive pixels for all three algorithms with rates higher than

89%. On the other hand, true positive rate for shaded vegetation class extracted using
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Table 7.4: Comparison of true positive and false positive rates for A.P. Hill classes extracted
using the proposed approach, SMACC, and RBSPP.

True Positive Rate (%) False Positive Rate (%)

Class Proposed SMACC RBSPP Proposed SMACC RBSPP

Approach Approach

Loblolly Pine 89.9 97.9 89.0 37.7 53.7 42.4
Sum. Deciduous 91.8 99.6 100 67.3 88.3 74.7

Soil 98.9 99.9 99.8 22.3 58.1 17.1
Shaded Veg. 86.4 13.8 18.5 39.7 16.8 1.2
Green Field 68.3 96.9 ~ 52.9 48.1 ~
Grass Field 97.6 99.6 100 14.1 26.4 97.5

Autumn 74.8 ~ ~ 20.8 ~ ~
Water 97.3 57.2 87.1 19.1 56.6 1.4

the proposed approach was 86% which outperform the extraction of this class ob-

tained using SMACC (13%) and RBSPP (18%). Green field is not detected by RBSPP.

But, SMACC extracted this class with a 96.9% true positive rate, and the proposed

approach obtained 68.3% true positive rate. Autumn deciduous is only detected with

the proposed approach with a 74.8% true positive rate. In addition, Water class is best

extracted by the proposed approach. Despite the high true positive rates for loblolly

pine and summer deciduous classes for all algorithms, the false positive rates of these

classes are also high with values between 37% and 88%. However, the lowest false

positive rates for loblolly pine and summer deciduous classes were obtained by the pro-

posed approach. In addition, soil is better extracted using RBSPP and the unmixing

approach based on multiscale representation than with SMACC. Grass field is better

extracted by the proposed approach with a false positive rate of 14.1%. Grass field

classes extracted by SMACC and RBSPP obtained 26.4% and 97.5% of false positive

rates respectively. Water class obtained good false positive rates for the proposed

approach (19.1%) and RBSPP (1.4%).
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Table 7.5: Agreement matrix between reference map and generated classification map from
unmixing results of A.P. Hill using SMACC.

7.1.2.3 Agreement Assessment of Classification Maps

Classification maps were generated from the estimated abundances from SMACC,

and RBSPP endmembers. These classification maps are compared with the published

classification map using agreement matrices. Then, the between class agreements,

the assignment class agreements, and the overall agreement are used to compare the

unmixing results from the proposed approach, SMACC, and RBSPP. Figures 7.14(c)

and 7.14(d) show the classification maps for A.P Hill obtained using SMACC and

RBSPP results respectively. Figure 7.14(a) shows the published classification map

(Figure 6.1(b)) merging some classes such as in Section 6.3.3.3. Tables 7.5 and 7.6

present the agreement matrices for both SMACC and RBSPP classification maps. In

addition, Figure 7.14(b) includes the classification map obtained with the proposed

approach.
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Figure 7.14: Classification maps from unmixing results of A.P. Hill. (a) Reference map, (b)
Proposed Approach, (c) SMACC, (d) RBSPP.
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Table 7.6: Agreement matrix between reference map and generated classification map from
unmixing results of A.P. Hill using RBSPP.

For SMACC results, Summer deciduous, soil, and grass field were the classes with

the best between-class agreements with respect to the published classification map.

These classes obtained between-class agreements higher than 74%. The remainder

classes obtained small between-class agreements with values lower than 33%. Soil

and grass field classes also obtained good assignment-class agreements (76% and 68%

respectively). But, the assignment-class agreement of summer deciduous was small

(19%). Many pixels are assigned to summer deciduous class although these are identi-

fied with other classes in the published classification map. Most of the pixels labeled

as loblolly pine, shaded vegetation, green field, autumn deciduous and water are assigned

to summer deciduous. The overall agreement between the classification map obtained

using SMACC results and the published classification map was of 31.51%.

The classification map obtained using RBSPP results also presents the best between-

class agreements for summer deciduous, soil, and grass field classes. In addition, water
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class obtained a between-class agreement equal to 68%. Loblolly pine and shaded vege-

tation obtained 35% and 4% of between-class agreements. Soil and water classes also

presented a good assignment-class agreement (73% and 88% respectively). Summer

deciduous and grass field have assignment-class agreements lower than 34%. Similar

to the result obtained using SMACC, many pixels of loblolly pine are assigned to sum-

mer deciduous. And many pixels of different classes are assigned to grass field class.

The overall agreement between the classification map of RBSPP and the published

classification map was 41.22%.

Table 7.7 presents a comparison among the between-class agreements and assignment-

class agreements of the classification maps obtained from the unmixing results of the

proposed approach, SMACC and RBSPP. Although the proposed unmixing approach

is the only algorithm that detects the autumn deciduous classes, it only obtained a

between-class agreement of 24.9%. Green field was also difficult to detect. RBSPP did

not extract this class, and the proposed approach and SMACC did detect green field

but the between-class agreement was lower than 31%. Loblolly pine and water classes

obtained using the proposed approach present better between-class agreements than

the obtained using SMACC and RBSPP results. On the other hand, summer deciduous,

soil, and grass field classes obtained using RBSPP present a better agreement with

the published classification map than the obtained using the proposed approach and

SMACC. The proposed approach was the best in terms of overall agremment. In

Figure 7.14, it can be noted that many pixels are assigned to summer deciduous

class using the three algorithms. The agreement between the classification map ob-

tained by the proposed approach (Figue 7.14(b)) and the published classification map

(Figure 7.14(a)) is better than the classification maps of SMACC and RBSPP.
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Table 7.7: Comparison agreement analysis among classification maps obtained from the pro-
posed approach, SMACC, and RBSPP.

Between class agreement(%) Assignment class agreement (%)

Class Proposed SMACC RBSPP Proposed SMACC RBSPP

Approach Approach

loblolly pine 51.2 20.4 35.9 76.5 58.5 53.3
sum. deciduous 57.0 81.1 84.8 30.5 19.7 34.6

soil 74.9 78.0 87.8 79.8 76.3 73.5
shaded veg. 45.6 4.4 4.8 48.9 43.9 79.5
green field 31.2 3.4 0 15.2 17.4 0

grass gield 84.6 74.3 99.0 69.5 68.9 29.1
autumn deciduous 24.9 0 0 76.6 0 0

water 73.3 33.5 69.2 68.9 57.1 88.9

Overall Proposed 50.5 SMACC 31.5 RBSPP 41.2
Aggrement (%) Approach

7.2 unmixing analysis of cuprite

Unmixing results for Cuprite using SMACC, VCA, and RBSPP were also evaluated

using the methodology described in Section 6.2. For this image, VCA obtains results

comparable to the obtained using SMACC and RBSPP. Thus, VCA is taken into

account in the quantitative assessment. Section 7.2.1 presents the unmixing results,

and the assessment is performed in Section 7.2.2.

7.2.1 Unmixing using SMACC, VCA, and RBSPP for Cuprite

The number of endmembers was set to 17 for SMACC, VCA, and RBSPP algorithms.

This is the number of spectral endmember classes estimated by the proposed unmix-

ing approach. NNSLO was used to estimate the abundances for the three algorithms.

Figures 7.15, 7.17, and 7.19 present the spectral signatures of endmembers extracted
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Figure 7.15: Extracted endmembers from Cuprite image using SMACC.

using SMACC, VCA, and RBSPP respectively. Figures 7.16, 7.18, and 7.20 show the

estimated abundances using NNSLO.

7.2.2 Assessment of Unmixing Results

The first part of the assessment shows the qualitative comparison between the ex-

tracted endmember and the information within the classification map and spectral

library of Cuprite. The signature of materials present in the scene can be found in

the USGS spectral library (see Section 6.1). Thus, the spectral angle can be used
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Figure 7.16: Abundances for extracted endmembers from Cuprite using SMACC.
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Figure 7.17: Extracted endmembers from Cuprite image using VCA.
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Figure 7.18: Abundances for extracted endmembers from Cuprite using VCA.
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Figure 7.19: Extracted endmembers from Cuprite image using RBSPP combined with VCA.
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Figure 7.20: Abundances for extracted endmembers from Cuprite using RBSPP combined
with VCA.



7.2 unmixing analysis of cuprite 222

to assess the extracted endmembers. However, it is important to note that the ex-

tracted endmember correspond with image-derived spectra, and some features can

vary with respect to the laboratory spectra contained in the USGS spectral library.

Once the information classes and endmembers are related, the quantitative analysis

of unmixing results using the true positive, false positive and false negative rates as

well as the agreement analysis among classification maps is performed.

7.2.2.1 Qualitative Evaluation

The endmembers related to kaolinite, chalcedony, calcite, muscovite, kaolinite+smectite,

and alunite are identified in the unmixing results. Endmembers E5, E10, and E13

from SMACC correspond with kaolinite as well as endmember E8 from VCA. RB-

SPP also extracted kaolinite in endmembers E3 and E17. Endmembers E16, E15, and

E13, from SMACC, VCA, and RBSPP respectively, represent chalcedony. Calcite is

identified in the endmember E12 from SMACC, E14 from VCA, and E5 from RBSPP.

In addition, SMACC extracts muscovite and kaolinite+smectite (E6 and E14 in Figure

7.16 respectively), and two endmembers related to alunite (E8 and E15 in Figure

7.16). The endmembers E13 and E7 from VCA are related to muscovite and kaolin-

ite+smective, and both E5 and E9 represent alunite. RBSPP extracted two endmem-

bers related to muscovite (E6 and E15 in Figure 7.20), one endmember that represent

kaolinite+smectite (E10 in Figure 7.20), and an endmember of alunite (E7 in Figure

7.20). Table 7.8 summarize the relation among extracted endmembers and informa-

tion classes.

Figure 7.21 shows a comparison of endmembers related to kaolinite and alunite

classes including spectral endmember classes extracted by the proposed approach.

Figures 7.21(a)-(d) present the estimated abundances corresponding with kaolinite

endmembers: E13 from SMACC, E8 from VCA, E17 from RBSPP, and EC2 from

the proposed unmixing approach. The spectral signatures are shown in Figures

7.21(e)-(h). Abundance maps from VCA and the proposed approach present a more
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Table 7.8: Relation between endmembers extracted by SMACC, VCA, and RBSPP, and infor-
mation classes for Cuprite.

Group Name SMACC VCA RBSPP

Endmembers Endmembers Endmembers

Kaolinite E5, E10, E13 E8 E3, E17

Chalcedony E16 E15 E13

Calcite E12 E14 E5

Muscovite E6 E13 E6. E15

Kaolinite+Smectite E14 E7 E10

Alunite E8, E15 E5, E9 E7

consistent distribution of this material with that of the classification map. Small

regions with abundances higher than 40% of kaolinite are estimated by VCA, RBSPP

combined with VCA, and the proposed approach. SMACC estimates abundances

less than 40% of this material in the image. Figures 7.21(i)-(l) present the estimated

abundance from endmembers related to alunite: E15 from SMACC, E9 from VCA,

E7 from RBSPP, and EC9 from the proposed unmixing approach. Figure 7.21 (m)-

(p) show the signatures for these endmembers. For this material, RBSPP and the

proposed approach present the best distributions when compared to the information

in the classification map.

The spectral angles among extracted endmembers and signatures within the spec-

tral library of cuprite are presented in Table 7.9. Table 7.9 compares the spectral

angle obtained for the unmixing results of the proposed approach, SMACC, VCA,

and RBSPP. The smallest spectral angles for kaolinite, chalcedony, calcite, muscovite,

and alunite are obtained for RBSPP with values between 0.0007 and 0.0029. The

spectral endmember classes corresponding to kaolinite+smectite of the proposed ap-

proach obtained the lowest spectra angle when comparing with SMACC, VCA and

RBSPP results. The proposed approach obtained a spectral endmember class of kaoli-
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Figure 7.21: Comparison of kaolinite and alunite endmembers. Abundances and endmembers
for kaolinite (a)-(h) and alunite (i)-(p) extracted using SMACC, VCA, RBSPP com-
bined with VCA, and the proposed approach.
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Table 7.9: Spectral angle between extracted endmembers by SMACC, VCA, RBSPP, proposed
approach, and reference spectra.

SMACC VCA RBSPP Proposed

Approach

Kaolinite 0.0037 0.0028 0.0007 0.0017

Chalcedony 0.0060 0.0016 0.0007 0.0014

Calcite 0.0008 0.0018 0.0007 0.0044

Muscovite 0.0039 0.0023 0.0029 0.0036

Kaolinite+Smectite 0.0068 0.0048 0.0034 0.0009

Alunite 0.0039 0.0030 0.0015 0.0017

nite+smectite with a spectral angle of 0.0009 with respect to the signatures in the USGS

spectral library. The other spectral endmember classes obtained using the proposed

approach have spectral angles comparable to the spectral angles of RBSPP.

The reconstruction errors from the unmixing results of SMACC, VCA, RBSPP and

the proposed approach were calculated. These are presented in the Figure 7.22. All

algorithms obtained reconstruction errors quite small. The proposed approach ob-

tained errors close to 5%. Unlike the poor results obtained with VCA for A.P. Hill,

unmixing of Cuprite with this algorithm results in endmembers and abundances

comparable with the other algorithms. Next part in the assessment methodology

performs the quantitative analysis and comparison of the unmixing results from

SMACC, VCA, RBSPP, and the proposed unmixing approach.

7.2.2.2 Quantitative Assessment of Detected Classes

True positive, false positive, and false negative rates are calculated by comparing the

estimated abundances from the three algorithms (i.e. SMACC, VCA, and RBSPP)

and the mask generated for each information class. Figures 7.23, 7.25, and 7.27

show these comparison for SMACC, VCA, and RBSPP results respectively. The first

column in Figures 7.23, 7.25, and 7.27 presents the estimated abundances, and the

second column in these figures shows the mask generated from the classification
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Figure 7.22: Reconstruction error from unmixing results of Cuprite. (a) SMACC, (b) VCA,
(c) RBSPP combined with VCA, and (d) proposed approach based on mutliscale
representation.

map. The masks that identified the true positive, false positive, and false negative

pixels for Cuprite classes are shown from the third to the fifth columns. Tables 7.10,

7.11 and 7.12 summarize the true positive rates, false positive rates, and false negative

rates for each information class. Figures 7.24, 7.26 and 7.28 show the histograms for

the estimated abundances corresponding to true positive and false positive pixels

obtained from SMACC, VCA, and RBSPP respectively.

Tables 7.13 and 7.14 present the comparison among the true positive and false

negative rates obtained from SMACC, VCA, RBSPP and the proposed approach re-

sults. The true positive rates and false negative rates for the proposed approach were

obtained in Section 6.3.3.2.

True positive rates for kaolinite class were 90%, 86%, and 72% from SMACC, VCA,

and RBSPP respectively. The estimated abundances for these true positive pixels have

means smaller than 0.19. The false positive rates obtained using SMACC and VCA

are as high as 57% and 63% with abundance means of 0.008 and 0.009 respectively.
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Figure 7.23: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of Cuprite classes extracted using SMACC.
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Table 7.10: True positive, false positive, and false negative rates for Cuprite classes extracted
using SMACC.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A Kaolinite 90.69 0.17 0.14 57.67 0.08 0.07 9.31

B Chalcedony 69.98 0.27 0.15 37.25 0.15 0.11 30.02

C Calcite 76.13 0.15 0.13 60.95 0.06 0.05 23.87

D Muscovite 87.39 0.23 0.14 34.93 0.09 0.08 12.61

E Kaolinite+Smectite 60.84 0.20 0.13 42.09 0.16 0.11 39.16

F Alunite 100 0.39 0.13 55.93 0.08 0.08 0

Figure 7.24: Histogram for the abundances of true positive and false positive pixels of Cuprite
classes extracted using SMACC.
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Figure 7.25: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of Cuprite classes extracted using VCA.
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Table 7.11: True positive, false positive, and false negative rates for Cuprite classes extracted
using VCA.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A Kaolinite 86.85 0.16 0.12 63.44 0.09 0.08 13.15

B Chalcedony 33.23 0.17 0.13 6.14 0.06 0.06 66.77

C Calcite 46.65 0.19 0.15 30.19 0.08 0.06 53.35

D Muscovite 80.82 0.22 0.13 22.63 0.11 0.09 19.18

E Kaolinite+Smectite 33.42 0.09 0.07 38.54 0.15 0.12 66.58

F Alunite 82.99 0.29 0.17 46.74 0.09 0.08 17.01

Figure 7.26: Histogram for the abundances of true positive and false positive pixels of Cuprite
classes extracted using VCA.
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Figure 7.27: Comparison among abundances, classification map, and true positives, false pos-
itives, and false negatives of Cuprite classes extracted using RBSPP.
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Table 7.12: True positive, false positive, and false negative rates for Cuprite classes extracted
using RBSPP.

True Positive False Positive False Negative

ID Class % Abundance % Abundance %

Mean σ Mean σ

A Kaolinite 72.87 0.19 0.18 31.54 0.11 0.11 27.13

B Chalcedony 92.04 0.35 0.21 52.65 0.15 0.14 7.96

C Calcite 89.59 0.20 0.14 60.32 0.08 0.07 10.41

D Muscovite 85.79 0.27 0.18 42.30 0.11 0.09 14.21

E Kaolinite+Smectite 48.90 0.15 0.11 35.82 0.15 0.13 51.14

F Alunite 95.72 0.28 0.15 29.94 0.08 0.07 4.28

Figure 7.28: Histogram for the abundances of true positive and false positive pixels of Cuprite
classes extracted using RBSPP.
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Table 7.13: Comparison of true positive rates for A.P. Hill classes extracted using the pro-
posed approach, SMACC, and RBSPP.

True Positive Rate (%)

Class Proposed SMACC VCA RBSPP

Approach

Kaolinite 62.42 90.69 86.85 72.87

Chalcedony 87.45 69.98 33.23 92.04

Calcite 75.94 76.13 46.65 89.59

Muscovite 76.09 87.39 80.82 85.79

Kaolinite+Smectite 88.70 60.84 33.42 48.90

Alunite 91.83 100 82.99 95.72

Table 7.14: Comparison of false positive rates for A.P. Hill classes extracted using the pro-
posed approach, SMACC, and RBSPP.

False Positive Rate (%)

Class Proposed SMACC VCA RBSPP

Approach

Kaolinite 29.99 57.67 63.44 31.54

Chalcedony 68.39 37.25 6.14 52.65

Calcite 55.64 60.95 30.19 60.32

Muscovite 43.22 34.93 22.63 42.30

Kaolinite+Smectite 65.21 42.09 38.54 35.82

Alunite 36.87 55.93 46.74 29.94
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Note in Figures 7.23 and 7.25 that it is very difficult to distinguish the true positive

and false positive pixels in the estimated abundance for kaolinite by SMACC and

VCA since many true positive pixels appear to have similar abundances than the

false positive pixels. In addition, the histograms for kaolinite obtained from SMACC

and VCA results (Figure 7.24 and 7.26) show than most of the true positive pixels

have smaller abundances (less than 0.2) that are similar to the abundance distribution

obtained for the false positive pixels. RBSPP obtained the lowest false positive rate for

kaolinite when comparing with SMACC and VCA. The false positive rate obtained

using RBSPP was equal to 31% with an abundance mean of 0.11. Some regions

of kaolinite are estimated with high abundances by RBSPP, these can be seen in

the abundance map in Figure 7.27. The proposed approach based on multiscale

representation obtained a true positive rate of 62% and a false positive rate of 29%

for kaolinite (see comparison in Tables 7.13 and 7.14). Despite that the proposed

approach obtained a lower positive rate than RBSPP, the false positive rate is similar

to that obtained using RBSPP (Table 7.14). In addition, the true positive pixels are

estimated with higher abundances than the false positive pixels for the proposed

approach as seen in Section 6.3.3.2.

Chalcedony obtained true positive rates as high as 92% with RBSPP. True positive

rates obtained from SMACC and VCA are 69% and 33% respectively. The mean

abundance for chalcedony true positive pixels are between 0.17 and 0.35 for SMACC,

VCA, and RBSPP. RBSPP obtained a false positive rate of 52% with an abundance

mean equal to 0.15. The histograms for chalcedony from RBSPP results (Figure 7.28)

show that most of true positive pixels have abundances between 0.2 and 0.5 and

the false positive pixels have abundances lower than 0.2. The proposed approach

based on multiscale representation obtained a true positive rate equal to 87% and

false positive rate equal to 68% for chalcedony (Tables 7.13 and 7.14). Despite that the

proposed approach obtained a higher false positive rate than RBSPP for chalcedony

class, the estimated abundances distribution of chalcedony (Figure 6.23) shows a better



7.2 unmixing analysis of cuprite 235

correspondence with chalcedony class within the published classification map since

most of the chalcedony pixels are estimated with high abundances. Note that RBSPP

and the proposed approach obtained similar true positive rates (Table 7.13) for chal-

cedony. But, the estimated abundances for this class by the proposed approach are

higher than the estimated abundance using RBSPP as can be seen when comparing

the histograms in Figures 6.24 and 7.28.

Calcite presents good true positive rates for SMACC and RBSPP algorithms with

values higher than 76%. But, VCA only detects 46% of the pixels of calcite. Calcite was

also detected with small abundances with averages less than 0.20 for both SMACC

and RBSPP. Calcite false positive rates were close to 60% for both SMACC and RBSPP,

and the abundance mean of false positive pixels was 0.06 for SMACC and 0.08 for RB-

SPP. It can be noted in estimated abundances (Figures 7.23 and 7.27) and histograms

(Figures 7.24 and 7.28) that true positive pixels and false positive pixels have simi-

lar abundances for calcite according to SMACC and RBSPP. The proposed approach

obtained a 75% true positive rate and a 55% false positive rate. Despite that calcite

true positive rate obtained with the proposed approach is lower that the true positive

rates for SMACC and RBSPP, the estimated abundances for true positive pixels with

the proposed approach have higher values achieving a mean 0.41, and false positive

pixels have only an abundance mean of 0.16 (Table 6.8).

Muscovite is estimated with true positive rates between 80% and 87% for the three

algorithms and with abundance means between 0.22 and 0.27. The muscovite false

positive rates were 34%, 22% and 42% for SMACC, VCA, and RBSPP respectively.

The abundance mean for the false positive pixels was 0.09 for SMACC and 0.11 for

both VCA and RBSPP. The proposed approach obtained a true positive rate equal

to 76% and a false positive rate equal to 43% for muscovite class with abundance

mean of 0.23 and 0.09 for true positive and false positive pixels respectively. Note

that estimated muscovite abundances of SMACC and VCA are very similar (Figures

7.23 and 7.25). RBSPP and the proposed unmixing approach also present similar



7.2 unmixing analysis of cuprite 236

abundances (Figures 7.27 and Figures 6.23) with higher values than the estimated

using SMACC and VCA.

SMACC obtained the best true positive rate for kaolinite+smectite when compared

with VCA and RBSPP results. The true positive rate for kaolinite+smectite was 60%

with an abundance mean of 0.20. kaolinite+smectite false positive rate was 42% for

SMACC and the false positive pixels have an abundance mean equal to 0.16. The

proposed approach achieves a better true positive rate (88%, see Table 7.13) than

SMACC. Although, the kaolinite+smectite false positive rate of the proposed approach

was 65%.

SMACC obtained 100% of pixels that correspond to alunite with an abundance

mean of 0.39. VCA and RBSPP also obtained good true positive rates for alunite

with values between 82% and 95%. The lowest false positive rates for alunite are

obtained using RBSPP. SMACC and VCA false positive rates are 55% and 46% re-

spectively. True positive pixels from SMACC have an abundance mean equal to 0.39

and the false positive pixels have an abundance mean equal to 0.08. Similar abun-

dance means for the true positive and false positive pixels are obtained for RBSPP

and VCA: close to 0.29 for true positive pixels and 0.09 for the false positive pixels.

Comparable results were also obtained for alunite with the proposed unmixing ap-

proach. Alunite true positive rate was 91% and the false positive rate was 36% for the

proposed approach. The true positive rates have an abundance mean of 0.36 and the

false positive pixels have an abundance mean equal to 0.06.

Note in Tables 7.13 and 7.14 that the proposed unmixing approach obtained true

positive and false positive rates comparable with SMACC and RBSPP results. How-

ever, the estimated abundances from the spectral endmember classes has higher val-

ues than the obtained from SMACC and RBSPP.
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Table 7.15: Agreement matrix between reference map and generated classification map from
unmixing results of Cuprite using SMACC.

7.2.2.3 Agreement Assessment of Classification Maps

Classification maps generated from the estimated abundances with SMACC, VCA

and RBSPP are shown in Figure 7.29. These classification maps are compared with

the published classification map using agreement matrices. Figure 7.29(c) shows the

classification maps for Cuprite obtained using SMACC. Figures 7.29(d) and 7.29(e)

shows the classification maps obtained from VCA and RBSPP respectively. In addi-

tion, Figure 7.29 includes the classification map (Figure 7.29(a)) obtained from the

published classification map merging some classes as described in Section 6.3.3.1

and the classification map obtained from the proposed unmixing approach (Figure

7.29(b)). The between-class agreements, the assignment class-agreements, and the

overall agreement are used to compare the unmixing results from the proposed ap-

proach, SMACC, and RBSPP similarly to the analysis performed for A.P. Hill. Tables

7.15, 7.16, and 7.17 present the agreement matrices for SMACC, VCA and RBSPP

classification maps respectively.

Alunite was the class with the best between-class agreement from SMACC results

(91%). Calcite, chalcedony, and muscovite classes obtained between-class agreements



7.2 unmixing analysis of cuprite 238

Figure 7.29: Classification maps from unmixing results of Cuprite image. (a) Reference map,
(b) Proposed Approach, (c) SMACC, (d) VCA, (e) RBSPP.
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Table 7.16: Agreement matrix between reference map and generated classification map from
unmixing results of Cuprite using VCA.

Table 7.17: Agreement matrix between reference map and generated classification map from
unmixing results of Cuprite using RBSPP.
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between 55% and 61% from SMACC. The worst between-class agreements were ob-

tained by kaolinite and kaolinite+smective with values smaller than 38%. Muscovite

class extracted using SMACC have an assignment-class agreement equal to 80%.

Assignment-class agreements for kaolinite, calcite, and alunite were between 59% and

68%. Chalcedony only has 14% of pixels correctly assigned when compared with the

published classification map. Kaolinite+smectite class from SMACC obtained 33% for

assignment-class agreement. The overall class agreement achieved using SMACC

was 55.71 % with the published classification map.

Similar to SMACC, alunite class from VCA obtained the best between-class agree-

ment, however, it is equal to 68%. Kaolinite and muscovite between-class agreements

were 52% and 48%. Calcite, chalcedony, and kaolinite+smectite have between-class

agreements smaller than 37%. The assignment-class agreements for VCA results

also present low percentages between 8% and 48% for most of the classes. Muscovite

was the only class from VCA that obtained an assignment-class agreement higher

than 79%. The overall class agreement achieved using VCA was 44.13 % with the

published classification map.

From RBSPP, chalcedony and calcite were the class with the highest between-class

agreements when compared with the published classification map. The between-

class agreement for these classes were higher than 80%. Muscovite and alunite have

between-class agreement equal to 57% and 66% respectively. Similar to the results ob-

tained from SMACC, kaolinite and kaolinite+smectite classes have the lowest between-

class agreements with values smaller than 30%. Muscovite and alunite obtained the

highest number of correctly assigned pixels with percentages higher than 71%. Kaoli-

nite, chalcedony, calcite, and kaoline+smectite from RBSPP obtained assignement-class

agreements smaller than 49%. The overall class agreement for the classification map

obtained using RBSPP was 51.59% with the published classification map.

Tables 7.18 and 7.19 present the comparison among the between-class agreements

and assignment-class agreements of the classification maps obtained from the unmix-
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Table 7.18: Comparison of between-class agreement of classification maps obtained from the
proposed approach, SMACC, VCA, and RBSPP.

Between class agreement(%)

Class Proposed SMACC VCA RBSPP

Approach

Kaolinite 22.54 27.48 52.34 30.44

Chalcedony 78.88 59.96 31.28 83.47

Calcite 69.65 61.20 37.66 80.08

Muscovite 39.36 55.24 48.23 57.67

Kaolinite+Smectite 43.55 38.55 8.47 22.12

Alunite 66.08 91.77 68.09 66.29

ing results for the proposed approach, SMACC, VCA and RBSPP. In addition, Table

7.20 shows the overall agreements obtained from the different classification maps

when compared with the published classification map. RBSPP algorithm obtains the

best between-class agreement for kaolinite, chalcedony, calcite, and muscovite. The per-

centage of between-class agreement obtained using the proposed approach for chal-

cedony and calcite classes are comparable with those obtained by RBSPP (Table 7.18).

The proposed approach has the best between-class agreement for kaolinite+smectite,

and SMACC obtains the best between-class agreement for alunite. In terms of the

assignement-class agreement, the proposed approach presents comparable results

to SMACC and RBSPP (Table 7.19). The best overall agreement was obtained by

SMACC followed by RBSPP and the proposed approach as shown in Table 7.20.

7.3 further analysis

Comparing the information classes for A.P. Hill and the unmixing results obtained

with SMACC, VCA, RBSPP, and the proposed approach (Tables 6.5 and 7.1), it can

be seen that the best results were obtained by the proposed approach since these

extracted endmembers classes related with all information classes within the pub-
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Table 7.19: Comparison of assignment-class agreement of classification maps obtained from
the proposed approach, SMACC, VCA, and RBSPP.

Assignment class agreement (%)

Class Proposed SMACC VCA RBSPP

Approach

Kaolinite 54.28 59.13 30.13 49.77

Chalcedony 11.13 14.58 42.96 16.19

Calcite 40.52 63.18 46.04 46.29

Muscovite 79.18 80.49 79.60 71.40

Kaolinite+Smectite 31.23 33.25 8.95 28.07

Alunite 89.20 68.93 48.47 80.08

Table 7.20: Comparison of overall agreement of classification maps obtained from the pro-
posed approach, SMACC, and RBSPP.

Overall Agrement (%)

Proposed Approach 46.12

SMACC 55.71

VCA 44.13

RBSPP 51.59
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lished classification map. SMACC did not identify one class (autumn deciduous) and

RBSPP did not identified two classes (autumn deciduous and green field ). On the other

hand, VCA presented the worst results for A.P. Hill. Most of the extracted endmem-

bers by VCA correspond to water and no vegetation endmember was found. The

spectral endmember classes extracted by the proposed approach are consistent with

the classification map and their spectral endmembers are very similar to the spectral

library.

Unmixing results from Cuprite using the four algorithms present comparable re-

sults. In this case, VCA extracted several endmembers related with the materials

described by the classification maps. In terms of the reconstruction error, the four

algorithms obtained low error. Cuprite is a complex image with several small spec-

trally uniform regions. However, the proposed approach detected the different ma-

terials and obtained results comparable with the other methods. Abundances from

extracted endmember spectral classes were more consistent with the distribution of

materials in the classification map than the other methods (see Figure 7.21). Al-

though the best results in terms of true positive rates were obtained by RBSPP and

SMACC, the proposed approach obtains comparable true positive rates while the es-

timated abundance of true positive pixels are higher than abundance of false positive

pixels.
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An implementation of the unmixing approach based on multiscale representation

was developed using the MATLAB platform. This implementation allows the unsu-

pervised processing of hyperspectral images. The automation of the spectral end-

member extraction allows to analyze scenes without the need to develop expertise in

computing. The implementation takes a family of smoothed images {Y1, Y2, .., YTF}

and the maximum number of spectral endmember classes cmax as the inputs. The

output provides spectral endmember classes Cĉ and their corresponding abundance

maps AC. Figure 8.1 presents a block diagram for the computing system. The next

section describes in detail the implementation of each block, and the complexity

analysis is presented in Section 8.2.

8.1 implementation description

The implementation of the unmixing approach based on multiscale representation

takes a set of smoothed images as input. The multiscale representations for the

experiments included in this document were obtained with Duarte’s algorithm pre-

sented in [26]. However, there are several methods for nonlinear diffusion such as

those reviewed by Duarte et al. in [74] and tensor anisotropic diffusion presented by

Marin-Quintero in [106]. These methods can be combined with the proposed unmix-

ing algorithm for the analysis of hyperspectral images.

The computational system for the unsupervised unmixing analysis is divided in

7 steps: scale selection, spectral endmember extraction, abundance estimation, pair-

244



8.1 implementation description 245

Figure 8.1: Computational system for unsupervised unmixing analysis.
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Table 8.1: Algorithm for scale selection.

Inputs: Yo and {Y1, Y2, .., YTF}
Repeat for i = 1 to TF:

Compute YD(i, j, k) = |Yt(i,j,k)−Y0(i,j,k)|
Y0(i,j,k)

Calculate the entropy E(i) for YD

Compute the entropy changes δE(i) = E(i)− E(i− 1) for i = 2...TF

Select T such that δE(i) < 0.01

Output: Smoothed image YT

wise SAM (spectral angle measure) distance computation, hierarchical clustering, es-

timation of the number of spectral endmember classes, and abundance computation

(see Figure 8.1). Some of these steps use existing MATLAB functions (white boxes in

Figure 8.1) and others were implemented as part of this work (pink boxes in Figure

8.1). The description of each step is included below.

First, the entropy change criterion developed in Section 3.2.1.5 is used for auto-

matic scale selection. The entropy of image YD(i, j, k) (see Equation 3.21) is calcu-

lated to select the optimal stopping time. The entropy change criterion employs the

average of the entropy for each band of image YD. The optimal scale is selected as

the end of the break point of the L-curve formed by the entropy change. A threshold

of 0.01 is used to determine the end of the break point. Results presented in Chapters

3 and 6 show that this threshold works very well for different types of image. The

inputs for the function scaleSelection are the original image Yo, the path of the direc-

tory that contains the family of smoothed images (Yt), and the number of smoothing

iteration Tf where 0 < t < Tf . This function selects a single smoothed image and

returns the smoothed image in the optimal scale T (see algorithm in Table 8.1).

The spectral endmembers are extracted using the multigrid representation as de-

scribed in Section 3.1. The multigrid structure is a set of graphs where each graph

is a layer of the multigrid and the graphs are connected between themselves. An

object oriented programming (OOP) approach was used for the implementation of
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Figure 8.2: Data structures for multigrid.

the multigrid structure in MATLAB. Other implementation can be done using the

adjacency matrix. However, most of the graphs are represented by large sparse

matrices making necessary the use of sparse representations such as the MATLAB

sparse storage organization1. Although most of the algebra is optimized for sparse

matrix in MATLAB, the searching and indexing algorithms were very slow for this

problem. Using OOP in MATLAB, the multigrid was built as a data structure where

each vertex was represented by a Grid Node object. The grid nodes keep most of the

information necessary for the construction of the multigrid such as the signature u

(Equation 3.8), the position of the vertex with respect to the original image, the mass

(Equation 3.7), the saliency (Equation 3.10), and a Boolean variable that indicates if

the vertex is selected as a representative. Furthermore, the grid node in layer s keeps

the connection with their list of neighbors and two pointers to itself in the previous

(s− 1) layer and in the next layer (s + 1) of the multigrid. If the vertex is not a rep-

resentative, then the next pointer is empty. The list of neighbors is a single link list

where each node has the information about the weights w (Equation3.6), the similar-

ity g (Equation 3.9), and a pointer to the next node in the list and its associated Grid

Node. Figure 8.2 presents the structures used to build the multigrid. The steps for

1 http://www.mathworks.com/help/matlab/ref/sparse.html
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Table 8.2: Algorithm for spectral endmember extraction using multigrid structure.

Inputs: Yo and α

Initialization: U0 = Y0, V0 =
{

u0
1, u0

2..., u0
M
}

and for each vertex Vi, initialize:

neighborList(V0
i ) =

{
(gij, j) |j is a neighbor of i

}
mass(Vi) = gij

and Representative = f alse.

Repeat until convergence:

sort masses into a List

Vs+1 = Vs+1 ∪ us
i i = first vertex in List

For remaining vertex in List:

if Vs
i holds condition in 3.5 then Vs+1 = Vs+1 ∪ us

i

For each vertex in s

Compute wij using 3.6

For each vertex in s + 1

Actualize masses by 3.7

Actualize us+1 by 3.8

Connect new grid s + 1 using 3.9

For each vertex in s + 1

Compute saliency by 3.10

For each vertex in last grid:

index = getPosition(Vi)

S = S ∪ Yo(index)

Output: Spectral endmember matrix S

the spectral endmember extraction correspond to the construction of the multigrid

(Equations 3.5 to 3.10) but the masses are initialized equal to g (see Section 3.2). A

pseudo-code for spectral endmember extraction using the multigrid data structure is

presented in Table 8.2.

Once the spectral endmembers are extracted, the abundances are computed us-

ing either constrained least square methods or sparse regression. If the number of

spectral endmembers is less than or equal to the number of bands then the function

NNSLO [37] is used for abundance estimation. This function is part of the HIAT

toolbox developed at the UPRM Laboratory for Applied Remote Sensing and Im-
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age Processing [107]. The complete toolbox is available online 2. Another function

used to estimate the abundances is SUnSAL [62] that solves sparse regression in the

case that the number of spectral endmembers exceeds the number of bands. The

algorithm is found in [62] and a MATLAB implementation is available online 3.

The MATLAB function clusterdata was used to perform the clustering of the spec-

tral endmember classes. The function clusterdata uses hierarchical clustering tech-

niques with different types of linkages and distances. Experiments in Section 4.3.2

showed that hierarchical clustering using complete linkage and spectral angle dis-

tance obtained the best results for spectral endmember class extraction. Thus, com-

plete linkage and SAM are used as default for spectral endmember class extraction.

The number of clusters is varied between 2 and cmax where cmax is set by the user.

The number of spectral endmember classes is estimated using the Davies and

Bouldin validity index [95]. The function ValidityIndexDaviesBouldien is responsible

to select the optimal number of clusters. The input for this function is the set of spec-

tral endmembers S, and the clustering results obtained from the clusterdata function

and organized in a matrix where each column is a clustering result. The spectral

angle measure is used to compute the dispersion measure and the distance between

clusters (see Section 4.1.3.2). The function selects the optimal number of clusters and

returns a vector with the values of the validity index for 2 to cmax (see algorithm in

Table 8.3). Finally, the abundances for the spectral endmember classes are computed

as the sum of abundances for spectral endmembers belonging to the same class. The

outputs for the implementation are the set of spectral endmembers clustered into

spectral endmember classes Cĉ, and their abundances AC.

The spectral endmembers are extracted automatically and grouped based on the

spectral similarity. However, the assignment of labels that related the spectral end-

member classes with known materials requires the interpretation and analysis of

2 http://www.censsis.neu.edu/software/hyperspectral/hyperspectral.html
3 http://www.lx.it.pt/ bioucas/publications.html
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Table 8.3: Algorithm for the Davies and Bouldin validity index computation.

Inputs: C1...CmaxC and the set of spectral endmembers S

Repeat for i = 1 to maxc:

Compute the similarity between clusters: Rij =
di+dj

Mij

where di =
1

mi

mi

∑
j=1

dist(sj, µi)

and Mij = dist(µi, µj)

Compute the Davies and Bouldin index: DB(k) = 1
k

k
∑

i=1
Ri

Select the number of spectral endmember class such that ĉ = min DB(k) for k = 2...cmax

Output: Endmember spectra classes Ci

experts. The developed unsupervised unmixing approach is a tool for information

extraction, and these results require of interpretation of experts to bring the informa-

tion to a higher abstraction level.

8.2 complexity analysis

Scale selection requires computing the entropy for each one of the n spectral bands

and its complexity is linear in the number of pixels m. The entropy is calculated Ns

times, where Ns is the maximum number of smoothing iterations, or the number of

images in the scale space representation. Thus, the running time of scale selection is

Nsnm = O(nm), where n is the number of bands and m is the number of pixels.

Spectral endmember extraction depends on the construction of the multigrid, which

consists of several operations over the vertices of each layer [26]. Thus, the running

time of the spectral endmember extraction algorithm is:

∑
s

τnvs ≤ τn ∑
s
(1/2)sm < 2τnm = O(nm)
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where τ is a constant representing the number of operation per vertex (Equations 3.5

to 3.10), s is the number of layers, and vs is the number of vertex in each layer where

vs < (1/2)vs− 1 and v0 = m [26].

The computation of the pairwise distance takes O(nm2) and the hierarchical clus-

tering algorithm has complexity of O(m2) [30].

Finally, SUnSAL [62] and NNSLO [37] algorithms for abundance estimation take

O(nmp) time per each iteration until the stopping criteria are satisfied. The abun-

dance estimation is the most expensive step of the system since it requires to solve

an optimization problem for each pixel in the image.

8.3 summary

The proposed approach allowed the implementation of a full unsupervised applica-

tion for the unmixing analysis of hyperspectral imagery which uses only the infor-

mation within the image. The implementation of the proposed approach described

in Figure 1.4 consists of seven steps: scale selection, spectral endmember extraction,

abundance estimation, pairwise SAM distance computation, hierarchical clustering,

estimation of the number of spectral endmember classes, and abundance computa-

tion. Important parameters such as the scale and the number of spectral endmember

classes are automaticaly determined using the criteria proposed in Sections 3.2.1.5

and 4.1.3.2 respectively. The most time consuming operation in the unmixing anal-

ysis is the abundance estimation since it requires solving an optimization problem

per pixel. However in the future, it can be parallelized to improve performance.
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I M A G I N G

The launch of Landsat 1 in 1972 started a new era for remote sensing. Although

some remote sensing systems existed before Landsat, this satellite was the first at-

tempt for monitoring the Earth surface from the space 1. Since then, a large number

of government and commercial remote sensing systems have been developed cap-

turing images each time with higher spatial resolutions and in a large variety of

spectral ranges. Applications of remote sensing technology include environmental

monitoring, climate change studies, agriculture, mineral exploration, archeology, me-

teorology, military application, and others [1]. This wide range of applications and

the increasing availability of sensors pose the need of regulation and ethical guide-

lines regarding to the acquisition, processing, and interpretation of remote sensing

imagery [108].

Initially, remote sensing systems were run by governments, and therefore, their

activities were regulated by the laws of each estate. However, the emergence of

commercial remote sensing systems opened several inquiries about national secu-

rity, sovereignty, and privacy. The United Nations Committee on the Peaceful Uses

of Outer Space (COPUOS) has made a great effort to establish treaties and laws

concerning space activities. In 1986, COPUOS declared 15 principles regarding re-

mote sensing of the Earth from the space 2. These principles have established gen-

eral guidelines for information sharing and technology cooperation among countries

that practice remote sensing activities. One of the principles say explicitly that re-

1 http://landsat.gsfc.nasa.gov/about/landsat1.html
2 http://www.oosa.unvienna.org/oosa/en/SpaceLaw/treaties.html

252



ethical considerations about remote sensing imaging 253

mote sensing activities cannot affect the sovereignty of other estates. The principles

established that products obtained from data collected over other states should be

available at a “reasonable cost” for the sensed territory. These principles are an effort

to establish international cooperation for Earth monitoring and study. These princi-

ples are limited to activities in outer space leaving a gap for the regulation of remote

sensing activities using aircrafts and do not take into account individual privacy.

Privacy is, maybe, the aspect more discussed about remote sensing imagery. The

increasing incorporation of this technology in law enforcement activities [109, 110]

and the emergence of high spatial resolution imagery systems with information avail-

able for everyone pose the question how far the use of these technologies respects

the privacy of individuals. For instance, Canada is allowing the use of infrared mul-

tispectral sensors for the detection of heat loss from buildings that is a common

indicator of marijuana growing [109]. In UK, remote sensors are employed for the

monitoring of farms to verify the incompliance with environmental regulations [110].

Although these activities are regulated for governments, people who do not know

this technology and how it is being used may feel they are violating their privacy.

The availability of satellite images through the Internet poses another problem of

privacy. For example, Google Earth 3 and Google Maps 4 are products for pc and

mobile navigation that allows you to view satellite imagery all over the world. Most

of these images have very high spatial resolution allowing the observation in great

details of buildings, homes and cars exposing places belonging to private individual.

The increased use of products derived from remote sensing data also posse the

need of regulations for the processing and analysis of this information. The Amer-

ican Society for Photogrammetry and Remote Sensing in their ethical code rejects

remote sensing activities that involve “deception through data alteration” 5. Cromey

3 http://www.google.com/earth/index.html
4 https://maps.google.com/
5 http://www.asprs.org/About-Us/Code-of-Ethics-of-the-American-Society-for-Photogrammetry-and-

Remote-Sensing.html
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[111] described several ethical guidelines for the processing of scientific imagery.

While this guide is focused on biological image processing, most of these guidelines

should be followed by remote sensing scientists. The twelve guidelines [111] describe

the adequate manipulation and presentation of images. Cromey said that always a

copy of the unprocessed image must be kept. Comparison between images or results

should be performed only when the original images were acquired in the same con-

ditions. Cropping and adjustments such as contrast of histogram stretch can be used

and a complete description about the image transformation should be included with

the presentation of the results. Cloning and copying an object into an image is not

recommendable. The final product should be saved in an uncompressed format. For

example, JPEG is not recommended since it is a lossy compression format that in-

troduce elements in the image which can lead to the misinterpretation of the results.

TIFF is the more commonly recommended format for scientific images [111]. Other

guidelines and their importance for image processing can be found in [111].

Although there are few regulations for the processing of remote sensing images,

it is important that researchers and scientists using these images develop an ethical

consciousness of the capabilities of this technology. Remote sensing technology is

advancing rapidly. To create regulations that control the different problems that

may arise due to the use of these technologies is very complicated. So, it is very

important that scientists, researchers, and even ordinary people develop awareness

of this technology, its uses, and capabilities.
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10.1 conclusions

Unmixing analysis of hyperspectral imagery is usually performed by spectral tech-

niques which do not employ the spatial information of the images. Recently, spatial-

spectral algorithms have been developed. Most of these algorithms incorporate the

spatial information in the unmixing analysis by using spatial kernels. However, this

introduces dependence on the size of neighborhood. Martin and Plaza [17] proposed

a spatial-spectral algorithm that avoid the use of spatial kernels using unsupervised

clustering techniques to look for spectrally uniform regions. However, this technique

is only a pre-processing step that requires the use of standard spectral-only tech-

niques for the final endmember extraction. In addition, it requires the estimation of

the number of endmembers like most of the existing unmixing algorithms.

This work developed a new spatial-spectral approach for unmixing analysis us-

ing multiscale representation and multigrid methods for unsupervised endmember

extraction. Multiscale representation using nonlinear diffusion allows to generate a

family of images were fine details are iteratively removed decreasing the local spec-

tral variability. The proposed approach selected one of the smoothed images by using

entropy to measure the information removed by the smoothing operation. The en-

tropy change criterion obtained consistent results for different types of images. This

criterion tends to select scales in the first few iterations of the nonlinear diffusion

avoiding mixed pixels at later stages.

255
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Once a scale is selected, spectral endmember extraction was performed by the

construction of a multigrid structure where the vertices in the coarsest grid represent

the spectral features of the image and these are selected as the spectral endmembers.

Results showed that spectral endmember extraction using the multigrid effectively

extracts the image components as well as preserve the spectral variability.

Spectral endmembers were grouped into spectral endmember classes using clus-

tering techniques. Hierarchical, partitional, and spectral clustering were studied for

spectral endmember class extraction. Hierarchical algorithms with complete and

average linkage outperforms partitional and spectral clustering results. The most

commonly used distance metrics for spectral data were also compared. Euclidian dis-

tance, spectral angle, spectral correlation, and spectral information divergence were

employed to build the pairwise distance required in the clustering process obtain-

ing the best results with the spectral angle measure. Validity indexes were studied

for the estimation of the number of spectral endmember classes. Dunn, Davies and

Bouldin, Kim, SD and CH indexes were used. The best results were obtained using

the Davies and Bouldin index with complete linkage and spectral angle measure.

A full evaluation of the unsupervised unmixing approach was conducted using

synthetic data and real hyperpectral images. Synthetic data allows the quantitative

assessment of the proposed approach under a controlled environment. However, it is

very important to recognize the difficulties to simulate image with controlled condi-

tion. Real images are affected by several factors such as the spectral variability of the

materials, topographic and atmospheric effects, and noise. In addition, hyperspec-

tral images do not only have spectral information, these images keep information

about the spatial distribution of materials. Two synthetic data sets were used for the

quantitative assessment of the proposed approach. The first data set has a simple

spatial distribution that allows the evaluation of the proposed approach with differ-

ent noise levels. The results showed that the nonlinear diffusion filtering used in the

first step of the proposed approach helps to reduce the noise effects. The second data
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set simulated a known spatial distribution by using extracted abundances from real

hyperspectral images. The results from this data set showed larger errors for some

of the endmembers that were due to the difference of amplitude between the orig-

inal endmembers (i.e. endmembers used to generate the image) and the extracted

spectra.

Futhermore, hyperspectral imagery from mining and forest scenarios were em-

ployed for a quantitative evaluation of the proposed unmixing technique. It is impor-

tant to recognize that there are great limitations to perform quantitative assessment

of unmixing results. Most of the time, only classification maps and spectral libraries

are available for hyperspectral dataset. Even the spectral libraries are usually labora-

tory spectra. Thus, a new assessment methodology was developed to use published

classification maps for a quantitative evaluation of the proposed unmixing approach.

First, the assessment methodology uses a qualitative comparison between the esti-

mated abundances and the information classes on the scene. It is assumed that the

classification maps provide information about the distribution of materials, and one

or more spectral endmember classes can be related to the information classes within

the classification map. Unmixing results for A.P.Hill and Cuprite were related to

several materials in the reference classification maps showing consistency among

spectral endmember and reference spectra. Once the relation between spectral end-

member classes and information classes was established, the quantitative assessment

is performed using three statistics inspired by detection theory: true positive rate,

false positive rate, and false negative rate. The proposed unmixing approach ob-

tained good true positive rates for most of the A.P. Hill and Cuprite classes. The

false positive rate were high. But, the study of the estimated abundance of false posi-

tive pixels showed that these were smaller than the abundance estimated for the true

positive pixels. In addition, the assessment methodology generates a classification

map using the estimated abundances and a majority vote criterion. The classifica-

tion maps obtained for A.P. Hill and Cuprite show good correspondence with the
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published classification maps. The between-class agreement and assignment-class

agreement were used to compare the generated classification map and the published

ones.

The proposed approach was compared with SMACC, VCA and RBSPP combined

with VCA. SMACC and VCA are selected since these are widely used geometri-

cal approaches that only require the number of endmembers. Instead, RBSPP is a

spatial-spectral pre-processing step that does not use kernels like the proposed ap-

proach. The three algorithms assume that endmembers are pixels in the image. Al-

though the developed algorithm uses only information contained in the image and

has few free parameters such as the diffusion parameter and the maximum num-

ber of clusters, the obtained results were excellent for A.P. Hill. For Cuprite, the

results obtained from the four unmixing algorithms are comparable. The unmixing

results for the A.P. Hill image significantly outperform results obtained with other

unmixing techniques. The consistency among spectral endmember classes and the

classification map showed the capabilities of the proposed approach for applications

were little a priori information about the basic spectral components is available.

The proposed approach allowed the implementation of a computing system for full

unsupervised unmixing analysis of hyperspectral imagery. Important parameters

such as the scale and the number of spectral endmember classes are automatically

determined using the proposed entropy change criterion and the Davies and Bouldin

validity index respectively.

The main contribution of this work was the integration of multiscale representa-

tion, multigrid, and clustering for the development of a new approach for the unmix-

ing analysis of hyperspectral imagery. Many of these techniques are widely used in

image processing. But, there is no previous work that uses multiscale representation

and multigrid techniques for the unmixing analysis. Multiscale representation and

the multigrid allow the integration of spatial information in the unmixing analysis

without using spatial windows. In addition, the multigrid structure allows the spec-
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tral endmember extraction without the estimation of the number of endmembers.

The proposed unmixing approach provides useful information (spectral endmember

classes and abundances) but these products still require further interpretation and

analysis by experts.

10.2 future work

The developed computational system used as input a family of smoothed images

obtained from the Duarte’s algorithm for multiscale representation of hyperspectral

imagery using nonlinear diffusion [26]. However, there are several methods that

can produce a family of smoothed images such as those reviewed by Duarte et al.

[74] and tensor anisotropic difussion [106]. A study about the influence of the dif-

fusion method over the extracted endmembers should be addressed in the future.

The nonlinear diffusion step is a very important component inside the proposed

approach. An interesting question to address in the future is how different meth-

ods change the number of extracted endmembers and their shapes using the pro-

posed methodology.

Sometimes, spectral endmember class extraction using clustering produced clus-

ters with mixed components such as the generated for the False Leaf image shown

in Section4.3.3.2. Feature selection and extraction techniques can be studied in the fu-

ture to improve the clustering results. Methods such as Fisher discriminant analysis

[112], principal components [2], SVDSS [113], and information divergence projection

pursuit [114] could be used to reduce the number of features, and improve the spec-

tral endmember classes.

On the other hand, the developed unmixing approach uses image-derived end-

members. It means that images collected in different conditions can result in differ-
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ent spectral endmembers. In the future, it can be study how the spectral endmembers

compare with the extracted from images collected in different conditions.

During the assessment of the proposed approach, it was noted the difficulties to

perform quantitative validation of spatial-spectral unmixing algorithms. This work

used both synthetic data and real imagery for the quantitative assessment. However,

the synthetic data do not reach the complexity found in real images. Furthermore,

the quantitative analysis used actual data is limited to classification maps and spec-

tral libraries. There are no images with detailed abundance maps that allow a direct

quantitative assessment. Although a quantitative methodology was developed, it

is important to continue studing quantitative methodologies and generation of syn-

thetic data in the future that allow a direct and complete assessment of unmixing

results.
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