DEPARTAMENTO DE FISICA **Recinto Universitario de Mayagüez** Universidad de Puerto Rico Syllabus for the Course: **FISI-3171** Second Sem. 2016-17

Text: Physics for Scientists & Engineers Douglas C. Giancoli / Fourth Edition

1-There will be 4 partial exams and 1 final exam.

2-Profesor will explain the way to compute the final grade of the course.

3-Assistance to classes is obliged. Assistance will affect the final grade.

4-Last day for partial withdraw is Thursday the 22th of April.

5-Pre-requisit for the course: MATE-3031.

Profesor:	Office:
Office hours:	

NOTE TO STUDENTS:

In the syllabus there are 60 lessons for the whole semester. Titles of the chapter are undermarked. Some sections of each chapter are shown too. All the sections that student must study are given for every lesson (independently that the professor could discuss them all at class).

Questions (Q) and problems (P) of Giancoli's book are given and they must be done by students as part of their individual preparation. They represent a convenient training for students in order to get C in the course. Those who wish to get an A as final result probably will require to solve more problems (from section of "General Problems" at the end of each chapter).

Chapters for each Partial Exam are written in the Syllabus, as well as the date for each exam. These dates are chosen under interdepartmental agreement in order to avoid overlapping of exams and classrooms for different disciplines. These dates cannot be moved to avoid conflicts.

In the next table, weeks are differentiated at the first column, one week in white fond and the next one in gray. Rows with XXXX represent weeks with Partial Exams (four in the whole semester).

Lección	Temas	Secciones	Preguntas (Q)	Problemas (P)
1 T	Introduction. Models, theories, laws. Measurements.	1(1-3)	2, 4, 6, 7, 8	2, 3, 4, 6, 7, 8
Jan 17	Significant figures.			
2 W	SI Units. Conversions. Order of magnitude.	1(4-7)		11, 16, 18, 19, 24, 27, 36, 37
Jan 18	Dimensional analysis.			
3 F	<u>Kinematics in One Dimension</u> . Reference frames,	2(1-4)	1, 2, 3, 4, 5, 6, 7, 8, 9,	1, 3, 5, 6, 8, 9, 11, 15, 17, 18,
Jan 20	displacement, velocity, acceleration		10	21, 22, 23, 25, 27, 29
4 M	Motion at constant acceleration. Freely falling	2(5-7)	11, 12, 13, 14, 15, 16,	31, 33, 35, 37, 41, 43, 48, 49,
Jan 23	objects. Problems.		17	51, 55, 57, 61, 63
5 T	Graphical analysis.	2(1-9)	18, 19	82, 93
Jan 24	Problems of Chap. 2.			
6 W	Kinematics in Two Dimensions.	3(1-5)	1, 6, 7, 8, 9	1, 3, 4, 5, 7, 9, 11, 13, 15
Jan 25	Vectors and its basic operations.			
7 F	Vector kinematics. Time derivative of vectors.	3(6)	2, 3, 4, 5, 10, 11	17, 19, 21, 23, 25
Jan 27	Problems.			
8 M	Projectile motion. Problems.	3(7-8)	12, 13, 14, 15, 16, 17	29, 31, 33, 35, 37, 41, 45, 46,
Jan 30				51
9 T	Relative velocity. Problems.	3(9)	18, 19, 20, 21	57, 58, 61, 63, 67, 69
Jan 31				
10 W	Dynamics in rectilinear motions.	4(1-5)	1, 2, 3, 4, 5, 6, 7, 8, 9,	1, 3, 4, 5, 7, 9, 10, 13, 17
Feb 1	Forces. Mass. Newton's laws		10, 11, 12, 13	
11 F	Weight, normal, stress. Free body diagram.	4(6-8)	14, 15, 16, 17, 18, 19,	21, 23, 27, 29,33
Feb 3	Problems.		20, 21, 22, 23	
12 M	Problems with forces. Two and three bodies systems	4(1-8)	24	35, 37, 40, 45, 46, 48, 49, 51,
Feb 6	(pulley, inclines)			54, 57
13 T	EXAM 1 (Caps. 1, 2, 3)	XXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXX
Feb 7	(Date for multisectional exams)			
14 W	Friction. Problems with friction.	5(1)	1, 2, 3, 4, 5, 6, 7, 8	1, 3, 5, 7, 9, 11, 13, 17, 19, 23,
Feb 8				28, 31
15 F	Dynamics in curvilinear motions. Circular motions:	5(2-3)	10, 11, 12, 13, 14, 15,	60, 61, 62, 34, 35, 37
Feb 10	tangential and normal accelerations; centripetal force		16	

16 M Feb 13	Problems with centripetal force.	5(4-5)	17, 18, 19, 20, 21, 22	39, 40, 41, 43, 45, 47, 51, 53, 55, 59
17 T Feb 14	Velocity dependent forces. Problems.			55, 57
18 W	<u>Gravitation</u> . Universal gravitation. Gravity near the	6(1,3,4)	1, 2, 3, 4, 5, 6, 7, 8, 9,	1, 3, 5, 7, 9, 11, 15, 23, 25, 27
19 F	Kepler's laws. Gravitational field. Types of forces in	6(5-7)	10	37, 39, 48, 49
Heb I / M	nature. Problems. HOLIDAY			
Feb 20 20 T	Work and energy. Work done by a constant force.	7(1-2)	1, 2, 3, 4, 5, 6, 7, 8, 9,	1, 3, 7, 9, 11, 16, 17, 18, 21,
Feb 21 21 W	Scalar product. Problems. (AS A MONDAY) Work done by varying force. Kinetic energy, Work	7(3-4)	10 11, 12, 13, 14, 15	22, 25 34, 35, 40, 41, 47, 51, 53, 55,
Feb 22	and energy. Problems.	8(1.2)	1 2 3 4 5 6	57, 61, 63, 65
Feb 24	nonconservative forces. Potential energies:	0(1-2)	1, 2, 3, 4, 5, 0	1, 5, 5, 6, 9
23 M	gravitatory and elastic forms. Mechanical energy and its conservation.	8(3-4)	7, 8, 9, 10, 11, 13, 15,	11, 13, 15, 16,20, 21, 22, 25
Feb 27 24 T	Problems. EXAM 2 (Caps. 4, 5, 6, 7, 8)	XXXX	17 XXXXXXXXX	XXXXXXXXXXXX
Feb 28 25 W	(Date for multisectional exams) General law of energy conservation Power	8(5-6-8)	18 19 20 22 23 24	29 31 33 36 37 62 63 65
Mar 1	Problems.	0(5-0, 0)	25 14, 16, 26, 27, 28	67 67
26 F Mar 3	Potential energy diagrams. Problems.	8(6-7)	14, 16, 26, 27, 28	45, 47, 49, 53, 57, 75, 77, 85, 87
27 M Mar 6	<u>Linear momentum.</u> Momentum and force. Momentum conservation. Collisions and impulse.	9(1-3)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	1, 3, 6, 9, 11, 13, 16, 23, 25, 28
28 T Mar 7	Elastic collisions in one dimensión. Inelastic collisions. Problems.	9(4-6)	11, 12, 13, 14, 15, 16, 17,	35, 37, 42, 45, 50, 51
29 W Mar 8	Collisions in two dimensions.	9(7)	18, 19, 20 ,21	55, 56
30 F	Center of mass and its motion.	9(8-9)	22, 23, 24, 25, 26, 27,	62, 63, 64, 65, 72, 74, 75, 77
31 M	<u>Rotational motion.</u> Kinematic angular quantities.	10(1-3)	28, 29, 30 1, 2, 3, 15	1, 3, 5, 7, 9, 15, 17, 19, 23
Mar 13	Rotational motion with constant angular acceleration.			
32 T Mar 14	Torque. Rotational dynamics. Moment of inertia. Problems.	10(4-6)	4, 5, 7, 8, 9, 11	24, 25, 27, 29, 30, 31, 33, 35, 37, 41, 47, 51
33 W Mar 15	Determining moments of inertia. Rotational kinetic	10(7-8)	13, 14	55, 56, 59, 63,65, 67
34 F Mar 17	Rolling motion. Problems.	10(9)	10, 12,	70, 71, 73, 75
35 M	Angular Momentum. Axial angular momentum for a	11(1-2)	1, 2, 3, 4, 5, 6, 7, 8, 9,	1, 3, 5, 7, 11, 23, 27
Mar 20 36 T	Solid. Vector product and torque. Angular momentum for a particle and a system of	11(3-5)	10, 11 13, 14	32, 33, 35, 37, 39, 41
Mar 21 W	particles. Angular momentum for a solid HOLIDAY			
Mar 22 37 F	Conservation of angular momentum Problems	11(6.8)	15 16 17 18	47 48 49 50 (58)
Mar 24	(Inertial forces).	12(1.2)	1 2 3 5 6 7 8 0 10	1 2 5 7 11 12 15 21
Mar 27	Problema. Equilibrium types	12(1-3)	1, 2, 3, 3, 6, 7, 8, 9, 10, 11, 12, 15	1, 5, 5, 7, 11, 15, 15, 21
39 T Mar 28	<u>Fluids.</u> Phases of matter. Density. Pressure. Atmospheric and gauge pressures. Pascal.	13(1-6)	1, 2, 3, 4, 5, 6	3, 5, 7, 8, 9, 13, 17, 21
40 W Mar 29	Archimeds'Principle. Bouyance anf pressure problems.	13(7)	7, 8, 9, 10, 11, 12, 13, 14, 15, 16	27, 29, 31, 35, 37
41 F Mar 31	Ideal fluids in motion. Continuity and Bernoulli equations. Problems	13(8-10)	17, 18, 19, 20, 21, 22	43, 45, 47, 53, 55, 59
42 M Apr 3	Oscillations. Spring-body system. Simple harmonic motion Oscillator anargy Problems	14(1-3)	1, 2, 3, 4, 5, 6, 9, 11,	1, 3, 5, 7, 11, 13, 15, 17, 25, 27, 35, 37
43 T	EXAM 3 (Caps. 9, 10, 11,12)	XXXX	XXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Apr 4 44 W	(Date for multisectional exams) Relation with circular motion. Pendulums.	14(4-6)	7, 10, 13, 14, 15	41, 43, 45, 52, 53
Apr 5 45 F	Problems. Damped oscillations. Forced oscillations. Resonance.	14(7-8)	16, 18, 19	63, 65
Apr 7 Apr 10-	Problemas of Chap. 14. HOLY WEEK	14(1-8)		
Apr 16 46 M	Wave motion Waves: characteristics types Energy	15(1-3)	1234579	1 3 5 7 9 15 17
Apr 17	Problems.	15(1 5)	10	22.25.26.21
47 1 Apr 18	Wave equation. Superposition principle. Problems.	13(4-0)	10	22, 23, 20, 31
48 W Apr 19	Reflection and transmission. Interference. Standing waves. Problems.	15(7-9)	11, 12, 13, 14, 15, 16	<i>51</i> , 41, 43, 45, 47, 49, 51, 52, 54
49 Th Apr 20	<u>Sound.</u> Characteristics. Waves of pressure. Decibels. Strings and air columns. Problems (<u>AS A FRIDAY</u>)	16(1-4)	1, 2, 3, 4, 5, 6, 7, 8, 9, 11	1, 3, 7, 13, 14, 15, 16, 19, 33, 35, 39
50 M Apr 24	Interference of sound waves. Doppler effect. Problemas.	16(6-7)	13, 15, 17, 18, 19	53, 55, 61, 63
51 T	<u>Temperature</u> . Atomic-molecular theory of matter.	17(1-4)	1, 2, 3, 4, 5, 6, 7, 9, 12, 15, 16	1, 3, 5, 7, 9, 11, 15
50 W	Thermal expansion. Prob.	17(6.0)	15, 10	20 21 22 27 41 45
52 W Apr 26	Gas law and absolute temperature. Ideal gas. Avogadro's number. Problems	1/(6-9)		29, 31, 33, 37,41,45
53 F Apr 29	<u>Kinetics theory of gases.</u> "Micro" interpretation of "temperature". Velocity distribution. Problems.	18(1-2)	1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13	1, 2, 5, 7

54 M	EXAM 4 (Caps. 13, 14, 15, 16)	XXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXX
May 1	(Fecha de examen multiseccional)			
55 T	Heat. Heat as energy transfer. Internal energy.	19(1-4)	1, 2, 3, 4, 5, 6	1, 3, 5, 7, 9, 15, 17
May 2	Specif. Heat. Calorimeter			
56 W	Phase changes. Latent heat.	19(4-5)	7, 8, 9, 10	19, 21, 22, 24
May 3	Problems			
57 F	First law of thermodynamics. Cuasiestatic processes	19(6-7)	11, 12, 13, 14, 15, 16,	27, 29, 31, 33, 35
May 5	for a gas and work in those processes. Problems.		17, 18, 19	
58 M	Molar specific heat. Adiabatic expansion of an ideal	19(8-9)	20, 21	43, 45, 51, 53
May 8	gas. Problems of Chap.19	19(1-9)		
59 T	Second law of thermodynamics. Reversible and	20(1-3)	1, 2, 3, 4, 5, 6, 7	1, 3, 6, 8, 9, 15, 17
May 9	irreversible processes. Heat engines. Carnot's cycle.			
	Eficiency.			
60 W	Entropy and the second law of thermodynamics.	20(5-6)	9, 10 11, 13, 14, 15, 16	32, 33, 35, 43, 45
May 10	Problems for ideal cycles.			

FINAL EXAM.

Martes, 17 ene-Comienzan las clases

Lunes, 20 febrero-Feriado-Día de los Presidentes y de los Próceres Puertorriqueños

Lunes, 20 febrero-Feriado-Dia de los Fresidentes y de los Froceres Martes, 21 febrero- clases de lunes Miércoles, 22 marzo-Feriado-Día de la Abolición de la Esclavitud Lunes, 10 al sábado, 15 abril-Receso Académico de Semana Santa Miércoles, 19 abril-Ultimo día para bajas parciales

Jueves, 20 abril-clases de viernes

Viernes, 21 al sábado, 22 abril-Receso Acad.-Justas Interuniversitarias (Tentativo)

Jueves, 4 mayo-Ultimo día exámenes parciales

Jueves, 11 mayo-Ultimo día de clases

Viernes, 12 mayo-Periodo de Repaso

Sábado, 13 al Sábado, 20 mayo-Exámenes finales

Lunes, 22 mayo-Entrega de notas hasta la 1:00 p.m.