DEPARTAMENTO DE FISICA

Recinto Universitario de Mayagüez
Universidad de Puerto Rico
Syllabus for the Course:
FISI-3171
Second Sem. 2016-17

Text: Physics for Scientists \& Engineers
 Douglas C. Giancoli / Fourth Edition

1-There will be 4 partial exams and 1 final exam.
2-Profesor will explain the way to compute the final grade of the course.
3-Assistance to classes is obliged. Assistance will affect the final grade.
4-Last day for partial withdraw is Thursday the 22th of April.
5-Pre-requisit for the course: MATE-3031.

Profesor:	Office:
Office hours:	

NOTE TO STUDENTS:

In the syllabus there are 60 lessons for the whole semester. Titles of the chapter are undermarked. Some sections of each chapter are shown too. All the sections that student must study are given for every lesson (independently that the professor could discuss them all at class).

Questions (Q) and problems (P) of Giancoli's book are given and they must be done by students as part of their individual preparation. They represent a convenient training for students in order to get C in the course. Those who wish to get an A as final result probably will require to solve more problems (from section of "General Problems" at the end of each chapter).

Chapters for each Partial Exam are written in the Syllabus, as well as the date for each exam. These dates are chosen under interdepartmental agreement in order to avoid overlapping of exams and classrooms for different disciplines. These dates cannot be moved to avoid conflicts.

In the next table, weeks are differentiated at the first column, one week in white fond and the next one in gray. Rows with XXXX represent weeks with Partial Exams (four in the whole semester).

Lección	Temas	Secciones	Preguntas (Q)	Problemas (P)
$\begin{array}{ll} \hline 1 & \mathrm{~T} \\ \text { Jan } 17 \end{array}$	Introduction. Models, theories, laws. Measurements. Significant figures.	1(1-3)	2, 4, 6, 7, 8	2, 3, 4, 6, 7, 8
$\begin{array}{lr} \hline 2 & W \\ \text { Jan } & 18 \end{array}$	SI Units. Conversions. Order of magnitude. Dimensional analysis.	1(4-7)		11, 16, 18, 19, 24, 27, 36, 37
$\begin{array}{lc} \hline 3 & F \\ \text { Jan } 20 \end{array}$	Kinematics in One Dimension. Reference frames, displacement, velocity, acceleration	2(1-4)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10 \end{aligned}$	$\begin{aligned} & 1,3,5,6,8,9,11,15,17,18, \\ & 21,22,23,25,27,29 \end{aligned}$
$\begin{array}{lr} \hline 4 & \mathrm{M} \\ \text { Jan } 23 \\ \hline \end{array}$	Motion at constant acceleration. Freely falling objects. Problems.	2(5-7)	$\begin{aligned} & 11,12,13,14,15,16, \\ & 17 \end{aligned}$	$\begin{aligned} & \text { 31, 33, 35, 37, 41, 43, 48, 49, } \\ & 51,55,57,61,63 \end{aligned}$
$\begin{array}{lc} \hline 5 & \mathrm{~T} \\ \text { Jan } 24 \\ \hline \end{array}$	Graphical analysis. Problems of Chap. 2.	2(1-9)	18, 19	82, 93
$\begin{array}{lr} \hline 6 & \text { W } \\ \text { Jan } 25 \\ \hline \end{array}$	Kinematics in Two Dimensions. Vectors and its basic operations.	3(1-5)	1, 6, 7, 8, 9	1, 3, 4, 5, 7, 9, 11, 13, 15
$\begin{array}{ll} \hline 7 & \mathrm{~F} \\ \text { Jan } 27 \end{array}$	Vector kinematics. Time derivative of vectors. Problems.	3(6)	2, 3, 4, 5, 10, 11	17, 19, 21, 23, 25
$\begin{array}{lr} \hline 8 & \mathrm{M} \\ \text { Jan } 30 \\ \hline \end{array}$	Projectile motion. Problems.	3(7-8)	12, 13, 14, 15, 16, 17	$\begin{aligned} & 29,31,33,35,37,41,45,46, \\ & 51 \end{aligned}$
$\begin{array}{lr} \hline 9 & \mathrm{~T} \\ \text { Jan } 31 \end{array}$	Relative velocity. Problems.	3(9)	18, 19, 20, 21	57, 58, 61, 63, 67, 69
$\begin{aligned} & 10 \mathrm{~W} \\ & \mathrm{Feb} 1 \\ & \hline \end{aligned}$	Dynamics in rectilinear motions. Forces. Mass. Newton's laws	4(1-5)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10,11,12,13 \end{aligned}$	1, 3, 4, 5, 7, 9, 10, 13, 17
$\begin{array}{ll} \hline 11 \mathrm{~F} \\ \text { Feb } 3 \\ \hline \end{array}$	Weight, normal, stress. Free body diagram. Problems.	4(6-8)	$\begin{aligned} & 14,15,16,17,18,19, \\ & 20,21,22,23 \\ & \hline \end{aligned}$	21, 23, 27, 29,33
$\begin{aligned} & \hline 12 \mathrm{M} \\ & \text { Feb } 6 \end{aligned}$	Problems with forces. Two and three bodies systems (pulley, inclines)	4(1-8)	24	$\begin{aligned} & \hline 35,37,40,45,46,48,49,51, \\ & 54,57 \end{aligned}$
$\begin{array}{ll} \hline 13 & \mathrm{~T} \\ \text { Feb } 7 \\ \hline \end{array}$	EXAM 1 (Caps. 1, 2, 3) (Date for multisectional exams)	XXXX	XXXXXXXXXXXXX	XXXXXXXXXXXX
$\begin{aligned} & \hline 14 \mathrm{~W} \\ & \text { Feb } 8 \\ & \hline \end{aligned}$	Friction. Problems with friction.	5(1)	1, 2, 3, 4, 5, 6, 7, 8	$\begin{aligned} & 1,3,5,7,9,11,13,17,19,23, \\ & 28,31 \end{aligned}$
$\begin{array}{ll} \hline 15 \mathrm{~F} \\ \text { Feb } 10 \\ \hline \end{array}$	Dynamics in curvilinear motions. Circular motions: tangential and normal accelerations; centripetal force	5(2-3)	$\begin{aligned} & 10,11,12,13,14,15, \\ & 16 \end{aligned}$	60, 61, 62, 34, 35, 37

16 M Feb 13	Problems with centripetal force.	5(4-5)	17, 18, 19, 20, 21, 22	$\begin{aligned} & \text { 39, 40, 41, 43, 45, 47, 51, 53, } \\ & 55,59 \end{aligned}$
$\begin{aligned} & 17 \mathrm{~T} \\ & \text { Feb } 14 \\ & \hline \end{aligned}$	Velocity dependent forces. Problems.			
$\begin{aligned} & \hline 18 \mathrm{~W} \\ & \text { Feb } 15 \end{aligned}$	Gravitation. Universal gravitation. Gravity near the Earth's surface. Satellites. (Monday day)	6(1,3,4)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10 \end{aligned}$	1, 3, 5, 7, 9, 11, 15, 23, 25, 27
$\begin{array}{ll} \hline 19 \mathrm{~F} \\ \text { Feb } 17 \\ \hline \end{array}$	Kepler's laws. Gravitational field. Types of forces in nature. Problems.	6(5-7)	12, 13, 14, 16, 23	37, 39, 48, 49
$\begin{array}{r} \mathrm{M} \\ \text { Feb } 20 \\ \hline \end{array}$	HOLIDAY			
$\begin{array}{rr} \hline 20 & \mathrm{~T} \\ \text { Feb } 21 \\ \hline \end{array}$	Work and energy. Work done by a constant force. Scalar product. Problems. (AS A MONDAY)	7(1-2)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10 \end{aligned}$	$\begin{aligned} & 1,3,7,9,11,16,17,18,21, \\ & 22,25 \end{aligned}$
$\begin{array}{ll} \hline 21 \mathrm{~W} \\ \text { Feb } 22 \\ \hline \end{array}$	Work done by varying force. Kinetic energy. Work and energy. Problems.	7(3-4)	11, 12, 13, 14, 15	$\begin{aligned} & 34,35,40,41,47,51,53,55, \\ & 57,61,63,65 \end{aligned}$
$\begin{aligned} & 22 \mathrm{~F} \\ & \text { Feb } 24 \end{aligned}$	Conservation of energy. Conservative and nonconservative forces. Potential energies: gravitatory and elastic forms.	8(1-2)	1, 2, 3, 4, 5, 6	1, 3, 5, 8, 9
$\begin{array}{ll} \hline 23 \mathrm{M} \\ \text { Feb } 27 \\ \hline \end{array}$	Mechanical energy and its conservation. Problems.	8(3-4)	$\begin{aligned} & 7,8,9,10,11,13,15, \\ & 17 \end{aligned}$	11, 13, 15, 16, 20, 21, 22, 25
$\begin{array}{ll} \hline 24 & \mathrm{~T} \\ \text { Feb } 28 \\ \hline \end{array}$	EXAM 2 (Caps. 4, 5, 6, 7, 8) (Date for multisectional exams)	XXXX	XXXXXXXXX	XXXXXXXXXXXXX
$\begin{aligned} & 25 \mathrm{~W} \\ & \text { Mar } 1 \end{aligned}$	General law of energy conservation. Power. Problems.	8(5-6, 8)	$\begin{aligned} & \begin{array}{l} 18,19,20,22,23,24, \\ 25 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 29, 31, 33, 36, 37, 62, 63, 65, } \\ & 67 \end{aligned}$
$\begin{aligned} & 26 \mathrm{~F} \\ & \text { Mar } 3 \\ & \hline \end{aligned}$	Gravitational potential energy and escape velocity. Potential energy diagrams. Problems.	8(6-7)	14, 16, 26, 27, 28	$\begin{aligned} & 45,47,49,53,57,75,77,85, \\ & 87 \end{aligned}$
27 M Mar 6	Linear momentum. Momentum and force. Momentum conservation. Collisions and impulse.	9(1-3)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10 \end{aligned}$	$\begin{aligned} & 1,3,6,9,11,13,16,23,25, \\ & 28 \end{aligned}$
$\begin{aligned} & \hline 28 \mathrm{~T} \\ & \text { Mar } 7 \\ & \hline \end{aligned}$	Elastic collisions in one dimensión. Inelastic collisions. Problems.	9(4-6)	$\begin{aligned} & 11,12,13,14,15,16, \\ & 17, \end{aligned}$	35, 37, 42, 45, 50, 51
$\begin{aligned} & \hline 29 \mathrm{~W} \\ & \mathrm{Mar} 8 \\ & \hline \end{aligned}$	Collisions in two dimensions. Problems.	9(7)	18, 19, 20 ,21	55, 56
$\begin{aligned} & \hline 30 \mathrm{~F} \\ & \mathrm{Mar} 10 \end{aligned}$	Center of mass and its motion. Problems.	9(8-9)	$\begin{aligned} & 22,23,24,25,26,27, \\ & 28,29,30 \\ & \hline \end{aligned}$	62, 63, 64, 65, 72, 74, 75, 77
$\begin{array}{ll} 31 \quad \text { M } \\ \text { Mar } 13 \end{array}$	Rotational motion. Kinematic angular quantities. Rotational motion with constant angular acceleration.	10(1-3)	1, 2, 3, 15	$1,3,5,7,9,15,17,19,23$
$\begin{aligned} & \hline 32 \mathrm{~T} \\ & \text { Mar } 14 \\ & \hline \end{aligned}$	Torque. Rotational dynamics. Moment of inertia. Problems.	10(4-6)	4, 5, 7, 8, 9, 11	$\begin{aligned} & \text { 24, 25, 27, 29, 30, 31, 33, 35, } \\ & 37,41,47,51 \end{aligned}$
$\begin{aligned} & 33 \quad \mathrm{~W} \\ & \text { Mar } 15 \end{aligned}$	Determining moments of inertia. Rotational kinetic energy. Problems.	10(7-8)	13, 14	55, 56, 59, 63,65, 67
$\begin{aligned} & 34 \mathrm{~F} \\ & \text { Mar } 17 \\ & \hline \end{aligned}$	Rolling motion. Problems. Problems of Chap. 10.	$\begin{aligned} & \hline 10(9) \\ & 10(1-9) \\ & \hline \end{aligned}$	10, 12,	70, 71, 73, 75
$\begin{aligned} & 35 \mathrm{M} \\ & \text { Mar } 20 \end{aligned}$	Angular Momentum. Axial angular momentum for a solid. Vector product and torque.	11(1-2)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 10,11 \end{aligned}$	1, 3, 5, 7, 11, 23, 27
$\begin{aligned} & \hline 36 \mathrm{~T} \\ & \text { Mar } 21 \\ & \hline \end{aligned}$	Angular momentum for a particle and a system of particles. Angular momentum for a solid	11(3-5)	13, 14	32, 33, 35, 37, 39, 41
$\begin{gathered} \mathrm{W} \\ \text { Mar } 22 \\ \hline \end{gathered}$	HOLIDAY			
$\begin{aligned} & \hline 37 \mathrm{~F} \\ & \text { Mar } 24 \\ & \hline \end{aligned}$	Conservation of angular momentum. Problems. (Inertial forces).	11(6, 8)	15, 16, 17, 18,	47, 48, 49, 50, (58)
$\begin{aligned} & \hline 38 \mathrm{M} \\ & \text { Mar } 27 \\ & \hline \end{aligned}$	Static Equilibrium. Conditions for equilibrium. Problema. Equlibrium types	12(1-3)	$\begin{aligned} & 1,2,3,5,6,7,8,9,10, \\ & 11,12,15 \end{aligned}$	1, 3, 5, 7, 11, 13, 15, 21
$\begin{array}{lc} \hline 39 & \text { T } \\ \text { Mar } 28 \\ \hline \end{array}$	Fluids. Phases of matter. Density. Pressure. Atmospheric and gauge pressures. Pascal.	13(1-6)	1, 2, 3, 4, 5, 6	3, 5, 7, 8, 9, 13, 17, 21
$\begin{aligned} & \hline 40 \quad \text { W } \\ & \text { Mar } 29 \\ & \hline \end{aligned}$	Archimeds'Principle. Bouyance anf pressure problems.	13(7)	$7,8,9,10,11,12,13$ $14,15,16$	27, 29, 31, 35, 37
$\begin{array}{lc} \hline 41 & \mathrm{~F} \\ \text { Mar } 31 \\ \hline \end{array}$	Ideal fluids in motion. Continuity and Bernoulli equations. Problems.	13(8-10)	17, 18, 19, 20, 21, 22	43, 45, 47, 53, 55, 59
42 M Apr 3	Oscillations. Spring-body system. Simple harmonic motion. Oscillator energy. Problems.	14(1-3)	$\begin{aligned} & 1,2,3,4,5,6,9,11, \\ & 12 \end{aligned}$	$\begin{aligned} & 1,3,5,7,11,13,15,17,25, \\ & 27,35,37 \end{aligned}$
$\begin{array}{r} 43 \mathrm{~T} \\ \text { Apr } 4 \\ \hline \end{array}$	EXAM 3 (Caps. 9, 10, 11,12) (Date for multisectional exams)	XXXX	XXXXXXXXX	XXXXXXXXXXXXX
$\begin{aligned} & \hline 44 \mathrm{~W} \\ & \text { Apr } 5 \\ & \hline \end{aligned}$	Relation with circular motion. Pendulums. Problems.	14(4-6)	7, 10, 13, 14, 15	41, 43, 45, 52, 53
$\begin{aligned} & 45 \mathrm{~F} \\ & \text { Apr } 7 \\ & \hline \end{aligned}$	Damped oscillations. Forced oscillations. Resonance Problemas of Chap. 14.	$\begin{aligned} & 14(7-8) \\ & 14(1-8) \\ & \hline \end{aligned}$	16, 18, 19	63, 65
$\begin{aligned} & \hline \text { Apr 10- } \\ & \text { Apr } 16 \\ & \hline \end{aligned}$	HOLY WEEK			
$\begin{aligned} & \hline 46 \mathrm{M} \\ & \text { Apr } 17 \\ & \hline \end{aligned}$	Wave motion. Waves: characteristics, types. Energy. Problems.	15(1-3)	1, 2, 3, 4, 5, 7, 9	1, 3, 5, 7, 9, 15, 17
$\begin{array}{ll} \hline 47 \mathrm{~T} \\ \text { Apr } 18 \\ \hline \end{array}$	Mathematical representation of a traveling wave. Wave equation. Superposition principle. Problems.	15(4-6)	10	22, 25, 26, 31
$\begin{aligned} & 48 \mathrm{~W} \\ & \text { Apr } 19 \\ & \hline \end{aligned}$	Reflection and transmission. Interference. Standing waves. Problems.	15(7-9)	11, 12, 13, 14, 15, 16	$\begin{aligned} & 37,41,43,45,47,49,51,52 \text {, } \\ & 54 \end{aligned}$
$\begin{aligned} & 49 \mathrm{Th} \\ & \text { Apr } 20 \\ & \hline \end{aligned}$	Sound. Characteristics. Waves of pressure. Decibels. Strings and air columns. Problems (AS A FRIDAY)	16(1-4)	$\begin{aligned} & 1,2,3,4,5,6,7,8,9, \\ & 11 \end{aligned}$	$\begin{aligned} & 1,3,7,13,14,15,16,19,33, \\ & 35,39 \end{aligned}$
$\begin{aligned} & 50 \mathrm{M} \\ & \text { Apr } 24 \\ & \hline \end{aligned}$	Interference of sound waves. Doppler effect. Problemas.	16(6-7)	13, 15, 17, 18, 19	53, 55, 61, 63
$\begin{array}{lc} 51 & \mathrm{~T} \\ \text { Apr } 25 \end{array}$	Temperature. Atomic-molecular theory of matter. Temperature and thermometric scales. Zeroth Law. Thermal expansion. Prob.	17(1-4)	$\begin{aligned} & 1,2,3,4,5,6,7,9,12, \\ & 15,16 \end{aligned}$	1, 3, 5, 7, 9, 11, 15
$\begin{array}{ll} \hline 52 \quad \mathrm{~W} \\ \text { Apr } 26 \\ \hline \end{array}$	Gas law and absolute temperature. Ideal gas. Avogadro's number. Problems	17(6-9)		29, 31, 33, 37,41,45
$\begin{aligned} & 53 \mathrm{~F} \\ & \text { Apr } 29 \end{aligned}$	Kinetics theory of gases. "Micro" interpretation of "temperature". Velocity distribution. Problems.	18(1-2)	$\begin{aligned} & 1,2,3,4,5,6,8,9,10 \\ & 11,12,13 \end{aligned}$	1, 2, 5, 7

$\begin{aligned} & 54 \mathrm{M} \\ & \text { May } 1 \end{aligned}$	EXAM 4 (Caps. 13, 14, 15, 16) (Fecha de examen multiseccional)	XXXX	XXXXXXXXXXXXX	XXXXXXXXXXXX
$\begin{aligned} & 55 \mathrm{~T} \\ & \text { May } 2 \\ & \hline \end{aligned}$	Heat. Heat as energy transfer. Internal energy. Specif. Heat. Calorimeter	19(1-4)	1, 2, 3, 4, 5, 6	$1,3,5,7,9,15,17$
$\begin{aligned} & \hline 56 \mathrm{~W} \\ & \text { May } 3 \end{aligned}$	Phase changes. Latent heat. Problems	19(4-5)	7, 8, 9, 10	19, 21, 22, 24
$\begin{aligned} & \hline 57 \mathrm{~F} \\ & \text { May } 5 \\ & \hline \end{aligned}$	First law of thermodynamics. Cuasiestatic processes for a gas and work in those processes. Problems.	19(6-7)	$\begin{aligned} & 11,12,13,14,15,16, \\ & 17,18,19 \end{aligned}$	27, 29, 31, 33, 35
$\begin{aligned} & 58 \mathrm{M} \\ & \text { May } 8 \\ & \hline \end{aligned}$	Molar specific heat. Adiabatic expansion of an ideal gas. Problems of Chap. 19	$\begin{aligned} & 19(8-9) \\ & 19(1-9) \\ & \hline \end{aligned}$	20, 21	43, 45, 51, 53
$\begin{aligned} & 59 \mathrm{~T} \\ & \text { May } 9 \end{aligned}$	Second law of thermodynamics. Reversible and irreversible processes. Heat engines. Carnot's cycle. Eficiency.	20(1-3)	1, 2, 3, 4, 5, 6, 7	1, 3, 6, 8, 9, 15, 17
$\begin{aligned} & 60 \mathrm{~W} \\ & \text { May } 10 \\ & \hline \end{aligned}$	Entropy and the second law of thermodynamics. Problems for ideal cycles.	20(5-6)	9, 10 11, 13, 14, 15, 16	32, 33, 35, 43, 45

FINAL EXAM.

Martes, 17 ene-Comienzan las clases
Lunes, 20 febrero-Feriado-Día de los Presidentes y de los Próceres Puertorriqueños
Martes, 21 febrero- clases de lunes
Miércoles, 22 marzo-Feriado-Día de la Abolición de la Esclavitud
Lunes, 10 al sábado, 15 abril-Receso Académico de Semana Santa
Miércoles, 19 abril-Ultimo día para bajas parciales
Jueves, 20 abril-clases de viernes
Viernes, 21 al sábado, 22 abril-Receso Acad.-Justas Interuniversitarias (Tentativo)
Jueves, 4 mayo-Ultimo día exámenes parciales
Jueves, 11 mayo-Ultimo día de clases
Viernes, 12 mayo-Periodo de Repaso
Sábado, 13 al Sábado, 20 mayo-Exámenes finales
Lunes, 22 mayo-Entrega de notas hasta la 1:00 p.m.

