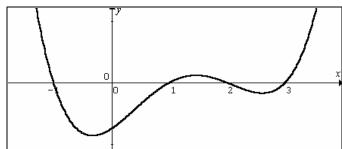

(39%)I. Seleccionar la mejor alternativa.

Indicar su respuesta en tabla que se incluye al final de esta parte.

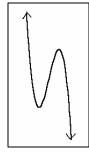
- La forma estándar de $f(x) = 2x^2 + 16x + 25$ es f(x) =1.

- **a.** $2(x+4)^2 7$ **b.** $2(x-4)^2 7$ **c.** $2(x+4)^2 + 7$ **d.** $2(x-4)^2 + 7$ **e.** ninguna de las anteriores
- Si la gráfica de $P(x) = x^4 5x^3 + 5x^2 + 5x 6$ es como sigue, 2.

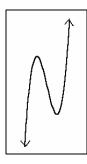


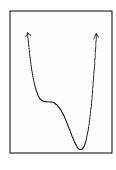
b.
$$(x-1)(x+1)(x+2)(x+3)$$

$$\mathbf{c}_{\bullet} - (x+1)(x-1)(x-2)(x-3)$$

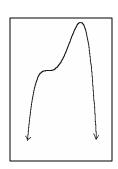

d.
$$-(x-1)(x+1)(x+2)(x+3)$$

e. ninguna de las anteriores




Utilizar P(x) = (2x - 5)(x - 2)(3 - x)(x - 5) al responder preguntas 3 y 4

- **3.** Los **ceros** de P(x) son:
 - a. $\{-\frac{5}{2}, 2, -3, -5\}$ b. $\{-\frac{5}{2}, 2, 3, -5\}$ c. $\{\frac{5}{2}, 2, 3, 5\}$
- d. $\{\frac{5}{2}, 2, -3, 5\}$ e. ninguna de las anteriores
- 4. El comportamiento en los extremos de la gráfica de P(x) es similar al de la gráfica :



a.

c.

d.

- **e.** ninguna de las anteriores
- El **residuo** que se obtiene dividir $W(x) = x^{17} 3$ entre x 1 es: 5.
 - **a.** -4
- b. -3
- c. -2

- **d.** 1
- **e.** ninguna de las anteriores
- Los posibles ceros racionales de $W(x) = 2x^5 x^3 + x + 12$ son: **6.**

 - **a.** {2, -1, 1, 12} **b.** $\left\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}\right\}$ **c.** $\left\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\right\}$
 - d. $\left\{\pm 1, \pm 2, \pm 3, \pm 4, \pm \frac{1}{2}, \pm \frac{3}{2}\right\}$ **e.** ninguna de las anteriores

7.	El número máximo de	e ceros para $P(x) = 5$	$5x^7 - 4x^6 + 3x^2 - 7$ es:
	a. 4	b. 5	c. 6
	d. 7	e. ninguna de las ant	eriores

8.
$$\sqrt{-16} =$$

a. $-2i$ b. $-4i$ c. $-2i$ d. -4 e. ninguna de las anteriores

9.
$$i^{43} =$$

a. i b. -i c. 1 d. -1

El conjunto solución de
$$x^3 + 16x = 0$$
 es ______.

a.
$$\{0, 2, 4\}$$
 b. $\{0, 4, -4\}$ **c.** $\{4i, -4i\}$ **d.** $\{0, 4i, -4i\}$

e. ninguna de las anteriores

10.

11. Si
$$P(x) = x^4 - 3x^3 + 3x^2 + 2x - 4$$
 y algunos de los ceros de $P(x)$ son: 1, -2, 1+ i , entonces otro cero de $P(x)$ es: _______.

a.
$$1-i$$
 b. $-1+i$ **c.** $-1-i$ **d.** 0 **e.** ninguna de las anteriores

Usar P(x) =
$$\frac{2x^2 - x - 3}{x^2 - 25}$$
 al responder preguntas 12 y 13

12. La ecuación de la asíntota horizontal de la gráfica de
$$P(x)$$
 es:

a.
$$y = 2$$
 b. $y = -2$ **c.** $x = 2$ **d.** $x = -2$ **e.** ninguna de las anteriores

13. Los interceptos en
$$x$$
 de la gráfica de $P(x)$ son:

a. { 5, -5} b. {2, 5, -	5} c. $\{\frac{3}{2}, -1\}$	d. $\{-\frac{3}{2}, 1\}$
-------------------------	-----------------------------	---------------------------------

e. ninguna de las anteriores

Sus respuestas son:

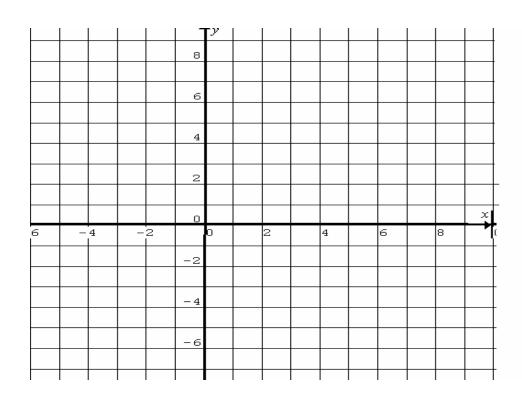
1	2	3	4	5	6	7	8	9	10	11	12	13

(21%)II. Utilizar el espacio provisto para indicar la respuesta correcta, <u>solamente la respuesta</u>.

1. Las coordenadas del vértice de la gráfica de $f(x) = 2(x-3)^2 + 7$ son:	1.
2. La gráfica de f(x) = -3x² +2x - 4 tiene un punto (máximo o mínimo):	2.

Usar la siguiente división sintética para responder preguntas 3-5

3. El cociente que se obtiene al dividir $2x^3 + x^2 - 7x - 6$ entre x-2 es	3.
4. $\operatorname{Si} \mathbf{P}(\mathbf{x}) = 2\mathbf{x}^3 + \mathbf{x}^2 - 7\mathbf{x} - 6$, entonces $\mathbf{P}(2) =$	4.
5. La factorización completa de $P(x) = 2x^3 + x^2 - 7x - 6$ es:	5.


6.	Si al dividir $f(x) = x^2 + 2x + 5w$ por $x - 3$ el residuo que se obtiene es 35, entonces el valor de w es:	6.
7.	El conjugado de $-7-6i$ es:	7.

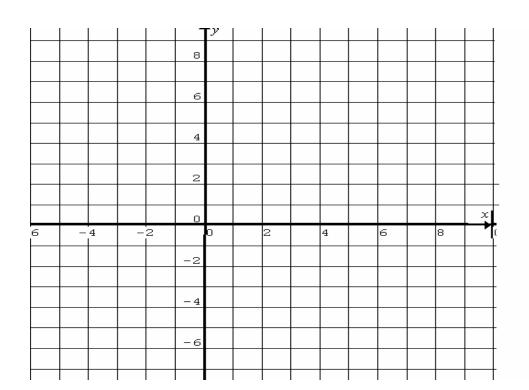
III. <u>Mostrar todo su trabajo</u> en las partes siguientes:

(10%) 1. Conseguir todos los ceros de $P(x) = x^4 + x^3 + 7x^2 + 9x - 18$

Ceros son:	

(10%) 2. Hacer la gráfica de
$$P(x) = \frac{1}{2}(x-3)(1-x)(x+2)$$

(8%) 3. Usar
$$y = f(x) = \frac{3-x}{x-2}$$
 al contestar partes $a - e$.


a. El intercepto en x es:

b.El intercepto en y es:

c. La ecuación de la asíntota horizontal de la gráfica es:

d.Las ecuación de las asíntota vertical de la gráfica es:

e. Hacer la gráfica

(8%) 4. Descomponer en fracciones parciales $y = \frac{7x-1}{x^2-2x-3}$.

$$(8\%)5.$$
 Si $Z_1 = 2 + 3i$ y $Z_2 = 5 - 4i$ entonces:

a.
$$7 Z_1 + Z_2 =$$

b.
$$\frac{\mathbf{Z}_1}{\mathbf{Z}_2} =$$