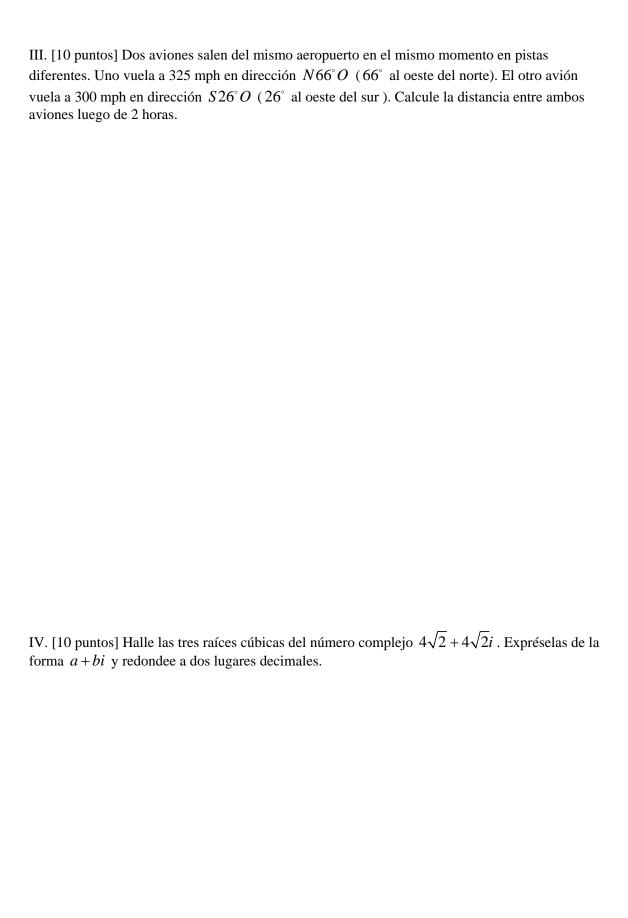
MATE 3172 Precálculo II para Ingenieros 21 de marzo de 2006	Sección	Núm. Ident
EXAMEN II		
PARTE A (SE PERMITE EL USO DE CALCULADORA GRÁFICA) [Tiempo sugerido: 40 minutos]		
I. [12 puntos] En el triángulo que se muestra, halle las medidas del ángulo $oldsymbol{eta}$, y los lados a y b:		
a) La medida del ángulo β (en grados) es		
b) La medida del lado a es aproximadamente igual a		
c) La medida del lado a es aproximadamente igual a		
d) El área del triángulo es aproximadamente igual a		

II. [10 puntos] Dos torres de observación contra incendios se encuentran a 20 millas de distancia, con la torre B directamente al este de la torre A. Ambas torres detectan un fuego en una loma localizada hacia el norte. El fuego se encuentra a 50 al este del norte de la torre A, y a 36 al oeste del norte de la torre B. Halle la distancia entre el fuego y la torre A. (Ver el dibujo)



(NO SE PERMITE EL USO DE CALCULADORA GRÁFICA) PARTE B

[Tiempo sugerido: 50 minutos]

V. [45 puntos] Seleccione la mejor alternativa. Escriba su respuesta en el examen y en la hoja de contestaciones.

_____ 1. La expresión $\tan^{-1} t$ representa el ángulo cuya tangente es t en el intervalo siguiente:

- A. $[0, 2\pi]$
- B. $(0,2\pi)$
- C. $[0, \pi]$

- D. $(0,\pi)$
- E. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- F. $(-\frac{\pi}{2}, \frac{\pi}{2})$

____ 2. El dominio de la función $\cos^{-1} t$ es

- A. $[0,\pi]$ B. $(0,\pi)$ C. $[-\frac{\pi}{2},\frac{\pi}{2}]$ D. [-1,1] E. [0,1]

_____ 3. Un ángulo θ (en radianes) en el cuarto cuadrante tal que $\cos \theta = \frac{2}{3}$ es $\theta \approx$

- A. 5.442
- B. 3.983 C. 2.301
- D. 0.841

_____4. Un ángulo θ (en radianes) en el tercer cuadrante tal que $\cos \theta = -\frac{1}{3}$ es $\theta =$

- A. $\cos^{-1}(-\frac{1}{3})$ B. $\cos^{-1}(\frac{1}{3})$ C. $\pi + \cos^{-1}(-\frac{1}{3})$

- D. $\pi \cos^{-1}(-\frac{1}{3})$ E. $2\pi + \cos^{-1}(-\frac{1}{3})$ F. $2\pi \cos^{-1}(-\frac{1}{3})$

_ 5. ¿Cuántos triángulos ABC, rotulados de la forma tradicional, se pueden construir con las medidas a = 5, b = 10 y $\alpha = 45^{\circ}$?

- A. 4
- B. 3
- C. 2
- D. 1
- E. 0

Para contestar los ejercicios 6-8, use los números complejos z = -1 + i, $w = 10cis(120^\circ)$ y $v = 2cis(30^\circ).$

____ 6. La forma trigonométrica de z es

- A. 1*cis*(45°)
- B. 1*cis*(135°) C. –1*cis*(45°)
- D. $-1cis(135^{\circ})$
- E. $\sqrt{2}cis(45^{\circ})$
- F. $\sqrt{2}cis(135^{\circ})$

_____ 7. La forma algebraica de w es

- A. $-5-5\sqrt{3}i$ B. $-5+5\sqrt{3}i$ C. $5-5\sqrt{3}i$ D. $-5\sqrt{3}-5i$ E. $-5\sqrt{3}+5i$ F. $5\sqrt{3}-5i$

_____ 8. $\frac{w}{v} =$

- A. 5*cis*(4°)
- B. 5*cis*(90°)
- C. 5cis(150°)

- D. 8*cis*(4°)
- E. 8*cis*(90°)
- F. 8cis(150°)

9. Al simplificar la expresión $(\cos t - \sin t)^2$, se obtiene la siguiente expresión: A. $1 + \operatorname{sen}(2t)$ B. $1-\sin(2t)$ C. cos(2t)E. -1 D. $-\cos(2t)$ $_10. \text{ sen}(40^{\circ}) =$ C. $sen^2(20^\circ) - cos^2(60^\circ)$ A. 2sen(20°) B. 2cos(20°) F. $\cos^2(20^\circ) - \sin^2(20^\circ)$ D. $sen(20^\circ)cos(20^\circ)$ E. 2sen(20°) cos(20°) Para contestar los ejercicios 11-13, use los puntos P(-1, 2, -3), Q(0, 4, -5) y R(-1, -7, -3). ____11. La distancia entre P y Q es B. $\sqrt{101}$ D. $\sqrt{69}$ C. 69 A. 101 E. 9 F. 3 ___12. El vector \overrightarrow{RQ} , que comienza en R y termina en Q, es A. $\langle -1, -3, -8 \rangle$ B. $\langle 1, 3, 8 \rangle$ C. $\langle -1, -11, 2 \rangle$ D. $\langle 1, 11, -2 \rangle$ E. $\langle 0, -28, 15 \rangle$ F. $\langle 0, 28, -15 \rangle$

Para contestar los ejercicios 14-17, use los vectores $\vec{a} = \langle 1, 2, 3 \rangle$ y $\vec{b} = \langle 0, -3, 4 \rangle$.

____14. La magnitud de \vec{a} es

A.
$$\sqrt{6}$$
 B. 6 C. $\sqrt{11}$ D. 11 E. $\sqrt{14}$ F. 14

_____15. El resultado de sumar \vec{a} y \vec{b} es

A.
$$\langle 0, -6, 12 \rangle$$
 B. $\langle 1, 5, -1 \rangle$ C. $\langle -1, 5, 1 \rangle$ D. $\langle 1, -1, 7 \rangle$ E. $\langle -1, 1, -7 \rangle$

_____16. Uno de los siguientes enunciados es **FALSO**. Diga cuál.

A.
$$\vec{b} = -3\vec{j} + 4\vec{k}$$

B. $\vec{a} - \vec{b} = (-\vec{b}) + \vec{a}$
C. \vec{a} es paralelo a $4\vec{a}$

D.
$$\vec{i}$$
 es paralelo a \vec{j}

E. $-4\vec{a}$ apunta en la dirección contraria de \vec{a}

____17. El vector unitario que apunta en la misma dirección de \vec{b} es

A.
$$\left\langle 0, \frac{3}{5}, \frac{-4}{5} \right\rangle$$
B. $\left\langle 0, \frac{-3}{5}, \frac{4}{5} \right\rangle$
C. $\left\langle 0, \frac{3}{25}, \frac{-4}{25} \right\rangle$
D. $\left\langle 0, \frac{-3}{25}, \frac{4}{25} \right\rangle$
E. $\left\langle 0, \frac{3}{\sqrt{5}}, \frac{-4}{\sqrt{5}} \right\rangle$
F. $\left\langle 0, \frac{-3}{\sqrt{5}}, \frac{4}{\sqrt{5}} \right\rangle$

_____18. Todos los puntos (x,y,z) en el plano xz tienen la siguiente característica:

A.
$$x = 0$$
 B. $y = 0$ C. $z = 0$ D. $x = z$ E. $x = z = 0$

VI. [8 puntos] Resuelva la ecuación trigonométrica $\cos^2 x = \cos x$.

VII. [5 puntos]