Universidad de Puerto Rico en Mayagüez Departamento de Matemáticas

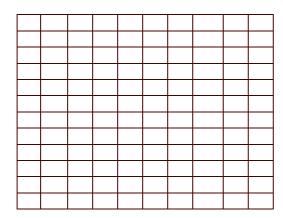
EXAMEN III EN MATE 3172

Nombre:		Seccion:
Número de estudiante:	Prof	Fecha:
I. INSTRUCCIONES: Resuelva los TRABAJO para darle crédito. (64		MOSTRANDO TODO SU
1. Resuelva el siguiente sistema (9 p		
	$\begin{cases} x^2 + y^2 = 16 \\ y = 4 - x \end{cases}$	

2. Resuelva el siguiente sistema por el método de reducción a matriz triangular (10 puntos):

$$x-y = 2$$

$$-2x + 4z = -4$$


$$y+3z = 10$$

3. Halle la descomposición en fracciones parciales de
$$\frac{x^2-3}{x(x^2+1)}$$
 (10 puntos)

4. Un rectángulo tiene un área de 143 pies cuadrados y su perímetro mide 48 pies. Halle su largo y su ancho. (10 puntos)

- 5. Dada la ecuación $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{16} = 1$, halle:

 - a) el centro de la elipse______ y _____ c) los extremos del eje menor_____ y ____
 - d) los focos _____ y ____ e) Haga la gráfica

II. INSTRUCCIONES: En los problemas del 1 al 17 seleccione la mejor alternativa y marque la letra correspondiente en la hoja de contestaciones (51 puntos)

1. Del sistema de ecuaciones 2y = -10x + 20

se puede afirmar que es:

$$y = -5x + 10$$

a. consistente e independiente

c. inconsistente

b. consistente y dependiente

d. ninguna de las anteriores

2. El sistema de ecuaciones 2x - 4y = 20

$$x - 2y = 0$$

a. Tiene dos soluciones

c. No tiene solución

b. Tiene una solución

d. Tiene infinitas soluciones

3. La matriz aumentada asociada a un sistema de ecuaciones es: $\begin{pmatrix} 2 & 3 & | & 4 \\ 0 & 1 & | & 0 \end{pmatrix}$

De este sistema se puede afirmar que:

a. Tiene una solución

c. Tiene dos soluciones

b. No tiene una solución

d. Tiene infinitas soluciones

- 4. Si la dimensión de la matriz A es 3x2 y la dimensión de la matriz B es 3x5, entonces el producto AB:
 - a. tiene una dimensión 5x2

c. no puede efectuarse

b. tiene una dimensión 3x5

d. tiene una dimensión 2x5

5. Si $A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ y $B = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, entonces $AB = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$

a.
$$\begin{pmatrix} -1 & -1 \\ 4 & 6 \end{pmatrix}$$

c. $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$

b.
$$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

d. no puede efectuarse

6. De las siguientes, la matriz que no tiene inversa es:

a.
$$\begin{pmatrix} 6 & 3 \\ 4 & 2 \end{pmatrix}$$

c.
$$\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$

b.
$$\begin{pmatrix} 6 & 3 \\ -4 & 2 \end{pmatrix}$$

d.
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

7. Si
$$\begin{pmatrix} x+y & 14 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2x-y \\ 0 & 2 \end{pmatrix}$$
, entonces:
a. $x = 6$ y $y = 2$
b. $x = 4$ y $y = 14$

a.
$$x = 6 \ y \ y = 2$$

c.
$$x = 6$$
 y $y = -2$

b.
$$x = 4 \text{ y y} = 14$$

d. Falta información.

8. El cofactor asociado al elemento
$$a_{32}$$
 en la matriz $A = \begin{pmatrix} -3 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 6 \end{pmatrix}$ es :

9. La matriz inversa de A =
$$\begin{pmatrix} 6 & 3 \\ -4 & 2 \end{pmatrix}$$

a. es
$$\begin{pmatrix} -\frac{1}{4} & \frac{1}{6} \\ -\frac{1}{8} & -\frac{1}{12} \end{pmatrix}$$

b. es $\begin{pmatrix} \frac{1}{12} & -\frac{1}{8} \\ \frac{1}{6} & \frac{1}{4} \end{pmatrix}$

c. es
$$\begin{pmatrix} \frac{1}{12} & \frac{1}{8} \\ -\frac{1}{6} & \frac{1}{4} \end{pmatrix}$$

b. es
$$\begin{pmatrix} \frac{1}{12} & -\frac{1}{8} \\ \frac{1}{6} & \frac{1}{4} \end{pmatrix}$$

d. No existe

10. Dada la matriz aumentada
$$\begin{pmatrix} -3 & 2 & 0 & | & 4 \\ 2 & 6 & 4 & | & 2 \\ 1 & 3 & 6 & | & 5 \end{pmatrix}$$
, en la que se ha efectuado una operación

elemental de filas es:

a.
$$\begin{pmatrix} -3 & 2 & 0 \mid 4 \\ 0 & -3 & -10 \mid 1 \\ 1 & 3 & 6 \mid 5 \end{pmatrix}$$

$$c. \begin{pmatrix} -3 & 2 & 0 & | & 4 \\ 0 & 0 & 0 & | & 0 \\ 1 & 3 & 6 & | & 5 \end{pmatrix}$$

b.
$$\begin{pmatrix} -3 & 2 & 0 & | & 4 \\ 1 & 3 & 2 & | & 1 \\ 1 & 3 & 6 & | & 5 \end{pmatrix}$$

$$d. \begin{pmatrix} 1 & 3 & 6 & | & 4 \\ 2 & 6 & 4 & | & 2 \\ -3 & 2 & 0 & | & 5 \end{pmatrix}$$

11. El menor asociado al elemento
$$a_{23}$$
 en la matriz $A = \begin{pmatrix} -3 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & 3 & 6 \end{pmatrix}$ es:

d. Ninguna de las anteriores

12. Dado el sistema de ecuaciones
$$\begin{cases} x + y = 6 \\ -2x - 2y = -12 \end{cases}$$
, indique cuál de los siguientes enunciados es CIERTO:

- a. (0,0) es solución del sistema
- c. Las soluciones tienen la forma (x, 6-x)
- b. El sistema no tiene solución
- d. (3, 9) es solución del sistema

13. Dada la ecuación matricial
$$\begin{pmatrix} 3 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, entonces el sistema de ecuaciones que le corresponde es:

a.
$$\begin{cases} x+y+z=1\\ y+2z=2\\ x+2y=3 \end{cases}$$

c.
$$\begin{cases} 3x + 2y &= 1 \\ y + 2z = 2 \\ 2x + y &= 3 \end{cases}$$

b.
$$\begin{cases} 3x & +2z=1\\ 2x & +y+z=2\\ & 2y & =3 \end{cases}$$

d. Ninguna de las anteriores

14. En la descomposición en fracciones parciales de $\frac{4x+1}{(x^2+1)(x-2)^2x}$, la expresión en fracciones parciales asociadas a $(x-2)^2$ tiene la forma:

a.
$$\frac{A}{(x-2)^2}$$

c.
$$\frac{A}{x^2-4}$$

$$b. \quad \frac{Ax+B}{(x-2)^2}$$

d.
$$\frac{A}{x-2} + \frac{B}{(x-2)^2}$$

15.
$$\begin{pmatrix} 1 & -4 \\ 2 & 3 \end{pmatrix} - 2 \begin{pmatrix} -1 & 4 \\ 0 & -3 \end{pmatrix} =$$

a.
$$\begin{pmatrix} -1 & -12 \\ 2 & -3 \end{pmatrix}$$

$$c. \begin{pmatrix} -1 & -2 \\ 0 & 3 \end{pmatrix}$$

b.
$$\begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$$

d.
$$\begin{pmatrix} 3 & -12 \\ 2 & 9 \end{pmatrix}$$

16. El determinante de la matriz
$$\begin{pmatrix} 0 & -1 & 0 \\ 2 & 3 & 4 \\ 3 & 4 & -5 \end{pmatrix}$$
 es:

17. La descomposición en fracciones parciales de la expresión $\frac{2x+3}{(x^2+1)(x-2)x}$ tiene

la forma:

a.
$$\frac{A}{x^2+1} + \frac{B}{x-2} + \frac{C}{x}$$

a.
$$\frac{A}{x^2+1} + \frac{B}{x-2} + \frac{C}{x}$$
 c. $\frac{Ax+B}{(x^2+1)^2} + \frac{Cx+D}{(x^2+1)} + \frac{E}{x-2} + \frac{F}{x}$
b. $\frac{Ax+B}{x^2+1} + \frac{C}{x-2} + \frac{D}{x}$ d. $\frac{A}{x^2+1} + \frac{B}{x(x-2)}$

b.
$$\frac{Ax+B}{x^2+1} + \frac{C}{x-2} + \frac{D}{x}$$

d.
$$\frac{A}{x^2+1} + \frac{B}{x(x-2)}$$

BONOS: (5 puntos cada uno)

a) Resuelva el triángulo ABC, donde <A = 40, a = 10 y b = 5.

b) Halle una expresión algebraica en términos de x para $sen\left(2\cos^{-1}\left(\frac{x}{5}\right)\right)$