Puerto Rico Climate Office Perspectives on Adaptation

Héctor Jiménez Puerto Rico Climate Office University of Puerto Rico Mayagüez

Climate Change Adaptation Summit

Oficina de Climatología de

Puerto Rico

What should be our priorities?

- Puerto Rico as the rest of the world is experiencing very evident changes in climate
- These changes are undisputably attributed to increases in atmospheric CO₂
- Our Climate Office, along with many agencies and scientists within an outside Puerto Rico continue to document and study the climate transformation
- We are an Island of 9,000 km², with 3.2 million people, producing 3 out of every 10,000 tons of CO₂ emitted in the world every year.
- Puerto Rico has not fully recovered from the effects of Hurricane María and is experiencing an accelerating population loss and aging
- We are still in the grips of a Fiscal Control Board appointed by the US congress to deal with an estimated 70 US Billion dollars in debt.
- Where should our resources go? Should we prioritize reducing our carbon emissions or protecting the lives and property of our people?
- This Summit has been called to address our urgent need for adaptation

Rainfall Monitoring

Microwave Radiometer Observations in Mayagüez

- Radiometrics MP3000A
 - + 35 calibrated channels (K and V bands)
 - + 22 30 GHz Water vapor profiles (21 channels)
 - + 50 59 GHz Oxygen band (Temp. and liquid water) (14 channels)
 - + Real-time analysis Neural Network trained to San Juan
 - + Zenith, 20 deg, 160 deg above horizon East-West scans
 - + Azimuth rotation : +/- 45 deg, scans in measurement cycle
 - + High temporal resolution: 5 min/cycle
 - + High spatial resolution (47 heights) 100m: 0 1km, 250m: 1 10km

Emission Spectrum of the Atmosphere

Atmospheric Profile

What is the PBL?

The planetary boundary layer (PBL) is the region of the atmosphere that is directly influenced by the Earth's surface. The PBL height is important for a variety of atmospheric processes, including cloud formation, precipitation, and air quality.

Boundary Layer Structure

Virtual potential temperature

 $\theta_{v} = T_{v} \left(\frac{p_{0}}{p}\right)^{R_{d}/c_{p}}$

$$T_{v} \equiv T\left(\frac{1+r/\varepsilon}{1+r}\right), \quad \varepsilon \equiv R_{d}/R_{v} \cong 0.622$$

Free
troposphere
z
Entrainment
zone
Convective
layer
Surface layer
$$\overline{\theta_v}$$

Vertical thermodynamic structure of clear boundary layers and a trade cumulus boundary layer

Mayagüez Profile Climatology (J.A.

Atmospheric Profile Climatology of San Juan (R. Vázquez)

SHOW	6.07	EQIV	437.31
LIFT	1.12	LFCT	895.91
LFTV	0.5	LFCV	917.96
SWET	164.41	BRCH	67.9
KINX	5.37	BRCV	102.87
стот	16.09	LCLT	291.89
VTOT	20.35	LCLP	948.84
TOTL	36.45		
CAPE	210.86	MLTH	71.37
CAPV	285.61	MLMR	13.53
CINS	-8.13	THCK	5723.89
CINV	-5.29	PWAT	407.73
EQLV	472.94		

Climatology of San Juan

of San Juan (Kevin Martínez)

of San Juan (Kevin Martínez)

of San Juan (Kevin Martínez)

Heat Climatology of San Juan (Kevin Martínez)

Heat Climatology of San Juan (Kevin Martínez)

Heat Climatology of San Juan (Kevin Martínez)

Heat Index (the problem with)

Vapor pressure. Ambient vapor pressure of the atmosphere. (1.6 kPa) # Dimensions of a human. Determines the skin's surface area. (5' 7" tall, 147 pounds) # Effective radiation area of skin. A ratio that depends upon skin surface area. (0.80) # Significant diameter of a human. Based on the body's volume and density. (15.3 cm) # Clothing cover. Long trousers and short-sleeved shirt is assumed. (84% coverage) # Core temperature. Internal body temperature. (98.6°F) # Core vapor pressure. Depends upon body's core temperature and salinity. (5.65 kPa) # Surface temperatures and vapor pressures of skin and clothing. Affects heat transfer from the skin's surface either by radiation or convection. These values are determined by an iterative process. # Activity. Determines metabolic output. (180 W m⁻² of skin area for the model person walking outdoors at a speed of 3.1 mph)

Heat Index (the problem with)

Effective **wind speed.** Vector sum of the body's movement and an average wind speed. Angle between vectors influences convection from skin surface (below). (**5 kts**)

Clothing resistance to heat transfer. The magnitude of this value is based on the assumption that the clothing is 20% fiber and 80% air.

Clothing resistance to moisture transfer. Since clothing is mostly air, pure vapor diffusion is used here.# Radiation from the surface of the skin. Actually, a radiative heat-transfer coefficient determined from previous studies.

Convection from the surface of the skin. A convection coefficient also determined from previous studies. Influenced by kinematic viscosity of air and angle of wind.

Sweating rate. Assumes that **sweat is uniform and not dripping from the body**.

Heat Index (the problem with)

 $\begin{aligned} HI &= -42.379 + 2.04901523 \cdot T + 10.14333127 \cdot R - 0.22475541 \cdot T \cdot R - 6.83783x10 - 3 \cdot T^2 - 5.481717x10 - 2 \cdot R^2 + 1.22874x10 - 3 \cdot T^2 \cdot R + 8.5282x10 - 4 \cdot T \cdot R^2 - 1.99x10 - 6 \cdot T^2 \cdot R^2 \\ \text{where } T &= \text{ambient dry bulb temperature (°F)} \\ R &= \text{relative humidity (integer percentage).} \end{aligned}$

Temp(F)	RH%	T _{equiv} = HI (F)	RH _{equiv} %
90	60.5	100	25.8
93	56.7	105	21.1
93	63.4	110	17.6
95	62.2	115	15.2

WBGT Wet-bulb-globetemperature

$$WBGT = 0.7 \cdot T_{wb} + 0.2 \cdot T_g + 0.1 \cdot T_d$$

where

 T_{wb} = wet bulb temperature (°F) , T_g = globe temperature (°F), T_d = dry bulb temperature (°F)

Example of WBGT Equipment

WGBT Climatology and Forecast Tool SERCC

Some Extreme Heat Adaptation Measures

- Improve monitoring of high "heat" conditions
 - More frequent observations across the island
 - Higher quality observations
 - Move towards a consensus measure of "heat"
- Integrate passive cooling measures into building codes
 - Higher insulation, better utilization of wind currents, increase shading elements
- Urban reforestation (trees are not just for shade!)
 - A large mango tree can evaporate 400 liters of water in a day
 - Providing the equivalent cooling power of a 70,000 Btu/h air conditioning unit
 - Create a guide to urban tree planting along with their cooling power potential

