Puerto Rico Coral Reef Monitoring Program: Progress Report to CCRI (June 6, 2005).

Edwin A. Hernández-Delgado

University of Puerto Rico Rio Piedras Campus Coral Reef Research Group

CARIBBEAN CORAL REEF RESEARCH INSTITUTE UPR-MAYAGUEZ

coral_giac@yahoo.com

Objectives

- Long-term goals of the project.
- Project's progress.
- Sampling design.
- Proposed sampling schedule.

- Set up a network of 12 representative coral reef permanent monitoring sites in the Puerto Rican archipelago.
- Apply uniform sampling design and statistical methods.

- Identify what early warning signals indicate ecological change in coral reefs.
- Incorporate documentation of additional parameters:
 - Coral vitality (sensu Dustan).
 - Disease/syndrome prevalence.

- Incorporate monthly monitoring of water quality parameters at selected locations.
- Apply multivariate statistical approaches to document spatial and temporal variation patterns in benthic and fish community structure.

- Apply alternative statistical approaches (e.g. Effect Size Statistic) to document spatial and temporal uncertainty.
 - Important to separate natural uncertainty from any variable effect:
 - Water quality effects.
 - Management effects.

• Theoretical and practical training of DNER personnel.

 Have DNER taking control of the Long-Term Monitoring Program within approximately 2 to 3 years.

Initial Research Question

- Spatial patterns.
- Are there any significant site or regional spatial variation patterns in the ecological status of coral reef communities?

Original sampling design

- Unbalanced hierarchical design.
- Region (East, South Year 1)

 Sites (East, n=2); (South, n=5)
 Reefs/Site (n=3) [N=21]
 Depth (3-10 m; 10-20 m)
 » Transects (n=4)

Original sampling design

- Unbalanced hierarchical design.
- Region (Southwestern, West Year 2)

 Sites (Southwestern, n=3); (West, n=2)
 Reefs/Site (n=3) [N=15]
 Depth (3-10 m; 10-20 m)
 Transects (n=4)

Suggested sampling design

- Balanced hierarchical design.
- Region (East, South Year 1)

 Sites (n=3)
 Reefs (n=3) [N=18]
 Depth (3-10 m; 10-20 m)
 » Transects (n=4)

Suggested sampling design

- Balanced hierarchical design.
- Region (Southwestern, West Year 2)
 Sites (n=3)
 - Reefs (n=3) [N=18]
 - -Depth (3-10 m; 10-20 m)
 - »Transects (n=4)

Benthic sampling

- Balanced hierarchical design.
- Time (every 2 years)
- Region
 - Sites (n=3)
 - Reefs (n=3) [N=18]
 Depth (3-10 m; 10-20 m)
 » Transects (n=4)

• Monitoring frequency

- Every 2 years: many sites, low temporal replication. Low resolution of shortterm factors.
- Every 1 year: fewer sites, higher temporal replication. Higher resolution of short-term factors.

• Site selection

- Confounding effects:
- Structural coral reefs?
- Hard grounds?
- Highly degraded vs. "healthy"?

Management level

- Confounding effects:
- Natural Reserve?
- No-fishing reserve?
- Control?

 Environmental gradient effects

- Confounding effects:
- Distance from pollution or stress sources?
- Fishing pressure?

• Keep it as it is

- Trade offs:
- Does not respond any specific question.
- Unbalanced statistical design.
- Confounding temporal and spatial effects.

- Are we having DNER If not: collaboration?
- Personnel?
- Vessels?
- Water quality sampling equipment?
- Limitation to sampling efforts.
- Not much to do regarding training DNER personnel.

Data collection

• Benthic sampling

- Fixed linear transects.
- 10 m-long.
- % cover.
- H'n.
- Digital images.

Data collection

• Benthic sampling

- Fixed belt transects.
- 10 x 2 m.
- Coral vitality.
- Disease/syndromes.
- Damselfish.
- Diadema antillarum.
- Lobsters.
- Digital images.

Data collection

• Fish sampling

- Haphazard belt transects.
- 25 x 4 m.
- Whole fish community.
- Follow similar hierarchical design as benthic sampling.

Water quality sampling at selected sites

- Water transparency.
- Turbidity.
- Dissolved oxygen.
- Chlorophyll.
- Nutrients.

 3 replicates/reef/month at Culebra and Cordillera sites.

% Coral cover

Effects of water transparency

le colide des (ane way ANOVA)							
localidades (one-way ANOVA).							
Factor	GL^{a}	MS	F	р			
Riqueza especies ^b	19,112	1.95	11.57	< 0.0001			
Abundancia colonias ^b	19,112	10.28	8.67	< 0.0001			
% Coral ^c	19,112	0.33	16.57	< 0.0001			
% Algas ^c	19,112	0.32	14.19	< 0.0001			
% Esponjas ^c	19,112	0.02	5.26	< 0.0001			
% Zoántidos [°]	19,112	0.09	15.45	< 0.0001			
H'n	19,112	1.45	11.33	< 0.0001			
J'n	19,112	0.20	6.52	< 0.0001			
H'c	17,109	1.23	8.83	< 0.0001			
J'c	17,109	0.04	4.88	< 0.0001			

TABLA 2. Diferencias en los parámetros de la comunidad entre

^a GL= grados de libertad (between,within).

^b Datos transformados a la raíz cuadrada.

Datos transformados al arcoseno-(raíz cuadrada). С

Spatial pattern analysis

Factor	Global R statistic	Significancia
Prueba Global ^a		
Tratamiento ^b	0.329	0.4%
Pueba de pares de Trata	amiento	
I vs. II	0.026	38.6% (NS)
I vs. III	0.484	0.7%
I vs. Bombardeo	-0.116	66.7% (NS)
II vs. III	0.306	4.8%
II vs. Bombardeo	0.679	6.7% (NS)
III vs. Bombardeo	0 1.000	3.6%

Tratamientos: I = <5 m, II = 5-15 m, III = >15 m, Bombardeo.

TABLA 6. Componentes dominantes en los arrecifes x tratamiento.					
Componente	Abundancia	% Contribución			
I (<5 m)					
Algas	0.79	64.01			
Porites astreoides	0.02	6.83			
Siderastrea radians	0.01	4.09			
II (5-15 m)					
Algas	0.67	43.05			
Erythropodium caribbaoru	<i>m</i> 0.04	10.34			
Siderastrea siderea	0.04	6.23			
III (>15 m)					
Algas	0.54	31.54			
Montastraea annularis	0.21	13.92			
Porites astreoides	0.04	7.97			
Bombardeo					
Algas	0.86	86.46			
Siderastrea radians	0.01	8.19			
Esponjas	0.01	2.82			

Spatial patterns (Dominance x Treatment)

Spatial patterns (Dominance x Treatment)

Spatial patterns (Dominance x Treatment)

TABLA 7. Componentes principales causantes de diferencias en los						
patrones espaciales de la estructura de la comunidad.						
Tratamientos	Componentes	A1	A2	% Contribución		
I vs. II	Montastraea annularis	0.02	0.08	11.76		
I vs. III	Montastraea annularis	0.02	0.21	16.55		
I vs. Bomb.	Zoántidos	0.04	0.10	17.09		
II vs. III	Montastraea annularis	0.08	0.21	12.81		
II vs. Bomb.	Zoántidos	< 0.01	0.10) 12.51		
III vs. Bomb.	Montastraea annularis	0.00	0.21	16.13		

Effect Size (basado en BACIPS)

Effect Size (basado en BACIPS)

Hypothesis development

¡Gracias! ¿Preguntas para papá?

coral_giac@yahoo.com