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Introduction

Overfishing is increasingly understood to result in indi-
rect alterations of habitat structure and function
(McClanahan et al. 1995; Bowen 1997; Jackson 2001;
Jackson et al. 2001; Gardner et al. 2003). The intense
harvesting of sea otters from kelp forests, for example,
created ‘‘low- predation refuges’’ for their sea urchin
prey. Following otter removal, sea urchin grazing ex-
ploded resulting in large regional losses of kelp (Estes
and Palmisano 1974; Duggins 1980). Further support
for the impacts of large consumers was found in Alaskan
embayments where inshore migration of killer whales
changed the strength of interactions between sea otters
and their herbivorous sea urchin prey, again resulting in
local losses of kelp forests (Estes et al. 1998). Similarly,
McClanahan et al. (1995) found that intense harvesting
of predatory trigger fishes promoted large-scale habitat
changes as their sea urchin prey, once released from
predation, increased. More urchins subsequently led to
more coral reef erosion and the eventual replacement of
corals by seagrasses (McClanahan and Kurtis 1991).
Moreover, the intense harvesting of both large piscivo-

rous and herbivorous fishes, coupled with the die-off of
herbivorous sea urchins, is thought to be responsible for
widespread macroalgal overgrowth of coral reefs in
Jamaica (Hughes 1994 but see Aronson and Precht
2001).

Given that the dramatic impacts of fishing on marine
food webs preceded the development of most theory in
marine ecology, it is understandable that management
agencies have predominantly focused their efforts on the
role of bottom-up processes (nutrient concentration) in
regulating the productivity of coastal ecosystems. But
given the increasing evidence that food web alterations
have figured prominently in the collapse of marine
ecosystems, it seems clear that new studies are urgently
needed to assess the degree to which large-scale food
web alterations have changed the structure and function
of marine ecosystems (Estes and Peterson 2000; Jackson
2001; Pandolfi et al. 2003).

Habitat linkages: has overfishing altered the strength
of trophic transfers among habitats?

The passive and active transport ofmaterials (via currents
or foraging migrations, respectively) link communities
across distinct habitat boundaries. Passive movements of
nutrients, detritus, and prey between habitats (also called
spatial subsidies or cross-habitat exchanges) can have
major ‘bottom-up’ effects on food web productivity,
especially in places with little or no in situ primary pro-
duction [e.g., caves, mountaintops, stream banks, central
ocean gyres, and the deep sea (Vetter 1994, 1995, 1998;
Polis andHurd 1996; Polis and Strong 1996; Persson et al.
1996; Harrold et al. 1998; Rose and Polis 1998; Hilder-
brand et al. 1999)]. Such trophic links between terrestrial
and freshwater habitats and between marine and terres-
trial habitats are commonplace (Polis and Hurd 1996;
Polis and Strong 1996; Fagan et al. 1999; Nakano and
Murakami 2001). These subsidies of food and nutrients
sustain greater densities of large predators than could
otherwise exist if feeding was limited to prey produced in

Communicated by Biological Editor R.C. Carpenter

J. F. Valentine Æ K. L. Heck Jr
Dauphin Island Sea Lab,
101 Bienville Boulevard, Dauphin Island,
AL 36528-0369, USA

J. F. Valentine (&) Æ K. L. Heck Jr
Department of Marine Science,
University of South Alabama, Mobile,
AL 36688-0002, USA
E-mail: jvalentine@disl.org
Tel.: +1-251-8617546
Fax: +1-251-8617540

Coral Reefs (2005) 24: 209–213
DOI 10.1007/s00338-004-0468-9



a single habitat (Moore 1998; Vetter 1998; Huxel and
McCann 1998; Rose and Polis 1998).

Great numbers of large consumers (e.g., groupers,
snappers, tuna, sharks, and whales), so widely reported
in the earlier literature (cf. Safina 1995, 1998; Parfit
1995; Dayton et al. 1995; Block et al. 2001), appear to
have relied on the production of multiple habitats to
meet their nutritional needs. Where abundant, these
large consumers probably represented important vehi-
cles for the transfer of energy and nutrients across
habitat boundaries.

Early studies of coral reefs, for example, found that
most reef fishes were carnivores and that carnivorous
fish biomass was three to four times greater than that of
herbivore biomass (Goldman and Talbot 1976; Parrish
and Zimmerman 1977; Grigg et al. 1984; Polunin 1996),
and that herbivorous fish biomass was usually much
higher than plant biomass. Such an inverted biomass
pyramid suggests that cross-habitat exchanges of energy
must have played a key role in sustaining large reef
consumers. In fact, many ‘‘reef’’ consumers were ob-
served to hide in structurally complex coral reefs to
avoid predators, but foraged in nearby structurally
simple seagrass meadows (e.g., Randall 1965; Ogden and
Zieman 1977; Zieman et al. 1984; McAfee and Morgan
1996; but see Nagelkerken et al. 2000; Cocheret de la
Moriniére et al. 2003). Thus evidence suggests that coral
reefs were once characterized by much greater cross-
habitat trophic exchanges than is reported in the current
literature (Ogden 1980; Valentine and Heck 1999).

In some locations, fish and in some cases sea urchin,
grazing is so intense that unvegetated ‘halos’ are created
and maintained within seagrass meadows adjacent to
coral reefs (Randall 1965; Ogden and Zieman 1977; Hay
1984; Carpenter 1986; McAfee and Morgan 1996). Not
all foraging in and on seagrasses is near coral reefs,
however. While many herbivorous fishes shelter on reefs
at night, they commonly forage throughout seagrass
habitats during the day (Randall 1965; Ogden and
Zieman 1977; Zieman et al. 1984; McAfee and Morgan
1996). For example, Scarus guacamaia and S. coelestinus
are reported to move up to 500 m from the reef to
feeding areas (Winn and Bardach 1960; Winn et al.
1964). Away from the reef, juvenile and smaller species
of resident parrotfishes, those that are found in the diets
of many reef-resident predators, also feed heavily on
seagrasses and their epiphytes (Randall 1965; Ogden and
Zieman 1977; Handley 1984; McGlathery 1995; McAfee
and Morgan 1996; Valentine and Heck 1999; Kirsch
et al. 2002). Once large enough, many species of par-
rotfish abandon structurally simpler seagrass habitats
for more complex coral reefs, where it is believed they
find protection from large piscivorous fishes (Ogden and
Zieman 1977; Handley 1984; Carpenter 1986; Sweatman
and Robertson 1994; Nagelkerken et al. 2001, 2002;
Cocheret de la Morinière et al. 2003). Similarly, reef-
resident lower order carnivores (e.g., grunts and lob-
sters) forage in vegetated habitats at night (e.g., Burke
1995; Cox et al. 1997). All of these qualitative observa-

tions strongly point to an important transfer of seagrass
meadow production to coral reef food webs.

It is noteworthy, however, that many of the existing
reports are from heavily fished areas, namely, the Virgin
Islands and Jamaica (Ogden et al. 1973; Hay 1984;
Thayer et al. 1984; Hughes 1994; Greenway 1995). In
such overfished areas, in the absence of higher order
consumers, lower order consumer biomass may have
increased to such a point that food has become limited
for them and they are forced to forage in seagrass beds
to obtain adequate food. In addition, the reduced risk of
predation from overfished predators may allow lower
order consumers to forage at will in nearby seagrass
habitats.

Marine reserves: opportunities for testing whether
overfishing has altered trophic connections between
seagrass and coral reef habitats

There is a critical need to rigorously assess the impacts
of the human removal of large consumers on marine
ecosystem structure and function (USNSF 1998; John
Heinz Center 1998). Most information about the im-
pacts of higher order consumers on lower trophic levels
comes from experimental manipulations conducted at
the scale of one to tens of meters. Processes operating at
such small spatial scales often differ from those operat-
ing at larger spatial scales (Thrush et al. 1995; Carpenter
1996; Crowder et al. 1997; Sih et al. 1998; Diehl et al.
2000; Estes and Peterson 2000). Thus, conclusions from
small-scale experiments should not be extrapolated to a
larger scale without validation (Walters and Holling
1990; Eberhardt and Thomas 1991; Menge 1992; Car-
penter 1996). However, controlled manipulation of lar-
ger consumers (e.g., a suitable cage size) conducted at an
ecologically meaningful spatial scale would likely in-
volve unacceptable artifacts.

Instead, whole ecosystem manipulation (Carpenter
1996) is a rigorous way to test the hypothesis that the
overharvesting of piscivores has altered the abundance
of lower order consumers and the entire structure of
food webs on many coral reefs. The whole-system
experimental approach was pioneered in freshwater and
terrestrial systems with distinct natural borders (NSF
1998). While some predictions have been made about
the role of large marine consumers on lower trophic
levels (e.g., Jackson 1997; Bowen 1997), based on the
results from small-scale experiments, lessons derived
from whole ecosystem manipulations of lake and forest
food webs show that surprising results are likely to oc-
cur.

The creation of replicated ‘no take’ zones around the
world effectively represents a whole ecosystem manipu-
lation in which enforcement of ‘no take’ regulations
should allow the recovery of higher order consumers to
nearshore waters. The restoration of the higher trophic
levels on coral reefs, when studied in conjunction with
nearby reference (fished) areas (cf., Underwood 1993),
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allows study of the degree to which fishing has altered
food webs in coral reef ecosystems.

In recent review, Halpern and colleagues (Halpern
and Warner 2002; Halpern 2003) found that protection
from fishing usually led to substantial increases in the
density, average body size, and biomass of fishes found
within marine reserves around the world. This indicates
that the establishment of marine reserves can and does
lead to increased densities of higher order consumers.
The increased density of fishes within these reserves has
also been positively correlated with more and larger
fishes in nearby fished areas (the spillover effect)
(Holland et al. 1996a, 1996b; Russ and Alcala 1996;
McClanahan and Mangi 2000; Roberts et al. 2001; but
see Shipp 2003). This documented increase in the size
and density of fishes outside reserves may be the result of
the increasing large number of consumers in reserves,
who must rely on the production of adjacent habitats to
meet their nutritional needs.

The newly created marine reserves of the Florida
Keys National Marine Sanctuary (known as Special
Protected Areas or SPAs) represent one example of a
replicated whole ecosystem manipulation that provides
an unparalleled opportunity to assess the impacts of
large piscivorous fish removals on the strength of
interactions among organisms in differing habitats. The
Florida Reef Tract is one of the most heavily fished
areas in Florida (Bohnsack et al. 1994), with seasonal
peaks during the winter tourist season and summer
months. Fishing pressure on reef fishes has historically
focussed on several species of large predatory fishes
including snappers, amberjacks, and groupers (Bohn-
sack et al. 1994; Ault et al. 1998).

Through an extensive 6 + year process, a system of
23 small no-take marine reserves was established in 1997
in the Florida Keys. Trap fishing was banned within
state (3 n. mi.) and federal waters (to a depth of 30 m) in
1980 by the Florida Legislature (Bohnsack et al. 1989).
These management actions limit the losses of large
piscivorous fishes to recreational harvests on unpro-
tected inshore reefs.

Significance to marine conservation

Developing an improved understanding of the degree to
which higher consumers rely on the production of
multiple habitats is vital to the successful restoration of
marine food webs. Specifically, it is important to know
how large marine reserves should be to include all the
habitats required to sustain high levels of productivity.
Unfortunately, there has been a very narrow politically-
based focus on building marine reserves around single
habitat types, which sometimes amounts to little more
than conservation of isolated coral outcrops. To date,
there has been less consideration of the importance of
habitat connectivity in a functional seascape; a connec-
tivity whose importance seems similar to that recognized
in terrestrial and riverine ecosystems (e.g., Poiani et al.

2000). This issue is significant, because marine species
have great potential for movement and dispersal. We
believe that our best opportunity to assess the impacts of
overfishing large piscivorous fishes on food web struc-
ture and function, and the importance of trophic inter-
actions across habitat boundaries, can only come from
controlled experiments in replicated ‘‘no-take’’ zones
such as those found in the Florida Keys National
Marine Sanctuary.
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