

Created by: Edwin Caballero-Agosto

Manager: Samuel Hernandez-Rivera

SOP-01	Edwin Caballero Agosto	University of Puerto Rico at Mayagüez		
Effectivity: 9/18/2021	Interpreting Raman Spectrum	Revised by:		
Revised:		Approved by:		
INTERPRETING RAMAN SPECTRUM				
SAMPLE AND PR	EPARATION EFFECTS			
1. What is the	name of the sample?			
2. Instrument	information:			
Name:				
Laser:				
Excitation wavelen	gth:			

Spectral Range:

Spectral Resolution:

3. How was the sample produced?

4. What is known of the reaction scheme?

5. Are there possible side reactions?

6. Could solvents be present?

7.	Did work-up conditions introduce impurities?	
8.	State of matter.	
□ Soli	id:	
	Dry □ , Paste □ ,	
	Was it washed with solvent or recrystallized? Yes \square No \square ,	
	Neat \square , Halide disk \square , Mull \square , Neat powder \square	
☐ Liqu	uid:	
	Volatile \square , Alkaline \square , Neutral \square , Acidic \square , Pure liquid \square , Solution \square	
☐ Gas	5:	
	Temperature	
	Pressure	
	Purity	
	Elemental info	
	Contain N, S, or halogens □,	
	Could the N, S or halogens be from impurity? Yes \square No \square ,	
	Polarization Effects \square , Orientation Effects \square , Temperature Effects \square	
9.	If sample is in container:	
Mark c	off bands due to vessel walls (e.g., glass, polythene).	
In cast	t or polymer films, is there any solvent trapped or encapsulated?	
Can th	ne polymer film have orientation?	
10. If Raman is paired with microscope. Are the bands real or due to the mounting window (e.g., diamond).		

INSTRUMENT AND SOFTWARE EFFECTS

1.	Are resonance or self-absorption likely to affect band strengths? Yes \square , No \square
2.	Does the spectrum have: Flat background \Box , Corrected for fluorescence \Box
3.	Did software used smooth function? Yes \Box , No \Box
4.	Are the broad band in the spectrum due to: Fluorescence \Box , Burning \Box , Other \Box
5.	Are the sharp bands in the spectrum due to: Cosmic rays \Box , Neon room lights \Box , Other \Box

MAIN INTERPRETATION

1.	Is a reference spectrum available? Yes \square , No \square
2.	Does the total spectrum look like the reference spectrum? Yes \Box , No \Box
3.	Hit Quality Index between sample and reference:
4.	Correlation coefficient between sample and reference:
5.	Are the bands: Broad \square , Sharp \square , Strong \square , Weak \square
6.	Is the background: Sloping \square , Flat \square

7. In the 3600-3100 cm $^{-1}$ region are there: -OH \square , -NH \square bands. Look for related bonds for confirmations (e.g., amides have carbonyl bands and -NH bands).

NAME	STRENGTH	REGIO	N [cm ⁻¹]
Thiols (SH)	m	2531	2615
Aldehydes 1	m	2684	2741
N-CH3	m	2753	2797
CH2 1	S	2766	2838
Aldehydes 2	W	2782	2838
O-CH3	m	2782	2838
C-CH3	S	2817	2958
ОН	w	2876	3534
CH2 2	S	2892	2935
Aromatic C-H	S	2973	3086
CH=CH	S	2976	3032
=CH2	S	3017	3073
Amine, Amide	m	3152	3470
Phenol	m	3211	3406
Alcohol	m	3224	3337
Alkyne	W	3242	3285

8. In the 3200-2700 cm ⁻¹ region are there: Unsaturation \square , Aliphatic \square bands. Usually unsaturation is above 3000 cm ⁻¹ and aliphatics below.		
If aliphatic bands are present, are they largely: Methyl \square , Longer -CH2 \square groups.		
Are the bands in the cumulative bond region 2700-200 cm $^{ extstyle -1}$? Yes \Box , No \Box		
Are there bands in the double bond (e.g., -C=O, -C=C) region 1800-1600 cm $^{-1}$? Yes \square , No \square		

NAME	STRENGTH	REGIO	N [cm ⁻¹]
Carboxylic Acid	m	1687	1737
Ketone	m	1692	1719
Aldehyde	m	1700	1727
Ester	m	1708	1745
Lactone	m	1735	1793
Acid chloride	m	1740	1788
Anhydride	m	1748	1838
Isothiocyanate	m	2019	2090
Alkyne	S	2058	2242
Si-H	m	2074	2146
Isonitrile	m	2088	2173
Thiocyanate	W	2101	2173
Azide	m	2117	2159
Diazonium salt	m	2199	2284
Aromatic nitrile	m	2199	2228
Nitrile	m	2226	2255
Isocyanate	W	2226	2271
P-H	W	2295	2425
Thiols (SH)	S	2531	2616

9. In the 1700-200 cm⁻¹ region are there:

Many bands largely due to the molecule fingerprint? Yes \square , No \square

1700-1200 cm⁻¹

NAME	STRENGTH	REGION [cm ⁻¹]	
Sulphonic acid 1	W	1196	1243
Carboxylate salt	m	1313	1431
Nitro 1	S	1320	1355
C-CH3	m	1358	1386
Aromatic azos	S	1367	1445
CH2, CH3	m	1409	1458
Aromatic ring	m	1451	1507
Nitro 2	m	1534	1605
Aliphatic azos	m	1541	1590
Amide	S	1555	1695
Aromatic/hetero ring	S	1555	1612
Ketone	m	1604	1715
Carboxylic acid	m	1612	1723
C=C	S	1618	1674
C=N	S	1625	1667
Urethane	m	1688	1716
Aldehyde	m	1715	1737
Aliphatic ester	m	1729	1764

1200-700 cm⁻¹

NAME	STRENGTH	REGION [cm ⁻¹]	
ν C-C aliphatic chains	m	700	1263
CHX=CYZ	m	887	992
C-Cl	S	701	785
C-S	S	707	777
C-F	S	722	805
C-O-C Ethers	m	798	951
Carboxylic acid dimer	m	909	959
Aromatic rings	S	992	1102
Si-O-Si, Si-O-C	m	1006	1089
C=S	S	1013	1228
Sulphonic acid 2	m	1020	1063
Sulphone sulphonamide	m	1049	1207
Si-O-C	m	1117	1187
Sulphonic acid 1	m	1144	1261

700-200 cm⁻¹

NAME	STRENGTH	REGIO	N [cm ⁻¹]
Lattice vibrations	S	47	210
Xmetal-O	S	128	435
$oldsymbol{\delta}$ C-C aliphatic chains	S	254	401
Se-Se	S	294	340
S-S	S	427	543
Si-O-Si	S	457	552
C-I	S	485	658
C-Br	S	507	700
C-Cl	S	550	765
C=S	S	571	673
ν C-C aliphatic chains	m	622	765
C-S aliphatic	S	666	754

OVERALL RESULTS

Confirmed?	Bands	Region	NAME
	1	<u> </u>	
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
	14		
	15		
	16		
	17		
	18		
	19		
	20		
	21		
	22		
	23		
	24		
	25		
	26		
	27		
	28		
	29		
	30		
	31		
	32		
	33		
	34		
	35		
	36		

Advisor Signature	Co-Advisor Signature