Calculating the limit of detection (LOD) for a specific analyte with a spectrometer

Created by: Francheska Colon, Naihomy Tirado, Edwin Caballero

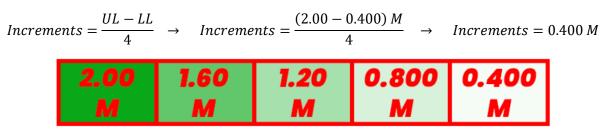
Manager: Samuel Hernandez-Rivera

SOP-01	Francheska Colon Naihomy Tirado, Edwin Caballero	University of Puerto Rico at Mayagüez
Effectivity: July/10/2022	Calculating the limit of detection (LOD) for a specific analyte with a spectrometer	Revised by:
Revised:		Approved by:

This SOP uses the following:

- Equipment: Desired spectrometer.
- Instruments: Volumetric flask, pipettes, and sample container.
- Programs: Microsoft Excel.
- Reagents: Analyte and solvent of interest.

I. PLANNING INITIAL CONCENTRATION RANGE SCREENING


1. Research the LOD of the analyte of interest for the phenomenon and technique desired.

E.g., LOD for analyte "X" is 0.400 M.

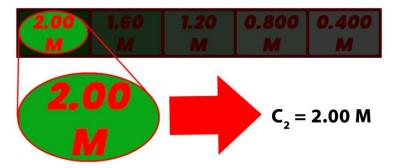
2. Determine the upper limit (UL) by multiplying the LOD by 5.

 $E.\,g.\,,\quad UL = LOD\cdot 5 \quad \rightarrow \quad UL = 0.400\,\,M\cdot 5 \quad \rightarrow \quad UL = 2.00\,\,M$

3. Determine the increments by subtracting the UL from the lower limit (LL) and dividing by 4.

4. (OPTIONAL) IF LOD of the analyte of interest is not found, use the range from 50% to 10% at 10% increments.

5. Determine the volume of the available flasks and the amount per volume.


6. Determine the final volume of your solution (V2), i.e., the flask that will be used for the solution.

7. Find the initial concentration (C1) of the analyte of interest.

8. Determine the desired concentration of your solution (C2).

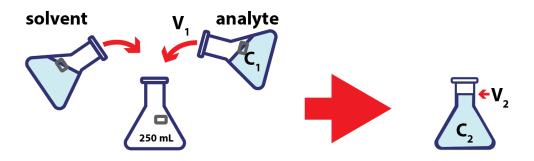
9. Determine the volume needed for analyte with concentration C1 to reach the desired concentration (V1) with a final volume of V2.

$$V_1 = \frac{C_2 \cdot V_2}{C_1}$$

10. (OPTIONAL IF AN INTEGER V1 VALUE IS NEEDED) Determine the final concentration C2 for the analyte with an initial concentration C1 after adding a specific initial volume V1, close to the value obtained from step 6, and completing to a final volume of V2.

$$C_2 = \frac{C_1 \cdot V_1}{V_2}$$

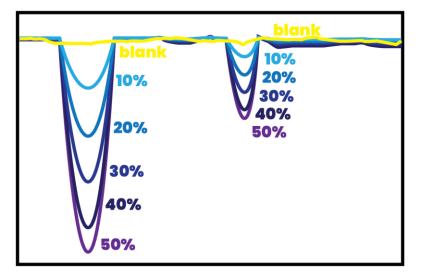
11. Repeat steps 3-7 for the other solutions.

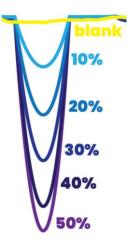

IF an integer value of V1 cannot be obtained for a solution with the initial C1 concentration of the analyte of interest, use the final concentration C2 of a solution as the initial concentration C1 to determine the volume.

Solution used to create other solutions might be consumed, create more, or change V2 to a bigger value.

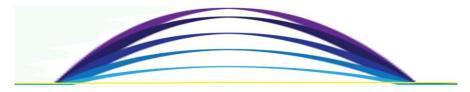
E.g.

Solution	C1 [%v/v]	C2 [%v/v]	V2 [mL]	V1 [mL]	
blank	0%	0%	10.00	10.00	
1	99.00%	31.680%	25.00	8.00	
2	31.68%	25.344%	10.00	8.00	
3	31.68%	22.176%	10.00	7.00	
4	99.00%	19.800%	50.00	10.00	
5	19.80%	15.840%	25.00	20.00	
6	15.84%	12.672%	10.00	8.00	
7	99.00%	9.900%	10.00	1.00	

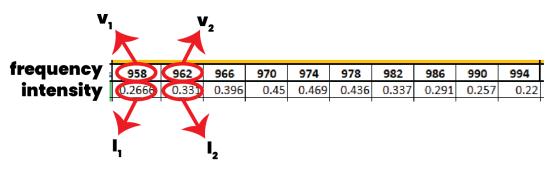

12. Prepare solutions by adding the initial volume of analyte (V1) of C1 concentration into the volumetric flask with the final volume (V2) to obtain the final concentration C2.

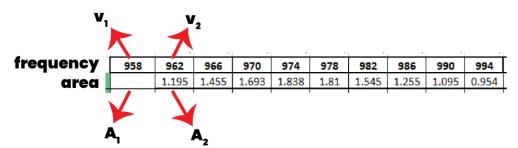

II. SCREENING LOD CONCENTRATION RANGE FOR ANALYTE

1. Acquire spectra for each concentration and blank.


10 measurements per sample. Average the measurements.

2. Determine the peak with intensity proportional to the analyte concentration.


3. Limit spectral data to the frequencies of the chosen spectral band.

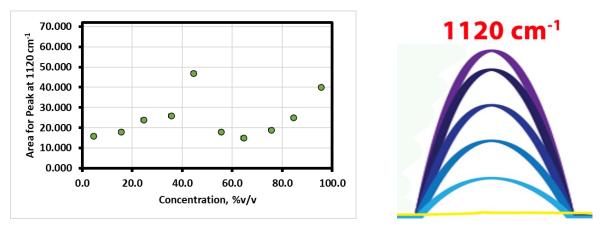

frequency	958	962	966	970	974	978	982	986	990	994
intensity	0.2666	0.331	0.396	0.45	0.469	0.436	0.337	0.291	0.257	0.22

4. Calculate the area of the chosen peak with the first frequency (v_1) and intensity (I_1) as well as the second frequency (v_2) and intensity (I_2) with the following equation.

$$A = (\nu_2 - \nu_1) \cdot \left(\frac{l_1 + l_2}{2}\right)$$

5. **Repeat** step 4 until the area for each frequency is calculated (first frequency does not contain area).

6. Add the area for each frequency to obtain the area of the peak (PA).

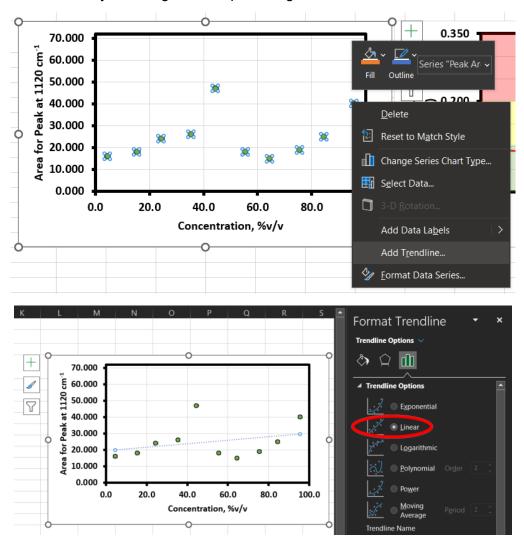

$$PA = \sum_{i=1}^{n} [A_i]$$

 \rightarrow *PA* = 0 + 1.195 + 1.455 + 1.693 + 1.838 + 1.810 + 1.545 + 1.255 + 1.095 + 0.954

$$\rightarrow PA = 12.841$$

7. Repeat steps 4-6 for all samples.

8. Plot peak area vs concentration.


9. Calculate slope and intercept error by using the = *LINEST* function.

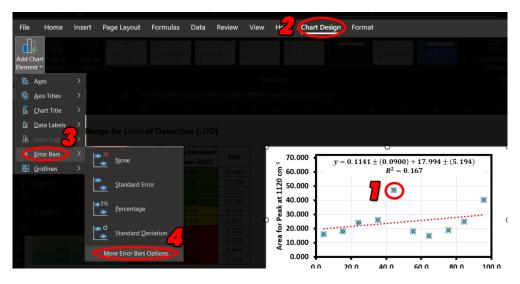
Select the 'y' values, then the 'x' values, write "TRUE" twice, and click enter. A range of values will appear below (2 columns and 5 rows).

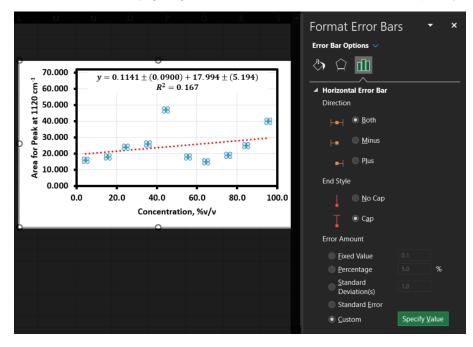
=LINEST(C5:C14,B5:B14,TRUE,TRUE)						
В		D		E F		
Concentration,	Peak Area	Standard	Relative Standard	NR		
%v/v	1120 cm ⁻¹	Deviation	Deviation (RSD)			
4.5	16.000	1.5	9.4%	10.667		
15.5	18.000	1.6	8.9%	11.250		
24.5	24.000	1.8	7.5%	13.333		
35.5	26.000	2.1	8.1	12.381		
44.5	47.00	7.0	1.9%	6.714		
55.5	18 000	2.9	16.1%			
64.5	15.000	4.0	26.7%			
75.5	19.000	4.2	22.1%			
84.5	25.000	5.6				
95.5	40.000					
	TRUE)		internet int			

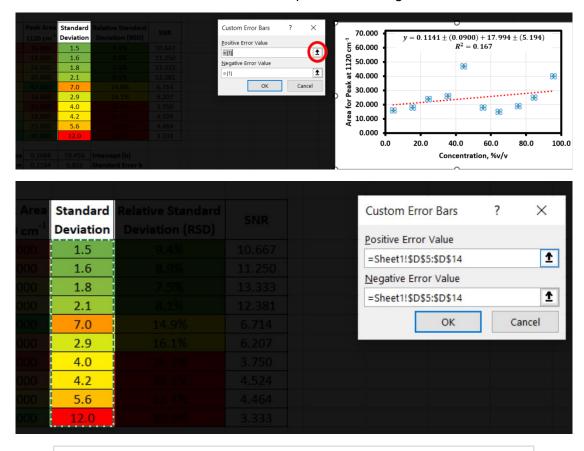

Names will not appear.

Slope	0.1068	19.458	Intercept (b)
Standard Error m	0.1184	6.832	Standard Error b
R2	0.092	10.7868	Standard Error Reg
Fisher's F	0.81	8	dof
SS Reg	94.8	930.8	SS Res

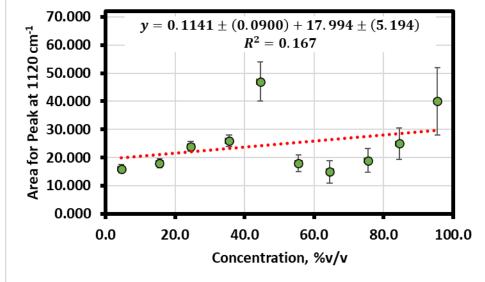
10. Add trendline by selecting the data points, right click, and choose "Add Trendline...".


11. Write linear equation with R² and errors.

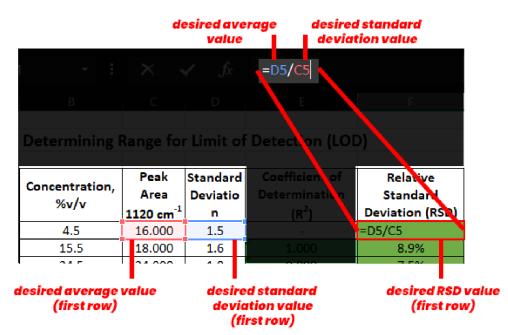

 $y = slope(\pm standard \ error \ m) + intercept(\pm standard \ error \ b)$ R^2 **12. Calculate** standard deviation (s) for each concentration.


= STDEV(Range of values)

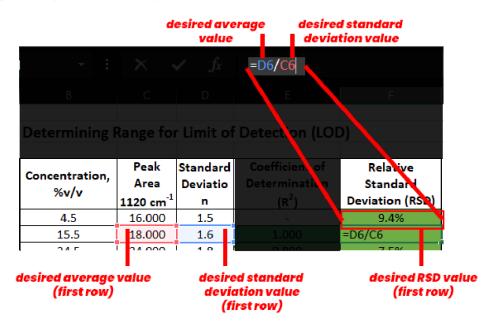
13. Add error bars by selecting the data points, selecting the "Chart Design" tab, "Add Chart Element" button, "Error Bars" list element, and "More Error Bars Options" option.



14. Use standard deviation by going to "Custom" in Error Amount and "Specify Value".

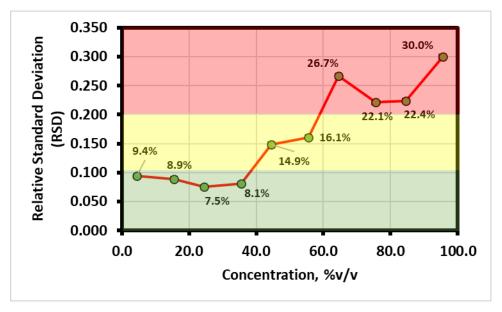


15. Select standard deviation values in both positive and negative error values.

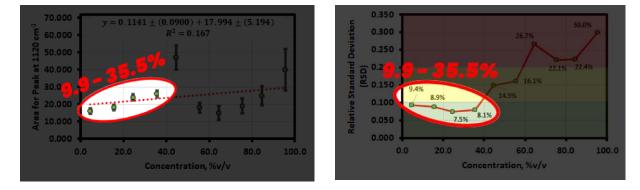


16. Calculate relative standard deviation (RSD) for the first row by dividing the average peak area with the standard deviation.

$$RSD = \frac{s}{\bar{x}} \times 100\%$$


17. Repeat step 9 for the next peak.

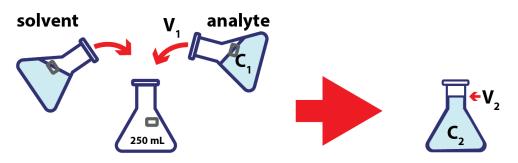
Concentration,	Peak Area	Standard Deviatio	Coefficient of Determination	Relative Standard
%v/v	1120 cm ⁻¹	n	(R ²)	Deviation (RSD)
4.5	16.000	1.5	-	9.4%
15.5	18.000	1.6	1.000	8.9%
24.5	24.000	1.8		7.5%
35.5	26.000	2.1		8.1%
44.5	47.000	7.0	0.785	14.9%
55.5	18.000	2.9	0.197	16.1%
64.5	15.000	4.0		26.7%
75.5	19.000	4.2		22.1%
84.5	25.000	5.6		22.4%
95.5	40.000	12.0	0.092	30.0%


18. Repeat step 10 for row with peak values.

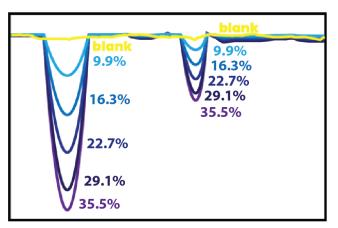
19. Graph relative standard deviation (RSD) vs concentration.

20. Determine the concentration range by analyzing the RSD values.

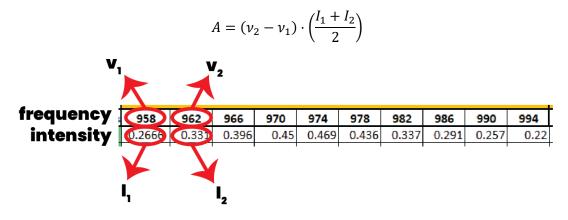
Values above 10% can be discarded from the desired LOD range. E.g., the concentration range for this data set is 9.9 - 35% v/v.

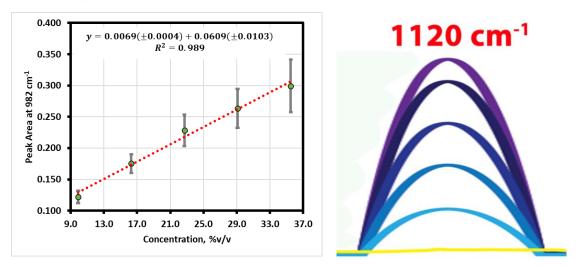

III. CALCULATING LOD FOR SPECIFIC ANALYTE

- **1. Calculate** the increment concentrations for the range determined in the previous section (II).
- E.g., calculate the increments for the range 9.9 35.5%v/v for 5 samples.


 $Increments = \frac{UL - LL}{n - 1} \rightarrow Increments = \frac{(35.5 - 9.9)\%}{5 - 1} \rightarrow Increments = 6.4\%$ 9.9
9.9
16.3
22.7
29.1
35.5
%

2. Prepare solutions as shown in section I.


$$V_1 = \frac{C_2 \cdot V_2}{C_1}$$


- **3.** Acquire spectra for each sample.
- **4. Repeat** step 3 until 10 measurements are acquired for each concentration and 20 measurements for the blank.

5. Calculate the area for the peak of interest for each concentration as in step II.

6. Plot peak area vs concentration.

7. Register the slope (m) for the calibration curve.


 $y = 0.0069(\pm 0.0004) + 0.0609(\pm 0.0103) \rightarrow m = 0.0069$

8. Calculate the average for all 20 peak area measurements for the blank sample.

$$\bar{S}_{bl} = \frac{\sum_{i=1}^{n} [PA_i]}{n}$$

1120 cm⁻¹

9. Calculate the standard deviation for all 20 peak area measurements for the blank sample.

10. Calculate the LOD with the average (\bar{S}_{bl}) , standard deviation (s_{bl}) , and regression slope (m).

$$LOD = \frac{(\bar{S}_{bl} + 3.3 \cdot s_{bl}) - \bar{S}_{bl}}{m} \to LOD = \frac{(0.018 + 3.3 \cdot 0.006) - 0.018}{0.0069} \to LOD = 2.9\%$$

11. Calculate the LOQ with the average (\bar{S}_{bl}) , standard deviation (s_{bl}) , and regression slope (m).

$$LOQ = \frac{(\bar{S}_{bl} + 10 \cdot s_{bl}) - \bar{S}_{bl}}{m} \rightarrow LOQ = \frac{(0.018 + 10 \cdot 0.006) - 0.018}{0.0069} \rightarrow LOQ = 8.7\%$$

Advisor Signature

Co-Advisor Signature