

Created by: Edwin Caballero-Agosto

Manager: Samuel Hernandez-Rivera

Mini-SOP-01	Edwin Caballero-	University of Puerto
	Agosto	Rico at Mayagüez
Effectivity:	Optimizing a	Revised by:
Nov/14/2021	Molecule in	-
	GaussView and	
	Gaussian	
Revised:		Approved by:

The following steps use a common setup. Tables are shown below for specific conditions.

Select "Gaussian Calculation Setup" from the "Calculate" menu.
Change "Job Type" to "Optimization".
Maintain other options in the "Job Type" tab the same.
Change Method to "Ground State", level of theory to "DFT" and leave the rest the same. If more
knowledge is known on basis set, use the appropriate basis set and hybrid functional.
Write title of the file in the "Title" tab as "Molecule Name, Job Type, basis set, hybrid functional,
date".
Select "Full NBO" in the "Type" option from the "NBO" tab.
Select "Submit" to finish the calculation.
Select "Save" to maintain Gaussian Input File.
Select "Yes" at the job terminal to close the window.
Select and open the "log" output file.
Select "Summary" in the "Results" menu to observe results from the output file.

General information for Electronic Properties in the "Method" tab.

Electronic Property	Description	Use Case	
Ground State	The lowest energy state of a molecule in which all electrons are in their respective ground state orbitals.	Used to study the electronic structure and properties of molecules in their lowest energy state.	
Configuration Interaction with Singles (CIS)	A method used to calculate excited electronic states by including single electron excitations from the ground state.	Used to study electronic transitions and excited states of small to medium-sized molecules.	
Symmetry- Adapted Cluster- Configuration Interaction (SAC- CI)	A more advanced version of CIS that includes multiple excitations from the ground state and considers the symmetry of the molecule.	Used to study the electronic structure and properties of larger molecules with more complex electronic structures.	

General information for Levels of theory in the "Method" tab.

Level of Theory	Use Case		
	Good for studying large biomolecules or materials, such as		
	proteins and polymers, where the size and complexity of the		
Molecular Mechanics	system make more advanced quantum methods		
	computationally infeasible. However, it cannot provide		
	accurate information on electronic structure or properties.		
	Good for studying medium to large-sized molecules when		
	accurate electronic structure is not necessary, such as		
Somi Empirical Mothods	screening large compound libraries for drug discovery or		
Semi-Empirical Methods	studying reaction pathways. These methods are		
	computationally efficient but may not be appropriate for		
	molecules with unusual electronic structures.		
	Good for studying ground state electronic structure of		
Hartree-Fock (HF)	molecules with small to medium-sized basis sets. Can also be		
	used as a starting point for more advanced calculations.		
	Good for studying a wide range of molecules and materials,		
	including large systems. Can provide accurate results at a		
Density Functional Theory (DFT)	reasonable computational cost. B3LYP is a commonly used		
	hybrid functional, but other functionals may be more		
	appropriate for specific systems.		
	Good for studying weak intermolecular interactions, such as		
Second-Order Moller-Plesset	hydrogen bonding and van der Waals forces. Can also be		
Perturbation Theory (MP2)	used to improve upon the results obtained from Hartree-		
	Fock calculations.		
Quadratic Configuration Interaction	Good for studying electronically excited states of small to		
with Single and Double Excitations	medium-sized molecules. Can provide accurate results but		
(QCISD)	can be computationally expensive for larger systems.		
Coupled Cluster with Single and Double	Good for studying the ground state electronic structure of		
Excitations (CCSD)	medium to large-sized molecules with high accuracy. Can be		
Excitations (CC3D)	computationally expensive for larger systems.		
	Good for studying molecules with complex electronic		
Complete Active Space Self-Consistent	structures, such as transition metal complexes and radicals.		
Field (CASSCF)	Can provide accurate results but can be computationally		
	expensive.		

General information for Hybrid Functionals in the "Method" tab.

Hybrid Functional	Description	Use Case
		Good for studying ground-state properties of
	Local spin density	molecules and materials with weakly correlated
LSDA	approximation	electrons, such as metals and semiconductors
		Good for studying a wide range of molecules and
		materials, including large systems. Can provide
	Becke's three-parameter hybrid	accurate results at a reasonable computational
B3LYP	functional	cost
	Becke's three-parameter hybrid	
	functional with Perdew and	Good for studying molecules with a balance of
	Wang's 1991 correlation	covalent and ionic interactions, and for studying
B3PW91	functional	reaction pathways
	Modified Perdew-Wang 1991	Good for studying molecules with weak
	functional with one-parameter	intermolecular interactions, such as hydrogen
MPW1PW91	hybrid exchange	bonding and van der Waals forces
	Perdew-Burke-Ernzerhof	Good for studying a wide range of molecules and
	generalized gradient	materials, including large systems. Can provide
	approximation with Perdew-	accurate results at a reasonable computational
PBEPBE	Ernzerhof correlation	cost
	Perdew-Burke-Ernzerhof	
	generalized gradient	Good for studying molecules with a balance of
	approximation with one-	covalent and ionic interactions, and for studying
PBE1PBE	parameter hybrid exchange	reaction pathways
		Good for studying ground-state properties of
	Hedin-Cooper-Thiel exchange-	molecules with weakly correlated electrons, such
HCTH	correlation functional	as metals and semiconductors

General information for Basis Sets in the "Method" tab.

Basis Set	Description	Use Case	
STO-3G	Small basis set with minimal	Good for quick calculations on small molecules or	
310-30	polarization functions	as a starting point for larger calculations.	
3-21G	Small basis set with polarizability	Good for studying ground state electronic structure	
	and diffuse functions	of small molecules.	
6-31G	Medium-sized basis set with polarizability and diffuse functions	Good for studying ground state electronic structure of molecules with small to medium-sized basis sets. Can also be used as a starting point for more advanced calculations.	
6-311G	Large basis set with polarizability and diffuse functions	Good for studying ground state electronic structure of larger molecules or for improving the accuracy of calculations with smaller basis sets.	
cc-pVQZ	Correlation consistent basis set with large quadruple-zeta valence quality functions	Good for studying larger molecules with higher accuracy than smaller basis sets.	
LanL2DZ	Double zeta basis set with a relativistic effective core potential for heavy atoms	Good for studying molecules with heavy atoms.	
LanL2MB	Double zeta basis set with a relativistic effective core potential for heavy atoms and mediumsized diffuse functions	Good for studying molecules with heavy atoms and larger diffuse functions.	
SDD	Small-core, double zeta basis set with high angular momentum functions for heavy atoms	Good for studying transition metal complexes and other systems with heavy atoms.	
DGDZVP	Double zeta valence plus polarization basis set with diffuse and tight d functions	Good for studying ground state electronic structure of small to medium-sized molecules.	
DGDZVP2	Double zeta valence plus polarization basis set with additional diffuse and tight d functions compared to DGDZVP	Good for studying ground state electronic structure of larger molecules or for improving the accuracy of calculations with smaller basis sets.	
DGTZVP	Triple zeta valence plus polarization basis set with diffuse and tight d functions	Good for studying ground state electronic structure of small to medium-sized molecules with higher accuracy than smaller basis sets.	

General information for Spin State in the "Method" tab.

Spin State	Description	Use Case	
Singlet	Two electrons with opposite spin	Most common state for ground state	
Siligiet	Two electrons with opposite spin	electronic structures of molecules	
	Two electrons with the same spin	Good for studying excited states,	
Triplet	and one unpaired electron with	particularly those that arise from singlet-	
	opposite spin	triplet transitions	
	Two electrons with the same spin	Typically only observed for certain	
Quintet	and three unpaired electrons with	transition metal complexes and can be	
	opposite spin	difficult to compute	
	Two electrons with the same spin	Also typically only observed for certain	
Septet	and five unpaired electrons with	transition metal complexes and can be	
	opposite spin	difficult to compute	
Nonet	Two electrons with the same spin	Extremely rare and only observed for a few	
	and seven unpaired electrons with	transition metal complexes	
	opposite spin	transition metal complexes	

General information for Guess Methods in the "Guess" tab.

Guess Method	Description	Use Case	
	Uses an initial guess that is a	Good for studying ground state electronic	
Default	linear combination of atomic	structure of molecules with small to medium-	
	orbitals, which is often accurate	sized basis sets. Can also be used as a starting	
	for closed-shell systems.	point for more advanced calculations.	
	Uses a core Hamiltonian guess,	Good for studying electronically excited states of	
Core	which is obtained by removing	small to medium-sized molecules. Can provide	
Hamiltonian	the effects of the valence	accurate results but can be computationally	
	electrons from the Hamiltonian.	expensive for larger systems.	
	Uses an extended Huckel guess,	Good for studying a wide range of molecules and	
Extended	which is a semi-empirical method	materials, including large systems. Can provide	
Huckel	that includes more terms in the	accurate results at a reasonable computational	
	Hamiltonian than Default.	cost.	