A brief history of the Plankton Aerosol Cloud ocean Ecosystem mission (PACE) and some notes about what is next in Earth System Science remote sensing.

By

Carlos E. Del Castillo, Ph.D

Legal Disclaimer #1: My opinions do not represent those of my employer, but I am right.
Legal Disclaimer #2: This presentation was prepared with my private resources.
Provenance: All the material in this presentation is available in public websites and has been presented elsewhere.
Most of the stories told here happened before I was hired by my current employer.

Summary:

1- What is "ocean color"?

2- A brief history of satellite Ocean Color-Why satellites?-A few examples of valiant and not-so-

- valiant efforts
- 3- ¿Cómo se prepara la morcilla?
- 4- PACE (la morcilla)

Quality of presentation vs. experience after terminal degree

Ocean Color

Coastal Zone Color Scanner (CZCS)

"CZCS was one of eight instruments flown on the Nimbus-7 spacecraft, which was launched on October 24th, 1978. The spacecraft was in a Sun-synchronous orbit, with an inclination of 104.9 degrees, and a nominal altitude of 955 km. It had an equatorial crossing time of noon, in an ascending orbit. Caput June 22,1986."

Multiple sensors

443 nm 520 nm 550 nm 670 nm 1150 nm

Sea-viewing Wide Field-of-view Sensor (SeaWiFS)

1997-2002

Instrument Bands

Band	Wavelength						
1	402-422 nm						
2	433-453 nm						
3	480-500 nm						
4	500-520 nm						
5	545-565 nm						
6	660-680 nm						
7	745-785 nm						
8	845-885 nm						
Mission Characteristics							
Orbit Type	Sun Synchro	onous at 705 km					
Equator Cro	ssing	Noon +20 min, descending					
Orbital Peric	bd	99 minutes					
Swath Width	n 2,801 km LA	C/HRPT (58.3 degrees)					
Swath Width	n 1,502 km G/	AC (45 degrees)					
Spatial Reso	olution	1.1 km LAC, 4.5 km GAC					
Real-Time D	ata Rate	665 kbps					
Revisit Time	1 day						
Digitization	10 bits						

One sensor

Moderate Resolution Imaging Spectroradiometer (MODIS)

The first MODIS instrument, with a 10:30 a.m. equatorial crossing time, was launched aboard Terra in 1999; the second MODIS instrument, with a 1:30 p.m. equatorial crossing time, was launched aboard the Aqua platform in 2002.

Primary Use	Band	Bandwidth	Spectral Radiance ²	Required SNR-		
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8	128		
and (Claud (Assessie	2	841 - 876	24.7	201		
and/Cloud/Aerosols Properties	3	459 - 479	35.3	243		
	4	545 - 565	29.0	228		
• • • •			7.3	275		
8 405 -	42	0 —	1.0	110		
cean Color/			44.9	880		
$\frac{1}{2}$	44	8 _	41.9	838		
4.0	40		32.1	802		
10 438 -	49	3 _	27.9	754	- Phytop	lankton
			21.0	750	Delaware	ankton
11 526 -	530	о —	9.5	910	Bay	
40 = 40		<u> </u>	10.7	586		
12 546 -	55	b —	6.2	516		
mospheric	~ 7		10.0	167		
13 662 -	67	2 –	3.6	57		
4.4 0.70	00	•	15.0	250		
14 6/3-	68	3 _		1		
	76	•	Spectral Radiance ²	Required NE[Δ]T(K) [±]		
^{rface/Cloud} 15 /43 -	15	3 —	0.45(300K)	0.05	Chesapeake Ray	
16 862 -	87	7 _	2.38(335K)	0.20	Day	
		 	0.67(300K)	0.07		5
	23	4.020 - 4.080	0.79(300K)	0.07		
mospheric Imperature	24	4.433 - 4.498	0.17(250K)	0.25	Sunglint	
	25	4.482 - 4.549	0.59(275K)	0.25	Low Low	
.rrus Clouds /ater Vapor	26	1.360 - 1.390	6.00	150(SNR)		
	27	6.535 - 6.895	1.16(240K)	0.25	Wind All All All All All All All All All Al	
	28	7.175 - 7.475	2.18(250K)	0.25		
oud Properties	29	8.400 - 8.700	9.58(300K)	0.05	Aua	nuc
zone	30	9.580 - 9.880	3.69(250K)	0.25		
iurface/Cloud /emperature	31	10.780 - 11.280	9.55(300K)	0.05		
	32	11.770 - 12.270	8.94(300K)	0.05		100 km 1
loud Top Ititude	33	13.185 - 13.485	4.52(260K)	0.25		
	34	13.485 - 13.785	3.76(250K)	0.25		
	35	13.785 - 14.085	3.11(240K)	0.25		14
	36	14.085 - 14.385	2.08(220K)	0.35		

Medium Resolution Imaging Spectrometer (MERIS) 2002-2012

Band centre	Bandwidth	
		Potential Applications
412.5	10	Yellow substance and detrital pigments
442.5	10	Chlorophyll absorption maximum
490	10	Chlorophyll and other pigments
510	10	Suspended sediment, red tides
560	10	Chlorophyll absorption minimum
620	10	Suspended sediment
665	10	Chlorophyll absorption and fluo. reference
681.25	7.5	Chlorophyll fluorescence peak
708.75	10	Fluo. Reference, atmospheric corrections
753.75	7.5	Vegetation, cloud
760.625	3.75	Oxygen absorption R-branch
778.75	15	Atmosphere corrections
865	20	Vegetation, water vapour reference
885	10	Atmosphere corrections
900	10	Water vapour, land

Ocean Radiometer for Carbon Assessment (ORCA)

Pace

By late to 1990's –early 2000 it was clear that we needed:

- 1- More spectral bands (hyperspectral if possible)
- 2- No artifacts (stripping)
- 3- High signal-to-noise
- 4- Sun-glint avoidance
- 5- Ability to calibrate on orbit
- 6- Ability to reprocess data

- By 2002, scientists and engineers at NASA GSFC started working on the ORCA concept.
- In 2007, the NRC issued the Decadal Survey for Earth Sciences calling for a new Earth system Science Mission: The Aerosol, Cloud, Ecosystems mission (ACE).
- By 2007, GSFC was fairly advanced in the development of ORCA. This was well known in the community.

Wavelength of light (nm)

But: ACE was not moving, and we got:

Visible Infrared Imaging Radiometer Suit (VIIRS)

Suomi NPP 2011; NOAA 20 – 2017; NOAA 21- 2022

By late to 1990's –early 2000 it was clear that we needed: 1- More spectral bands (hyperspectral if possible)

Victims of our success.

- 2- No artifacts (stripping)
- 3- High signal-to-noise
- 4-Sun-glint avoidance
- 5- Ability to calibrate on orbit6- Ability to reprocess data

From a presentation at Oceans from Space, Venice, Italy, 2012?

"We needed another SeaWiFS, instead we bought a MERIS, two MODIS, and a VIIRS."

Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) Mission Science Definition Team Report

October 16, 2012

Whole Mission Concept- constrained budget

PACE Mission Science Definition Team Report

PACE Science Definition Team

By the way...No 3MI!

Chair: Del Castillo, Carlos (Johns Hopkins University Applied Physics Laboratory) Deputy Chair: Platnick, Steve (NASA Goddard Space Flight Center)

SDT members:

Antoine, David (Laboratoire d'Océanographie de Villefranche, France) Balch, Barney (Bigelow Laboratory for Ocean Sciences) Behrenfeld, Mike (Oregon State University) Boss, Emmanuel (University of Maine) Cairns, Brian (NASA Goddard Institute for Space Studies) Chowdhary, Jacek (NASA Goddard Institute for Space Studies) DaSilva, Arlindo (NASA Goddard Space Flight Center) Diner, David (NASA Jet Propulsion Laboratory) Dubovik, Oleg (University of Lille, France) Franz, Bryan (NASA Goddard Space Flight Center) Frouin, Robert (University California, San Diego - Scripps Institution of Oceanography) Gregg, Watson (NASA Goddard Space Flight Center) Huemmrich, K. Fred (NASA Goddard Space Flight Center [University of Maryland, Baltimore Countyl) Kahn, Ralph (NASA Goddard Space Flight Center) Marshak, Alexander (NASA Goddard Space Flight Center) Massie, Steve (National Center for Atmospheric Research) McClain, Charles (NASA Goddard Space Flight Center) McNaughton, Cameron (Golder Associates Ltd. [Canada], University of Hawai'i at Mānoa) Meister, Gerhard (NASA Goddard Space Flight Center) Mitchell, Greg (University California, San Diego - Scripps Institution of Oceanography) Muller-Karger, Frank (University of South Florida) Puschell, Jeffery (Raytheon) Riedi, Jerome (University of Lille, France) Siegel, David (University California, Santa Barbara) Wang, Menghua (National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service/Center for Satellite Applications and Research) Werdell, Jeremy (NASA Goddard Space Flight Center)

QUESTION: how are the oceans & atmosphere responding CO2 increases and global warming??

Resolving

- Why are ecosystems changing?
- What within the ecosystem drives change?
- What are the consequences?
- How will the future Earth look?
- Requires coincident measurements of ocean biogeochemical & atmospheric properties to estimate:
 - Phytoplankton standing stocks & diversity
 - -Ocean carbon standing stocks & fates
 - -3-dimensional cloud distributions
 - -Aerosol particle compositions & diversity

Plankton Aerosol Cloud ocean Ecosystem – PACE February 8, 2024

https://pace.oceansciences.org/

water-leaving reflectance

340-890 nm in 2.5 nm 7 discrete SWIR, 940-1-2 day coverage ±20

HARP2 440, 550, 670, 8 10-60 viewing ar wide swath polar

380-770 nm in 2-4 nm 5 viewing angles narrow swath polarimeter, 2.5 Gaps in data are OCI geometry adjustment to look away from the San

How good is the Ocean Color Instrument (OCI)? – Phytoplankton chlorophyll retrievals, NE Australia – <u>First light</u>

SNPP-VIIRS

Chlorophyll *a* Concentration (mg m⁻³)

OCI

Chlorophyll *a* Concentration (mg m⁻³)

Initial data release on 11 Apr 2024

- Level-1 (radiometry) from all 3 instruments
- Heritage suite of O/C products from OCI

Additional data products to be released pending review by Project and PIs

Radiance

Index	Equation
PRI	$(\rho_{530} - \rho_{570}) / (\rho_{530} + \rho_{570})$
CIRE	$(ho_{800}/ ho_{705})-1$
Car	$[(1/ ho_{495}) - (1/ ho_{705})] * ho_{800}$
mARI	$[(1/\rho_{550}) - (1/\rho_{705})] * \rho_{800}$

PRI: Photochemical Reflectance Index CIRE: Chlorophyll Index Red Edge Car: Carotenoid Content Index mARI: Modified Anthocyanin Reflectance Index

Where to get PACE data

C 25 pace.gsfc.nasa.gov 4 \rightarrow

DAYS HR MIN

AU IN ADED 207E

PACE Plankton, Aerosol, Cloud, ocean Ecosystem

	HOME	ABOUT 🔻	MISSION 🔻	SCIENCE 🔻	APPLICATIONS -	DATA 🔻	LEARN MORE 🔻	NEWS	EVENTS	GALLERY 🔻	
<											>
		*		V.							
			PACE will	extend NASA data	Ocean-Atmo	sphere Un light on the delica	derstanding » ate balance between ou	ur ocean, aeroso	ls, and clouds »		-1030
Si José		MISSION		ORBIT			SA		СИСКТО		

NIGHT

6

v24.4.1.7 • NASA Official: Stephen Berrick • FOIA • NASA Privacy Policy • USA.gov

Earthdata Access: A Section 508 accessible alternative

A < > TC CHL SST SST4

\$

~~

Help

What is next?

salinit

the biogeochemistry of the oceans including the carbon sequestration

Temperature and salinity profiles are used to calculate the mixed layer depth

The mixed layer depth varies geographically and seasonally

Current measurements provide information on either the surface temperature/salinity (satellite) only or are limited spatially and temporally (ARGO)

Lidar System to measure Ocean Sub-surface **Temperature and Salinity Profiles**

• Currently evaluating a spectral grating to spread the spectral distribution of the scattered return to a photo-multiplier tube (PMT) array against a hyperfine spectrometer designed for measurement of Brillouin line shapes at 532nm

Τ Ι

Aerosol Optical Depth at 550 nm

Carbon		Sulfate		Dust		Sea Salt		Nitrate	
0.0	2.0	0.0	1.0	0.0	0.5	0.0	0.3	0.0	0.1

ML-AI Driven Algorithms

Novel hyper-spectral, hyper-angular inputs to ML retrievals:

-Water clarity as the diffuse attenuation coefficient -Phytoplankton (including cyanobacteria) in complex waters

-Carbon fixed by diatoms, a globally abundant phytoplankton

-Phytoplankton composition (e.g. big, little, and tiny ones) -3D representation of clouds

-Coupled ocean-atmospheres from multiple sensors

Surpass computational barriers by replacing radiative transfer models with emulators reducing the computational cost of prohibitively expensive products.

Rapid application of legacy data products, e.g. transfer of cloud mask capability from MODIS solar bands to OCI.

Co-located, high-dimensional data from three sensors

The End....Questions???