
Xavier Rosado, Leamsi Alicea Alamo, Gabriel Garcia Aviles
Advisor: Dr. Wilson Rivera Gallego

Department of Computer Science and Engineering

Current tools lack user-friendly
interfaces for multi-binary
instrumentation, impeding software
analysis and testing efficiency.  
 
By developing a tool with intuitive
interfaces for multi-binary
instrumentation and fully harnessing
Frida's functionalities, we can
enhance user productivity and
streamline software analysis for
developers, security researchers,
and engineers.  
 

Users can use the plugin through
exposed commands in Binary Ninja
which interface with fridalens
functionality.  
The frida-portal instance runs as a
daemon thread under Binary Ninja.
Communication to and from
frida-gadgets are handled
asynchronously in the portal,
presented to the user through Binary
Ninja’s console.  

Binary analysis workflows often
consist of a combination of static and
dynamic methods to properly
understand program behavior. Static
analysis tools like Binary Ninja
provide decompilation and help
understand the structure of the
program, but lacks execution and
performing dynamic modifications [1].
Frida provides dynamic of binaries,
providing control over the process
itself rather than altering the binary
structure [2]. Existing tools such as
frinja integrate both Binary Ninja and
Frida capabilities, but struggle to
meet more complex use cases such
as multi-binary instrumentation [3]
[4]. The project looks to address this
gap and offer a user friendly interface
with frida capabilities, all exposed to
the user through the Binary Ninja UI. 

- Implement tracing of user selected
functions across all frida-gadgets.
Users are able to see function
parameters and view return
values when applicable.  

- Implement seamless propagation
of changes made to
instrumentation scripts with hot
reloading. Changes should occur
within 2 seconds.  

Fridalens allows for quick and easy
complex multi binary instrumentation
environments to be used from only
Binary Ninja. Integration of static
analysis and instrumentation
workflows allows for large scale
setups to be created with little to no
effort, allowing for more user
productivity and focus on their uses. 

1. “Binary Ninja,” Binary Ninja, https://binary.ninja/
2. O. A. V. Ravnås, “Frida • A world-class dynamic

instrumentation toolkit | observe ...,” Frida: Dynamic
instrumentation toolkit for developers,
reverse-engineers, and security researchers.,
https://Frida.re/.

3. D. Zervas, (2019) “Frinja” [Github Repository].
https://github.com/dzervas/Frinja/tree/main.

4. D. Andriesse, “9. Binary Instrumentation,” in Practical
Binary Analysis: Build your own linux tools for binary
instrumentation, analysis, and disassembly, San
Francisco, California: No Starch Press, 2019

 
- Functions can be marked and are

instantly registered by the portal
service to build instrumentation
scripts with proper function name
translation if possible. If function
names are not usable, can be
replaced with function addresses. 

- Current implementation struggles
with repeated function names and
handling of architecture/OS
specific quirks. 

Problem Statement1

Results5

Fridalens: A Plugin for Instrumentation
Across Multiple Binaries and Devices

Problem Background2

Objectives3

Technical Approach4

Conclusion6

ReferencesR

A testing environment using
docker-compose setup was used to
test system architecture as well as
integration tests.

Figure 1: Console output of fridalens. Shows one marked
function, as well as output of a gadget attempting to trace
a function.

Figure 2: Block diagram of frida-portal testing
environment generated using docker-compose-viz.
Contains three gadgets, all connected to the portal
instance under the same network.

Figure 3: Sequence diagram for high level overview of
function tracing

Fridalens implementation also
allows for device tagging, allowing
for devices to only take changes
which correspond to a tag,
enabling multi program
instrumentation in any given
device.

The design also preserves the
frida-portal feature to be treated as
a frida-server, allowing for future
extension of features such as
cross collaboration, as well as
preserving frida-server compatible
interfaces.  

TABLE 1: Time measurements for function trace
reloading and message passing  

Traced amount   Hot reload   Message
turnaround  

1   127 ms   1.7 s  

2   131 ms   2.1 s  

3   143 ms   2.4 s  

4   150 ms   2.7 s  

Table 1: Time measurements of hot reload new traced
functions and for gadget response against amount of
traced functions.

