

EXPERIMENT’S MANUAL

Introductory Experiments

To accompany the textbook:

By

Manuel Jiménez, Rogelio Palomera, and Isidoro Couvertier

Electrical and Computer Engineering Department

University of Puerto Rico at Mayaguez

2014

© 2014 by M. Jiménez, R. Palomera, I. Couvertier

Electrical and Computer Engineering Department

University of Puerto Rico at Mayaguez

ACKNOWLEDGMENT

The authors would like to thank Cesar Aceros for his valuable help developing the

LaTeX template used for preparing this manual.

DISCLAIMER

Although the authors have made every effort to verify their correctness of this

Experiment’s Manual, the materials contained herein are provided “as is”. Any

express or implied warranties, including, but not limited to, the implied

warranties of fitness for any particular purpose are disclaimed. Under no

circumstance or event shall the authors or the copyright owners be liable for any

direct, indirect, incidental, exemplary, or consequential damages arising from the

use of these materials.

Contents

Experiment 1
Introduction to MSP430 Tools .. 1

Experiment 2
MSP430 Instruction Set Part 1 .. 19

Experiment 3
MSP430 Instruction Set Part 2 .. 27

Experiment 4
MSP430 Poll-based I/O ... 32

Experiment 5
MSP430 Interrupt-based I/O .. 36

Experiment 6
MSP430 Timer A ... 42

Experiment 7
MSP430 Interrupt-based I/O using the C Language 47

Experiment 8
The MSP430X .. 54

Experiment 1

Introduction to MSP430 Tools

Objectives

• Become familiar with the MSP-EXP430G2 LaunchPad board and its basic
components.

• Understand the basic anatomy of an assembly language program.

• Become familiar with the process of assembling, uploading, debugging, and ex-
ecuting an assembly language program using IAR Embedded Workbench (IAR)

• Learn how to examine and modify MSP430 memory and register contents.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

1.1 Introduction

The MSP430 IAR Embedded Workbench is IAR’s Integrated Development Envi-
ronment (IDE) for the MSP430. It reduces the development time and optimizes
the performance for MSP430 applications. For all the upcoming experiments IAR
will be used as the compiler, assembler, linker, and code debugger for the MSP430
LaunchPad.

1

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 2

The MSP-EXP430G2 LaunchPad is a complete MSP430 development plat-
form. It includes all the hardware and software components to evaluate the MSP430
and to develop a complete project in a convenient board. The module is divided
into two sections: a USB communications interface with an on-board chip program-
mer/debugger interface and an MSP430 target board. Figure 1.1 below shows a
LaunchPad board, with a 14-pin MSP430G2211 included, where each section can be
identified. The dotted line beneath the “Emulation” label separates both sections.

USB�Connector

Left�Port
Header�J1

Right�Port
Header�J2

Jumper�Set J3

MSP430

Reset
Key

User
Key

Jumper
Set�J5

Optional
Power�Port

Figure 1.1: EXP430G2 Launchpad.

The integrated USB-based emulator section offers all the hardware and software
necessary to develop applications for all MSP430G2xx series devices. The USB
interface also provides power to operate the MSP430 when connected to a USB
terminal at a computer. In addition, it generates the signals to program and debug
code in the MSP430 memory.

The male header connector J6 provides access for external power if desired. It
is important to understand that you must never connect together any of the VCC
and GND exposed parts or terminals in the J6 connector. You should also make sure
that the USB cable male connectors are correctly inserted: the mini connector inside
the MSP-EXP430G2 USB female connector and the regular connector inside the
appropriate USB connector in your computer, otherwise you may get some strange
errors when trying to download and debug as part of the rest of this experiment.

The MSP430 section has an integrated DIP target socket that supports up to
20 pins. The Launchpad supports all MSP430G2xx and MSP430F20xx devices in
PDIP14 or PDIP20 packages. As a bonus for enthusiasts, the LaunchPad exper-
imenter board is capable of programming the eZ430-RF2500T target boards, the
eZ430-Chronos watch module or the eZ430-F2012T/F2013T target boards.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 3

The MSP-EXP430G2 Launchpad packages comes with two fully functional
MSP430 microcontrollers with over and a target board providing 20 user accessible
pins for extended experiments, as well as several LED indicators and push-buttons.
Early packages came with MSP430G2211 and MSP430G2231 units ; the newest 1.5
version comes with a MSP430G2553 and a MSP430G2452.

Let us take a quick tour of the MSP430G2 LaunchPad. In the upper left corner
of the board we find a USB female connector. To the right of the “MSP-EXP430G2”
label is jumper set J3 with five (5) removable jumpers in place. This set constitutes
the Spy-Bi-Wire and MSP430 application UART. Jumper set J3 has five (5) jumpers
in place: TEST, RST, RXD, TXD, and VCC, while jumper set J5 has two (2): P1.0
and P1.6.

In the center of the lower region we have socket IC1 where the target MSP430
microcontroller resides. Look at the position and orientation of the MSP430 chip
on the socket. Please be aware that you could have a different MSP430 model from
the one shown in the above in the picture. This one is a 14-pin dual-in-line (dip)
MSP430 chip, but you could have a 20-pin dip chip. Regardless of which one you
have, note that the chip has a notch resembling a U on one end and a recessed
full circle on the other end. The chip must be inserted with the U pointing towards
the label MSP-EXP430G2 in such a way that the pin to the left is inserted in the
first available position on the left side of the socket while the circle must be pointing
towards the label “Texas Instruments”.

You should have received the LaunchPad with the MSP430 chip correctly in-
serted in the socket. If for any reason the chip is not inserted as explained above,
you should carefully remove it and reinsert it in the socket after making sure that it
is properly oriented and aligned. If the MSP430 is not appropriately inserted, then
the board will malfunction and the MCU chip might be damaged.

In the picture, the chip is an MSP430G2231, but, as noted before, you may be
using a different one. You need to know exactly which chip version you have for the
procedure that follows, specifically for step 8.

Note also in the picture in Figure 1 the location of the removable jumpers J3
and J5. These jumpers must be correctly inserted across the connector, rather than
along it, for proper operation of the LauchPad.

To the extreme left and right of the socket we find two rows of ten empty
holes, or PBC female connectors, called J1 and J2, respectively, for the Port Headers.
Newer versions have male headers already soldered there. These spaces gives access
to the MSP430 pins. The lines are numbered from 1 to 10 at J1, and 11 to 20 at
the right J2. The right top hole is labeled GND (meaning electrical ground) with pin

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 4

number 20 and the lowest right hole is labeled P2.3 with a pin number 11.

On the left side of the board, the top hole is labeled VCC with a pin number 1
and the lowest hole is labeled P2.2 with a pin number 10. On the lower right corner
we find an optional power port J6 and to its left a push button used as a reset key.
If we continue moving to the left, we find jumper set J5 with two jumpers in place.
Finally, on the lower left corner we have another user key implemented as a push
button labeled P1.3.

Jumpers at J5 connect pins P1.0 and P1.6 to LEDs LED1 and LED2, respec-
tively (See Fig. 1.2). You should remove the jumper when using these pins for other
connections. There are no other removable jumpers in the LaunchPad.

J5.1

R33
470Ω

P1.0

LED1

J5.2

R32
270Ω

P1.6

LED2

Figure 1.2: LED connections to pins in EXP430G2 Launchpad.

Finally, there are two pushbuttos S1 and S2 in the low region. Switch S1
is connected to the RST/NMI/SBWTDIO, terminal of the socket 16 and RST of
the Spy-Bi-wire. Switch S2 is connected to terminal P1.3, to be used as input. The
connection is done via pull-up resistors and capacitors, as shown in Figure 1.3. Newer
launchpad versions do not include the pull-up resistor R34 or capacitor C24 at P1.3.
This means that when using this terminal as input, the internal pull-up resistor must
be used, as explain in the respective laboratory.

R27
47 kΩ

VCC

S1 C14
1 nF

RST/NMI/SBWTDIO

GND

(a)

R34 *
47 kΩ

VCC

S2 C24 *
100 nF

P1.3

GND

 (b)
* Not in all versions

Figure 1.3: Connection of pushbuttons in EXP430G2 Launchpad: (a) Reset button
S1; (b) Input button S2 at P1.3 (newer versions do not include R34 or C24)

We end our tour mentioning terminals XIN and XOUT (19 and 18, respec-
tively). These are signals of the LFXT1 oscillator and can support low-frequency os-

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 5

cillators like a watch crystals of 32768 Hz or a standard crystal with a range defined
in the model associated data sheet. The kit includes an MS3V-T1R 32.768 kHz, not
connected. Information for this crystal can be found at http://www.microcrystal.com/CMSPages/GetFile.as
0886-41a2-87fc-6b04e14f0226.

The XIN and XOUT terminals can also be used as P2.7 and P2.6 pins for port
2. Models with 14 pins supported by the Launchpad only have these two pins from
port 2.

1.2 Procedure

IAR Tutorial (This tutorial assumes the IAR IDE is already installed in your
computer. If IAR is not installed, follow the installation instructions given at
the end of this experiment. At the time of printing, the current IAR version is
5.20.1.50215).

1. On the workstation go to ‘Start > All Programs > IAR Systems > IAR Embed-
ded Workbench Kickstart‘. Additional letters and numbers will follow after the
word Workbench, depending on the installed version. The initial IAR Embedded
Workbench screen appears as shown in Figure 1.4.

Figure 1.4: IAR initial window.

2. To create a new project: select ‘Project > Create New Project . . . ¡ Make
sure MSP430 is chosen in the Tool Chain dropdown menu in the ‘Create New
Project‘ window. Choose ‘asm‘ in the ‘Project templates:‘ by clicking the ‘+‘
sign in ‘asm‘and then ‘asm‘ in the tree that opens up. Click ‘OK‘. Figure 1.5
illustrates the screen you should get from the IDE if you follow the steps
explained above. To the left of the screenshot we have an empty project tree
view pane. What is new here is the ‘Create New Project‘ window with the
‘Project templates‘ pane in it.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 6

Figure 1.5: Creating new project window.

3. The ‘Save as‘ window opens. Choose a destination directory and type the
name “EXP1“ for your project in the ‘File name:‘ box. If you prefer to create
a new folder, you will need to click the ‘New Folder‘ icon, give a folder a name,
we will name our new folder “Experiment1“ (otherwise it will be called New
Folder), now click ‘Open‘ to open your folder and then enter a “EXP1“ in
the ‘File name:‘ textbox and click ‘Save‘. Since this step could be somewhat

Figure 1.6: Creating new projectw with new folder window.

confusing to some of our readers we chose to show it for you. The picture
shown illustrates what you should see in the screen if you chose to create a new
folder as already explained above. Note that the default name for the folder is

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 7

New Folder as shown in Figure 1.6 and explained in the previous steps.

4. Right click the ‘asm.s43‘ tab and choose ‘Close‘ in order to close it. The only
reason we are asking you to close this tab is to eliminate the possibility of
confusion when you are looking at the different opened files that are available
for you to see. You could choose to keep the tab open if you want, but the
rest of the lab assumes it has been closed. We will be assigning a ‘.asm‘
extension to our assembly language file as opposed to the default ‘.s43‘ in the
IAR Embedded Workbench. Although we closed the ‘.s43‘ tab, the file is still
shown in the project tree view located to the left of the screen. We will deal
with this in the next step. Figure 1.7 illustrates the available actions when right
clicking the ‘asm.s43‘ tab.

Figure 1.7: Closing asm.s43 tab.

5. In the project tree view right click the ‘asm.s43‘ file and remove it by choosing
‘Remove‘. You will need to confirm removing the ‘asm.s43‘ file, confirm it and
the file will be removed from the project tree view. This is shown in Figure 1.8.

6. Click ‘Tools > Options . . .> Editor‘ and make sure you click the radio button
for ‘Insert Tab‘ under the ‘Tab Key Function:‘ alternatives. You may want to
check the ‘Show line numbers‘ option. Then click ‘OK‘. If you do not check
the ‘Insert Tab‘ radio button, then eight (8) space characters will be inserted
in your source file whenever you press the Tab key as opposed to just one (1)
tab character. Your source file could then grow rather fast in size. The ‘Show
line numbers‘ option, although not strictly needed, could turn out to be rather
useful. These alternatives are illustrated in Figure 1.9 taken as a screenshot in
IAR Embedded Workbench.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 8

Figure 1.8: Removing asm.s43 from the project tree.

Figure 1.9: IAR integrated development environment (IDE) options.

7. Make sure that you have your project name selected in the project tree view
on the left side of your screen. Click Project > Options Now, under
Category: click Debugger > Setup and choose FET Debugger in the Driver
dropdown menu. Depending on the options you chose when you installed your
IDE you may or may not have the Driver dropdown menu. It is important that
you make sure you have selected Texas Instrument USB-IF in the dropdown
menu. The rest of the options are chosen for you. DO NOT click OK yet.
See the illustration in Figure 1.10.

8. Now, while still in the Options for node EXP1 window, click General Options >

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 9

Figure 1.10: Options for EXP1.

Target > MSP430Gxxx Family > MSP430G2231. If you are using a different
MSP430 device, choose the device you are using instead. Now click OK. This
is shown in Figure 1.11.

Figure 1.11: Choosing the MSP430 target.

9. Now click File > New > File.

10. Type the code shown below as is into the source window and then save the

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 10

work done by clicking File > Save As.

Listing 1.1: Your First Assembly Language Program

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov #0280h , SP ; I n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
7 SetupP1 b i s . b #1,&P1DIR ; P1 . 0 as ou tpu t
8 Main xo r . b #1,&P1OUT ; Toggle P1 . 0
9 Wait mov #50000 ,R15 ; De la y to R15
10 L1 dec R15 ; Decrement R15
11 j n z L1 ; De la y o v e r ?
12 jmp Main ; Aga in
13 ;−−
14 ; I n t e r r u p t Vec to r s
15 ;−−
16 ORG 0FFFEh ; MSP430 RESET Vecto r
17 DW RESET ;
18 END

Do not type in the line numbers in the leftmost column of the listing. These
are only for your reference. Name your file FlashLED.asm. Your code should
look like the one in the IAR FlashLED.asm window shown in Figure 1.12.

11. Click Project > Add Files and choose the source file saved in the previous step.
Save your workspace by clicking File > Save Workspace and then click Open
as shown in the Figure 1.13.

12. Connect the LaunchPad to the computer via the USB cable provided with it.
If this is the first time the LaunchPad is connected, you will probably notice
that Windows will install the appropriate driver. This driver is supplied as part
of IAR. The rest of this experiment relies on the assumption that the driver is
properly installed. Note that the LaunchPad comes with a program already in
flash memory and as soon as you plug it in it will start off and begin to turn
on and off the red and green LEDs in turn.

13. You can now click Project > Download and Debug.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 11

Figure 1.12: Code for FlashLED source program.

Figure 1.13: File Save Workspace window.

14. Assuming you entered the code with no errors, you might still get the Stack
Warning window with a warning message. If it shows up, just ignore it and click
OK. Now go to Tools > Options > Stack and uncheck the Stack pointer(s)
not valid until program reaches: option. Click OK. Refer to Figure 1.14.

15. If you did enter some errors, they must be syntax errors as opposed to logic
errors or programming errors. Note that when the assembler finds a semicolon
(;) on any line, it ignores the rest of the line. This means that it is not important

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 12

Figure 1.14: Tools options stack window.

if you have made a typographical error after a semicolon. Review each line to
make sure that the code entered is exactly as shown above. The code has been
properly tested to make sure that the steps shown here will produce the same
results for you.

16. You should now be in the Debugger environment. You should see the Debug
toolbar, the second toolbar beginning at the toolbar after the menu bar, and
the Disassembly window on the right as shown in Figure 1.15.

Figure 1.15: IAR debug window.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 13

17. Mouse over the Debug toolbar shown in Figure 1.16. The first icon should

Figure 1.16: IAR debug toolbar.

give you a Reset message, the second a Break message, the third a Step Over
message, then a Step Into with the fourth, Step Out, Next Statement, Run to
Cursor, the second to last is Go, and the last is Stop Debugging.

18. Click View > Register and note that the Register window is added. The Regis-
ter window should look something like the one shown in Figure 1.17. Now click

Figure 1.17: IAR register window.

View > Memory and the Memory window will be added. The memory window
will look something like the one shown in the Figure 1.18. Notice that some of
the other windows will most probably be reduced in size to accommodate the
Memory window.

19. Click the Go icon or the F5 key.

20. The red LED should be toggling on and off in the MSP-EXP430G2 LaunchPad.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 14

Figure 1.18: IAR memory window.

1.3 Exercises

1. Click the Stop Debugging icon in case your program is in the Debugger per-
spective. Replace the #50000 in line 9 with #100000 (depending on your IDE
you may get an error here, in that case use a smaller number) in your program.
You can now click Project > Download and Debug. Your changes will be saved
automatically. Click F5 to run your program. What change did you observe on
the red LED toggling frequency?

2. Repeat the above exercise replacing the #50000 or #100000 with #2500.
Click the Break icon. Now click Step Into several times and watch the Register
window. You should pay particular attention to the PC and R15 registers which
should be changing each time you click Step Into. Go ahead and change the
value for register R5 by clicking the value for R5. Now enter decimal number
256 and hit the Enter key. You should see that the new value is 0x0100, which
is the hex representation of the value just entered. Now change it to 0xabcd.
You should see that it changed the letter digits to (uppercase) 0xABCD.

3. Go to the Disassembly window and type 0xF800, the address shown in the first
ORG statement in your program in line 3, in the Go to textbox. You should
see something like what is shown in Figure 1.19:

Figure 1.19: Disassembly window.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 15

For the sake of clarity, the entire program in the Disassembly window is shown
below.

Listing 1.2: Code in Disassembly Window.

1 RESET :
2 00F800 4031 0280 mov #0x0280 , SP
3 StopWDT:
4 00F804 40B2 5A80 0120 mov #0x5a80 ,&WDTCTL
5 SetupP1 :
6 00F80A D3D2 0022 b i s . b #1,&P1DIR
7 Main :
8 00F80E E3D2 0021 xo r . b #1,&P1OUT
9 Wait :
10 00F812 403F 5000 mov #0x5000 , R15
11 L1 :
12 00F816 831F dec R15
13 00F818 23FE j n e L1
14 00F81A 3FF9 jmp Main

You
will probably recognize the instructions in lower case letters since you entered
them when you were writing the code. There are, however, several things that
were added to your program. For example, the first instruction is displayed:

00F800 4031 0280 mov #0x0280 , SP

The above line shows the strings 00F800 4031 0280 at the beginning of the
line. The string 00F800 indicates the address in memory of the first byte of the
program. Strings 4031 and 0280 are the memory contents starting at location
00F800. The convention used in this representation is the little endian notation.
These last two character strings are the machine language representation of the
assembly language instruction mov #0x0280,SP. The first of these two strings,
4031, indicates that this is a MOV instruction working on two bytes or 16 bits
at a time, while the second string, #0x0280, specifies the source operand for
the MOV instruction. If you only leave the program memory addresses and
their content you should see this

F800 4031 0280 40B2 5A80 0120 D3D2 0022 E3D2
F810 0021 403F 5000 831F 23FE 3FF9 FFFF FFFF

4. Now click View > Memory and choose FLASH in the dropdown Memory menu.
You should see a display similar to the above. At this time you should not be
concerned with the actual meaning of the assembly language instruction or its

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 16

machine language version. Our intention at this time was to show you that
with IAR you can see the program memory and its actual content. This will
come in handy in the future.

5. For this part of the exercise we will assume that the red LED is toggling on
and off. Locate connector J5. Now grab jumper P1.0 with your fingers and
pull it out of the connector. The red LED should be off because no power is
delivered to it although the program is still running. Replace the jumper and
the red LED should once again begin to toggle on and off. If the green LED
were toggling on and off, you could do the same by removing and reinserting
jumper P1.6.

6. Another exercise is to turn each LED in turn. One way to accomplish this is
to go to Listing 1.1 and change line 7 and insert an instruction right after it
as follows

7 SetupP1 b i s . b #01000001b ,&P1DIR ; P1 .0/P1 . 6 ou tpu t s
8 b i c . b #01000001b ,&P1OUT ; both LEDs o f f

so that the above two lines are numbered as shown above.

Now, insert the following instructions

13 xo r . b #01000001b ,&P1OUT ; P1 . 0 o f f , P1 . 6 on
14 mov #50000 ,R15
15 L2 dec R15
16 j n z L2
17 xo r . b #01000001b ,&P1OUT ; P1 . 0 on , P1 . 6 o f f

just before the instruction jmp Main so that they are numbered in your code
as shown above.

After performing the changes your code should now look like this:

Listing 1.3: Your code after the changes.

1 #i n c l u d e ”msp430 . h”
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov #0280h , SP ; I n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
7 SetupP1 b i s . b #01000001b ,&P1DIR ; P1 .0/P1 . 6 ou tpu t s
8 b i c . b #01000001b ,&P1OUT ; both LEDs o f f
9 Main xo r . b #00000001b ,&P1OUT ; Toggle P1 . 0

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 17

10 Wait mov #50000 ,R15 ; De la y to R15
11 L1 dec R15 ; Decrement R15
12 j n z L1 ; De la y o v e r ?
13 xo r . b #01000001b ,&P1OUT ; P1 . 0 o f f , P1 . 6 on
14 mov #50000 ,R15
15 L2 dec R15
16 j n z L2
17 xo r . b #01000001b ,&P1OUT ; P1 . 0 on , P1 . 6 o f f
18 jmp Main ; Aga in
19 ;−−
20 ; I n t e r r u p t Vec to r s
21 ;−−
22 ORG 0FFFEh ; MSP430 RESET Vecto r
23 DW RESET
24 END

1.4 Installing IAR Workbench

1. Obtain a copy of the installation files for the IAR Embedded Workbench. You
can obtain a copy of IAR at http://www.ti.com. If the files are in a compressed
format (usually they are), then you should extract the files to a destination
directory of your choice.

2. Double click the CCS setup application. The install wizard displays progress
information.

3. Follow the wizard prompts during the installation. Click Next if an action is
required from you.

4. After reading the license agreement, accept it if you agree with it and still want
to install IAR. Click ‘Next‘.

5. Choose the Complete in the Setup Type window and then click Next.

6. If this is the first time IAR will be installed on your computer, choose the default
path settings for the installation location, unless you want to install it in another
location. Click Next. If you have already installed another version on your
computer, make sure you choose a different path for this installation.

EXPERIMENT 1. INTRODUCTION TO MSP430 TOOLS 18

7. You will be asked to choose a Program Folder. Click Next if you agree with the
default.

8. Click Install. The wizard displays setup status information, including the Visual
C++ installation. Click Finish when asked to do so.

9. The IAR Embedded Workbench IDE should open along with a browser showing
the Release Notes.

The installation instructions shown above are general in nature and assume you
are using the Windows XP or Windows 7 operating system (OS). The installation
procedure has also been tested on a MacBook Pro with Mac OS X Snow Leopard
with a Windows XP and a Windows 7 virtual machine. Depending on your OS and
the IAR version, the setup wizard may behave differently. You should make sure that
your computer and OS meet the requirements for installing IAR. You should also be
aware that, on some operating systems, you may have to make the installation from
the Administrator account.

Experiment 2

MSP430 Instruction Set Part 1

Objectives

• Become familiar with the MSP430 instruction set data transfer instructions,
arithmetic instructions, logic instructions, and the program control instructions.

• Learn more ways to control program execution using the IAR Integrated De-
velopment Environment.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

2.1 Introduction

The MSP430 instruction set has 27 core instructions and 24 emulated instructions.
Emulated instructions are used to make it easier for people who are already familiar
with them instructions to use them while programming the MSP430. However, when
the assembler finds an emulated instruction it substitutes it with the corresponding
core instruction. So, if you are new to assembly language programming, you do
not need to worry about learning the emulated instructions and you can concentrate
on learning only the core instructions. On the other hand, even if you are new to
assembly language programming, you may find that an emulated instruction is more

19

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 20

intuitive than its corresponding core instruction counterpart. If this is the case, you
may want to also learn the emulated instructions.

The MSP430 instructions are divided into several categories: data transfer
instructions, arithmetic instructions, logic instructions, and program control instruc-
tions. This lab is not intended as a comprehensive and in depth study of the MSP430
instruction set. However, at the end of this lab you should feel more confortable with
both assembly language and the MSP430 assembly language instructions.

An MSP430 source statement may be an assembler directive, an assembly
instruction, a macro directive, or a comment. The format is shown below, where
brackets indicate an optional field. Fields are separated by one or more blank spaces.

[Label[:]] [mnemonic] [operand] [; comments]

The Label must begin on the first column and can be followed by a colon. The
mnemonic is an identifier used for directives, macros or CPU instructions. If there
are two operands, then they will be separated by a comma. Any part of a line after
and including a semicolon (;) is considered a comment. Comments are used to
document the program and are ignored by the assembler, accordingly, comments
have no effect on the execution of a program.

Let us revisit the FlashLed.asm program that we used in experiment 1 and
shown below for ease of reference. It includes examples of most of the MSP430
assembly language instruction categories. It also includes examples of directives and
comments. The FlashLed.asm program has two assembler directives at the beginning
and three at the end of the program. In between the assembler directives we have
several assembly language instructions. The #include, ORG, DW and END are all
assembler directives. The first directive #include tells the assembler that it will use
C style declarations that are to be found in the specified header file, i.e. msp430.h.

The ORG directive tells the assembler the address of the first byte it should
use, in this case 0F800h, for the beginning of the code section. The next ORG
directive instructs the compiler to start at the address included, i.e. 0FFFEh, the
reset interrupt vector address. The DW directive indicates to the assembler to reserve
a word, i.e. 16 bits, location. The directive is indicating the assembler which value to
place at the location of the reset interrupt vector. For this program, the assembler
is instructed to place the address associated with the RESET label at the location
reserved for the reset vector, i.e. the address of the first byte of the first word of
the machine language instruction corresponding to the assembly language instruction
mov #0280h,SP. Finally, the END directive tells the assembler that this is the end of
the program and that it should ignore anything written after it. We will have more
to say about the interrupt vectors in another experiment. For now, suffice it to say

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 21

that what the second ORG and the DW directives are accomplishing is making sure
that the program starts with the first instruction each time the Reset button in the
LaunchPad is pressed.

Listing 2.1: FlashLED.asm Program

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov #0280h , SP ; I n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
7 SetupP1 b i s . b #1,&P1DIR ; P1 . 0 as ou tpu t
8 Main xo r . b #1,&P1OUT ; Toggle P1 . 0
9 Wait mov #50000 ,R15 ; De la y to R15
10 L1 dec R15 ; Decrement R15
11 j n z L1 ; De la y o v e r ?
12 jmp Main ; Aga in
13 ;−−
14 ; I n t e r r u p t Vec to r s
15 ;−−
16 ORG 0FFFEh ; MSP430 RESET Vecto r
17 DW RESET ;
18 END

In Listing 2.1 we have three data transfer instructions, i.e. the three mov
instructions, two logic instructions, the bis.b and the xor.b instructions. We also
have one arithmetic instruction, namely the dec instruction, and two program control
instructions represented by the jnz and jmp instructions. Of course, the MSP430
instruction set includes more data transfer instructions, more logic instructions, more
arithmetic instructions, and also more program control instructions. We will just
focus on the instructions found in the program above for now.

The mov or mov.w instruction, the .w is used to make explicit the fact that
the operation will be on a word (16-bits), transfers the contents of the source
operand onto the destination operand. Since this is a two-operand instruction, the
left operand is the source operand and the right operand is the destination operand.
Thus, the mov #0280h,SP instruction places a copy of the hexadecimal value 0x280
into the contents of register SP, where mov is the mnemonic.

The next mov instruction deals with the watchdog timer, a peripheral device

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 22

inside every MSP430 microcontroller. The watchdog timer has many uses, one of
which is to reset the CPU after a specified amount of time elapses. The idea is that
it will reset the CPU in case, for example, it gets stuck in some loop. Since we do
not want the watchdog timer to reset the CPU while we are working with it, we need
to turn it off. This is accomplished by writing a specific value to the watchdog timer
control register, WDTCTL, using a mov instruction. In order to write to the 16-bit
watchdog timer control register it is always necessary to write 0x5A in the upper
byte. The immediate value WDTPW accomplishes this. Also, since the watchdog
timer must be stopped, we need to write a 1 in bit 7, which is represented by the
immediate value WDTHOLD. You need to refer to the WDTCTL bit distribution in
order to determine this. The values for WDTPW and WDTHOLD are defined in the
msp430.h file.

Next we have the bis .b #1,&P1DIR instruction. This is an example of a logic
instruction. The bis .b instruction is an emulated instruction. It has a .b suffix
meaning it is a byte operation. It so happens that P1DIR, a special function register
or SFR, is a byte location. You could also byte-operate on a word location. P1DIR
determines whether a bit will be an input or an output bit. If we set a bit in P1DIR to
1, that bit will be an output, otherwise it will be an input bit. With this instruction
we are performing a bitwise inclusive-or (OR) operation. Thus, we are setting bit
P1.0 as an output bit (1 OR 0 = 1, 1 OR 1 = 1). The rest of the bits in port 1 are
unaffected (0 OR 0 = 0, 0 OR 1 = 1).

The next instruction is xor .b #1,&P1OUT. This is again a logic instruction
which is also operating on a byte. This is the exclusive-or (XOR) instruction in the
MSP430 instruction set. Since 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, and 1
XOR 1 = 0 we see that the effect of the xor.b instruction is to leave unchanged a
bit XORed with a 0 and toggle any bit XORed with a 1. Thus, P1.0 is toggled each
time this instruction is executed. If the red LED is connected to P1.0 and it was
turned off, then it will be lit. If it was on, then it will be turned off.

The mov #50000,R15 instruction loads decimal number 50000 into R15. Reg-
ister R15 is used to hold the number of times left for the loop to execute. This value
is decremented by one using the dec R15 instruction that follows. This is an example
of a single operand arithmetic instruction. Both arithmetic and logic instructions
affect the flags located in the status register (SR). The next instruction is jnz L1.
This is an example of a program control instruction. Specifically, it is a conditional
jump instruction. It is used to test if the dec instruction made the contentes of R15
not zero, i.e. if Z, the zero flag in the SR register, equals zero. Each time the con-
dition is satisfied, program control will be transfered back to the instruction found
at label L1, i.e. the dec R15 instruction. This will go on 50000 times until finally

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 23

the zero flag will be set to 1 because R15 will be zero. At this point the condition
will not be satisfied and program execution will continue at the next instruction in
sequence, jmp Main. This last instruction, i.e. the jmp Main instruction, is another
example of a program control instruction. In this case, however, the jump instruction
is an unconditional jump. This means that program control will be transfered to the
instruction at label Main, i.e the xor instruction without considering any condition.
The program will never stop executing unless power is removed.

2.2 Procedure

1. We will assume that a project with the above source program is already in
place. If this is not the case, you will need to perform experiment 1.

2. Connect the LaunchPad to the computer via the USB cable provided with it.

3. You can now click ‘Project > Download and Debug‘ or Ctrl+D. The Debug
perspective is displayed and the code downloads. You should see that the Debug
toolbar was added along with a Disassembly window, among other things.

4. Now, before you execute your program, go to the FlashLed.asm window in the
Debug perspective. Lets assume we want program execution to stop before
executing

RESET mov #0280h , SP

Make sure that you are in the FlashLED.asm window and place your cursor to
the left of the number where the above line is displayed. If you have the same
program shown here, then that line number should be 5. Thus, place your cursor
to the left of the 5 and double click. You should see a small symbol appear
to the left of the 5 and the entire corresponding part to be highlighted red in
both the FlashLED.asm and the Disassembly windows. This means you have
placed a breakpoint at that line that will allow you to stop program execution
just before executing line 5. Do the same, i.e. place another breakpoint, at
line 6.

5. Open the Register window by clicking ‘View > Register‘. What we are looking
for is for the contents of SP. The instruction will transfer a copy of the hex-
adecimal constant 280, i.e. 0x0280, to the contents of register SP, the stack
pointer. Hit the F5 key for the program to begin. The program should run and
execute only the part of the code before the breakpoint, in this case, nothing.

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 24

Change the value in SP to 0. Now hit F5 again and you should be able to see
that SP now has the value 0x0280.

6. Now go ahead and place a breakpoint at line 11 to watch the contents of R15.
This time you should have trouble placing the breakpoint. You will need to
toggle at least one of the previous two breakpoints in order to set a new one.
Double click at each of the two previous breakpoint locations to toggle them.
Now set a breakpoint at line 11. Assume we want to start the program from
the beginning. While in the Debug perspective, click ‘Debug > Reset‘. Now
hit F5 to execute. It will run until it finds the breakpoint at line 11. If you
watch the value of R15 in the Registers window you should be able to see it
decrementing its value by one, remember though, that the number system is
hexadecimal. Instruction L1 dec R15 is an example of an arithmetic instruction
in the MSP430 instruction set. As opposed to the data transfer instruction,
like the mov instruction, arithmetic instructions can alter the status of the flags
in the status register SR. You could also expand the SR in the Register window
and watch the value of Z, it should say Z = 0.

7. If you do not want to set a breakpoint, there is still a way to run your program
and stop before executing a particular instruction. Before we do that, let us
eliminate the breakpoint we have so far. Make sure the cursor is at the line
where you want to toggle the breakpoint and click the ‘Toggle Breakpoint‘
icon, i.e. the third to last on the top toolbar, i.e. the Main toolbar.

8. Another way to execute all instructions prior to a specific instruction is to
use ‘Debug > Run to Cursor‘. In order to do this, place the cursor over the
instruction in the Debug perspective where you want the program to stop. Now
you can either right click the line and choose ‘Run to Cursor‘ or click ‘Debug
> Run to Cursor‘. When you do this, the program will run and stop prior
to executing the instruction. You can now examine the registers and memory
locations.

2.3 Exercises

1. What we would like you to do now is to set breakpoints to examine the following
instructions

SetupP1 b i s . b #00000001b ,&P1DIR
Main loop xo r . b #00000001b ,&P1OUT

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 25

Thus, what you need to do is to examine two logic instructions and then two
program control instructions in another exercise. The logic instructions will
affect the contents of P1DIR and P1OUT. Both P1DIR and P1OUT control
how port P1 in the MSP430 behaves. P1DIR is used to set each of the 8 bits
in port P1 as either an input port, if the corresponding bit is set to 0, or as
an output port if it is set to 1. In this program we are setting pin 0 in P1,
i.e. P1.0, as an output port by ORing (inclusive- or) P1.0 with 1. Now, bits
1 through 7 in P1, are being ORed with 0 and thus their actual configuration
is not affected. This is as opposed to setting them to 0. If we wanted to
set each and every bit in P1DIR, then we could use a mov instruction. In
this case, however, we only wanted to affect P1.0 and leave unaffected the
rest of the bits, thus the use of the bis instruction as opposed to using the
mov instruction. Generally speaking, logic instructions can affect the flags
in register SR. However, the bis instruction does not affect any of the flags.
In order to see the effect on P1DIR, simply choose Port 1/2 in the Register
window dropdown menu. Expand it and you should be able to see each bit in
P1DIR.

In order to actually send a bit out P1 we use P1OUT. If you send a bit out
an input pin it has no effect on the bit and nothing is sent through it. You
can only send out bits through output pins. We could have chosen to send
bits out P1.0 using one of several other instructions, but most all of those
instructions might change the value of any other output pin. What we would
like to do is to send a 0 to turn the red LED off or a 1 to turn in on. However,
in this experiment, we chose not to initialize the output pin and just work with
whichever value it had after powering on the LaunchPad. The xor instruction
has the ability to toggle some bits and do nothing to the rest. Thus, in this
experiment we use the xor instruction to toggle P1.0 leaving alone the rest of
the bits. As most logic instructions will do, the xor instruction does affect the
flags in the SR register. In this case, however, we are not interested in the
effect the xor instruction has on the flags, but you should be aware of the fact
that it does have the ability to affect the flags.

2. Set breakpoints at instructions

j n z L1
jmp Main

These are two examples of the program control instructions in the MSP430
instruction set. The jnz mnemonic indicates this is a conditional jump instruc-
tion. The mnemonic means, “jump if not zero“. In other words, jump to the
instruction whose first byte is at the location in memory indicated by label L1 if

EXPERIMENT 2. MSP430 INSTRUCTION SET PART 1 26

the zero flag in the SR register has the value 0, i.e. Z = 0, otherwise continue
with the next instruction, which in this case is the unconditional jump instruc-
tion jmp Main. Remember that the conditional jump instruction comes after
the dec instruction. This means that it is the effect of decrementing register
R15 by one which is being whose condition is being tested by the conditional
jump instruction. We already saw how R15 was being decremented. After
placing a breakpoint at the conditional jump instruction you will be able to see
how program control is changed when you run the program. Watch both the
contents of R15 in the Registers window and also see how program execution
goes from the conditional jump instruction back to the decrement instruction
and so on.

At some point where program execution is stopped because of the breakpoint
at the conditional jump instruction, go to the Registers windows and change
the value of R15 to say 2. In this way we will be able to see program control to
pass from the conditional jump instruction to the unconditional jump instruction
when the contents of R15 reaches 0. At this point the microprocessor is about
to execute jmp Main. If you run the program again, you will see program control
being passed to the instruction at label Main, i.e. the xor instruction. You
should have seen how the content of PC was updated to reflect this fact.

Experiment 3

MSP430 Instruction Set Part 2

Objectives

• Become familiar with the MSP430 instruction set data transfer instructions,
arithmetic instructions, logic instructions, and the program control instructions.

• Learn more ways to control program execution using the IAR Integrated De-
velopment Environment.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

3.1 Introduction

As mentioned in experiment 2, the MSP430 instruction set has 27 core instructions
divided into several categories: data transfer instructions, arithmetic instructions,
logic instructions, and program control instructions. In this lab we will be presenting
two more data transfer instructions, push and pop, along with two of the MSP430
instructions that affect the flow of control in a program, call and ret.

We know by now that an MSP430 source statement may be an assembler
directive, an assembly instruction, a macro directive, or a comment. The format

27

EXPERIMENT 3. MSP430 INSTRUCTION SET PART 2 28

is shown below, where brackets indicate an optional field. The different fields have
already been explained in a previous experiment.

[Label[:]] [mnemonic] [operand] [; comments]

The MSP430G2231 memory map begins at address 0x0 and ends at address 0x0FFFF.
From address 0x0 to address 0x0F it has space allocated for the special function reg-
isters (SFR). These locations must be accessed using byte instructions. From 0x010
through 0x0FF the space is allocated to the 8-bit peripherals modules, which must
also be accessed using byte instructions. In the range 0x0100 to 0x01FF are allocated
the 16-bit peripherals modules, which should be accessed with word instructions. The
128B of R/W RAM begin at address 0x0200 and end at 0x027F. Information mem-
ory is located in Flash in the range 01000h to 010FFh for a total of 256B. The
range 0x0F800 to 0x0FFFF, 2KB also in Flash, includes program memory and the
interrupt vector table located in the space 0x0FFC0 to 0x0FFFF.

The stack is simply memory where data is stored. Since this data has to be
accessed and modified throughout the execution of the program, then it is clear that
the stack must be located in R/W RAM. On the other hand, since the program
instructions do not change throughout the execution of the program and must be in
place when the unit is powered up, the instructions are located in Flash.

There are two data transfer instructions whose semantics is bound to be per-
formed on the stack: push and pop. Whenever a push is executed, a copy of the
content of the source operand is placed on the top of the stack (TOS). The way
this is performed is by first decrementing by 2 the content of register SP and then
copying the value onto the TOS, i.e. the 16-bit location in memory whose first byte
address is pointed to by SP. This means that SP is always pointing to the TOS and
that the TOS is dynamic. The pop instruction works on the other direction. That is,
when a pop is executed, a copy of the 16-bit TOS is first copied onto the destination
operand and then the content of SP is incremented by 2. Push and pop are both
single operand instructions. The push instruction single operand is always a source
operand because the destination operand is always the new TOS, i.e. the destination
operand is implicit. On the other hand, the single operand for the pop instruction is
always a destination operand because the source operand is always the current TOS.

The call and ret instructions also affect the stack, but they are program control
instructions. When a call instruction is executed, a copy of the content of the
program counter (PC), i.e. the address of the next instruction in sequence, is pushed
automatically by the microprocessor onto the stack and then the content of the
destination operand is copied onto the PC, effectively transferring control to the
called subroutine. As part of the automatic push, the content of SP is decremented

EXPERIMENT 3. MSP430 INSTRUCTION SET PART 2 29

by 2. It is the address of the first byte of the first instruction in the subroutine that
gets copied onto the PC. On the other hand, when a ret instruction is executed, a
copy of the TOS is automatically popped and copied into the PC register. As you
might have already guessed, as part of this popping of the TOS the content of SP
is properly incremented by 2.

In this exercise, we will be using a slight variation of our flashing LED program.
Our source program is shown in Listing 3.1. Note that what we have done is to move
the code for creating the delay out of the main program starting in line number 14
and ending in line number 17, and then invoke it using a call instruction in line
number 9.

Listing 3.1: Subroutine example program

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov #0280h , SP ; I n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
7 SetupP1 b i s . b #1,&P1DIR ; Set P1 . 0 as ou tpu t
8 Main xo r . b #1,&P1OUT ; Toggle P1 . 0
9 c a l l #Wait ; De la y
10 jmp Main
11 ;−−
12 ; S u b r o u t i n e Wait
13 ;−−
14 Wait mov #50000 ,R15 ; De la y to R15
15 L1 dec R15 ; Decrement R15
16 j n z L1 ; De la y o v e r ?
17 r e t ; Go back to the c a l l e r
18 ;−−
19 ; I n t e r r u p t Vec to r s
20 ;−−
21 ORG 0FFFEh ; MSP430 RESET Vecto r
22 DW RESET
23 END

In Section 3.3 we will be using the code in Listing 3.2 to pass the delay count
to the subroutine by means of the stack using the code shown. Note that the delay
count is pushed onto the stack in line number 9 before the subroutine call and then

EXPERIMENT 3. MSP430 INSTRUCTION SET PART 2 30

it is retrieved in line number 15 using a pop instruction from within the subroutine
body.

Listing 3.2: Subroutine example passing delay using the stack.

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov .w #0280h , SP ; I n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov .w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT
7 SetupP1 b i s . b #00000001b ,&P1DIR ; Set P1 . 0 as ou tpu t
8 Main xo r . b #00000001b ,&P1OUT ; Toggle P1 . 0
9 push #50000
10 c a l l #Wait ; De la y
11 jmp Main
12 ;−−
13 ; S u b r o u t i n e Wait
14 ;−−
15 Wait mov R15 , 2 (SP) ; De la y to R15
16 L1 dec .w R15 ; Decrement R15
17 j n z L1 ; De la y o v e r ?
18 r e t ; Go back to the c a l l e r
19 ;−−
20 ; I n t e r r u p t Vec to r s
21 ;−−
22 ORG 0FFFEh ; MSP430 RESET Vecto r
23 DW RESET
24 END

Note to the reader. The previous programs are used exclusively for explaining
how to call a subroutine and how to push onto and retrieve values from the stack. If
you take the time to analyze what we were doing, from an efficiency point of view,
you will probably conclude that it is more efficient not to use these methods for this
particular program and keep our original way of flashing the red LED. If you arrive
at this conclusion, you will be right.

EXPERIMENT 3. MSP430 INSTRUCTION SET PART 2 31

3.2 Procedure

1. Create a project with the first version of the project shown in Listing 3.1. If
you are unsure about how to do this, you should go through Experiment 1 first.

2. Place a breakpoint at the call instruction, i.e. instruction in line number 9
and another one at the first instruction in the body of the subroutine, i.e. the
instruction with label Wait in line number 14 in Listing 3.1.

3. Click Ctrl+D or ‘Project > Download and Debug‘. It will probably ask you to
save your work and to create a workspace.

4. Click F5 to run your program. It should stop just before executing the call
instruction. Click ‘View > Register‘ and pay particular attention to the PC
register contents. It should be pointing to the address of the next instruction
in sequence, i.e. the jmp Main instruction in line number 11.

5. Click ‘Step Into‘ to see program control being transferred to the first instruction
in the subroutine. The program will stop before executing this line. Check
out the contents of the PC register. It should now be pointing to the next
instruction in sequence, i.e. the second instruction in the subroutine.

3.3 Exercises

In this experiment we want you to try on your own the second version of the program,
i.e. Listing 3.2. We want you to observe the behavior of both the push and the pop
instructions. Thus, you should pay particular attention to the contents of registers
SP and R15. Accordingly, you should place your breakpoints at the call and pop
instructions. On the other hand, you could do the same without using breakpoints
by clicking ‘Step Into‘.

Experiment 4

MSP430 Poll-based I/O

Objectives

• Become familiar with the MSP430 port 1 poll-based I/O.

• Understand how to determine that an I/O event has occurred by polling its
status.

Duration

1-2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

• One (1) 100nF capacitor (optional).

4.1 Introduction

In previous experiments we have shown you how to control the time the LEDs in
the MSP430 Launchpad are turned either on or off using software methods. We
first showed you how to accomplish this task with a monolithic assembly language
program in experiments 1 and 2. Then, in experiment 3, we showed you how to use a
subroutine to accomplish the same task passing a parameter to the subroutine using
the stack. The parameter represented the number of cycles the LED will be on or
off.

32

EXPERIMENT 4. MSP430 POLL-BASED I/O 33

In this experiment we will be using the status of pin P1.3 in the Launchpad
in order to toggle the red LED on and off. This pin is connected to a pushbutton
labeled S2 in the Launchpad and thus its status can be readily determined. If the
button is pushed, then a zero (0) will be read, otherwise a one (1) will be read. This
process of reading the status of a switch is usually known as polling. Thus, in this
experiment we will be polling pushbutton S2 in the MSP430G Launchpad.

Now, among the latest revisions in the Launchpad, in revision 1.5 pull-up resis-
tor R34 and capacitor C24 are not populated. R34 is a 47kΩ resistor whereas C24
is a 100nF capacitor. Although both components are important for this experiment,
our main concern is with the absence of R34. If this resistor is not present in your
board, then P1.3 will not be pulled-up to a high voltage and when the status of this
pin is checked it may yield a false reading. In order to make sure that when we
read a one (1) in this pin it is because we have a one (1), we must make sure that
we have a pull-up resistor connected to P1.3. Fortunately, the MSP430 included
with the MSP430G Launchpad have internal resistors that can be configured to be
connected to the pins in port P1. This is accomplished by setting to one (1) the
corresponding bit in P1REN and P1OUT. If you need to enable the internal pull-up
resistor for pin P1.3, then you need to select bit 3 in P1REN and then make it a pull-
up by sending a one (1) to the corresponding bit in P1OUT. In other words, insert
bis .b #00001000b,&P1REN and bis .b #00001000b,&P1OUT before the instruction
in line 12, i.e. before executing instruction bit .b #00001000b,&P1IN.

Pushbutton S2 is a mechanical switch and thus it bounces both when it is
pushed and also when it is released. Accordingly, when we push S2, although we
pushed it only once, the contacts will bounce. Thus, since the microprocessor is fast
enough, we could detect several pushes when even though we pushed it just once.
We could also detect a one (1) during bouncing when the button was pushed or a
zero (0) when the button is released. There are several strategies to go around this
problem using either hardware or a software solution. Since an in-depth solution of
this problem is beyond the scope of this experiment we will only suggest the following:
If your Launchpad lacks capacitor C24 you should connect an external capacitor to
P1.3 similar to C24, the other end of the capacitor should be connected to ground.
Note that if your Launchpad has R34 and C24 already installed you do not
need to do any of these corrective steps because the circuit including these
two components already takes care of pulling P1.3 up and debouncing S2.

You will use the following assembly code for your program.

Listing 4.1: Poll-based I/O example program

1 #i n c l u d e msp430 . h

EXPERIMENT 4. MSP430 POLL-BASED I/O 34

2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov .w #0280h , SP ; i n i t i a l i z e s t a c k p o i n t e r
6 StopWDT mov .w #WDTPW+WDTHOLD,&WDTCTL ; s top WDT
7 b i c . b #00001000b ,&P1DIR ; P1 . 3 as i n p u t p o r t
8 b i s . b #1,&P1DIR ; P1 . 0 as ou tpu t p o r t
9 b i c . b #1,&P1OUT ; r ed LED o f f
10 ; b i s . b #00001000b ,&P1REN ; s e l e c t i n t e r n a l r e s i s t o r
11 ; b i s . b #00001000b ,&P1OUT ; make i t p u l l −up
12 POLL b i t . b #00001000b ,&P1IN ; p o l l P1 . 3
13 j z POLL ; a g a i n i f z e r o
14 ;−−
15 ; P1 . 3 S e r v i c e Code
16 ;−−
17 PBSCode xo r . b #00000001b ,&P1OUT ; t o g g l e r ed LED
18 jmp POLL
19 ;−−
20 ; I n t e r r u p t Vec to r s
21 ;−−
22 ORG 0FFFEh ; MSP430 RESET Vecto r
23 DW RESET ; a d d r e s s o f l a b e l RESET
24 END

This is pretty much the same program we have been using all along with some
modifications. You should notice that we have removed the delay part of the program
which accounted for how long the LED would be on or off. In this experiment the
delay part of the program is provided by your pushing the pushbutton. We will explain
only some of the instructions since the rest of them have been explained in previous
experiments.

In Listing 4.1 instruction bit .b #00001000b,&P1IN at line number 12 is testing
pin 3 on port P1 (P1.3) in order to determine whether the pushbutton is pushed. If
it is not pushed, then the program will continue to poll the status of the pushbutton.
Otherwise, execution will continue at the instruction labeled PBSCode, i.e. the red
LED is toggled, and execution is again given back to the polling instruction using an
unconditional jump instruction at line 18.

EXPERIMENT 4. MSP430 POLL-BASED I/O 35

4.2 Procedure

1. Create a project and use the above program for your “.asm“ file. You could
name your project PBFlashLED. Your “.asm“ file could be named PBInterrupt.

2. Click Ctrl+D or ‘Project > Download and Debug‘. It will probably ask you to
save your work and to create a workspace.

3. Click F5 to run your program. If everything is ok, and it should, nothing is
happening to the red LED. Now push the push button. The red LED should
toggle each time you push it.

4.3 Exercises

1. Place breakpoints at the instructions containing bit .b in line number 12 and
jz in line 13 so that you can watch the contents of these bits before and after
the instructions are executed.

2. Remove the breakpoints you placed in the previous step, and place a breakpoint
in the instructions with xor .b in line number 17 and jmp in line 18. This should
allow you to stop the execution of the program and how the status of the red
LED is toggled just prior to jumping back to line 12.

Experiment 5

MSP430 Interrupt-based I/O

Objectives

• Become familiar with the MSP430 port 1 interrupt-based I/O and interrupt
capabilities in general.

• Understand the MSP430 interrupt sequence and how to manage the interrupt
vector table.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

5.1 Introduction

In previous experiments we have shown you how to control the time the LEDs in
the MSP430 Launchpad are turned either on or off using software methods. We
first showed you how to accomplish this task with a monolithic assembly language
program in experiments 1 and 2. Then, in experiment 3, we showed you how to
use a subroutine to accomplish the same task passing a parameter to the subroutine
using the stack. The parameter represented the amount of cycles the LED will be
on or off. In experiment 4 we showed you how to do it by polling the status of the
pushbutton labeled S2 in the LaunchPad.

36

EXPERIMENT 5. MSP430 INTERRUPT-BASED I/O 37

In this experiment we will be examining the interrupt capabilities of the MSP430G2231
general purpose input/output ports. In particular, we will be using pin P1.3 in the
Launchpad to generate an interrupt to control the toggling of the red LED. This pin
is connected to a push button labeled S2 in the Launchpad and thus can be used to
generate an interrupt to the microprocessor inside the MSP430.

Remember that when a call to a subroutine is executed control is transferred
to the first instruction in the body of the subroutine (the callee) after some house-
keeping is performed to secure the contents of the program counter register (PC)
so that control can be transferred back to the caller as part of the execution of a
ret instruction. Without saving the address of the instruction immediately following
the call the microprocessor would have no way to return back to the place it was
at the time of the call . As mentioned before, the content of the PC is saved by
pushing it onto the stack. As part of the semantics of executing the ret instruction,
the microprocessor will get the address it needs to return to by copying the current
value at the top of the stack (TOS) into register PC. From that point on execution
will continue from the instruction immediately following the call.

Generally speaking, there are two classifications of interrupts: maskable inter-
rupts and non-maskable interrupts. Maskable interrupts are governed by the state of
a general interrupt enable bit. If this bit is enabled, then maskable interrupts will be
recognized and serviced accordingly. Otherwise, the interrupt will be ignored. In the
MSP430 microcontrollers this bit is called the global interrupt enable (GIE) bit and
it is located in bit 8 of the status register (SR). You can globally enable maskable
interrupts for the MSP430 by executing the assembly language instruction eint. You
can globally disable maskable interrupts by executing dint. There could also be an-
other interrupt enable bit which is local to the peripheral you are using as in the case
of this experiment. We will not elaborate on non-maskable interrupts other than to
say that this type of interrupts cannot be ignored when they occur. Non-maskable
interrupts are beyond the scope of this experiment.

When a maskable interrupt which is enabled both locally and globally occurs the
microprocessor begins the interrupt sequence. The interrupt sequence is, as its name
implies, a sequence of steps that will make the microprocessor save its current state
and transfer control to the first instruction in the interrupt service routine (ISR).
When the microprocessor executes the reti instruction (not the ret) within the ISR,
control is transferred back to the interrupted program. Please, note that in order to
properly return from a hardware invoked ISR we need to use reti and not the ret
instruction used for software invoked subroutines. They may look similar, but they
are very different.

The first thing that the microprocessor does when an interrupt is recognized

EXPERIMENT 5. MSP430 INTERRUPT-BASED I/O 38

and must be serviced is that, in case an instruction is being executed, it finishes
execution of the current instruction. Then the content of the PC, which is pointing
to the next instruction in sequence in the interrupted program, is pushed onto the
stack. A copy of the appropriate interrupt vector is placed into the PC. Then the
content of register SR is pushed onto the stack and SR is cleared afterwards. Each
time an item is pushed onto the stack register SP is first updated by adding two (2)
to its contents and then the item is copied into the new TOS. Note that one thing
that happens when SR is cleared is that the GIE bit is cleared. This means that the
microprocessor cannot be interrupted by another (or the same) maskable interrupt
while servicing an interrupt. Control is now transferred to the instruction whose
address is loaded into PC, i.e. the address of the first byte of the first instruction
in the ISR, which is obtained from the interrupt vector, and execution of the ISR
begins. The process described above takes 6 clock cycles. When the microprocessor
executes a reti instruction, the SR register is loaded with a copy of the TOS, the
SP register is updated by subtracting two (2) from its current contents, now a copy
of this new TOS is copied into the PC, two (2) is subtracted again from the SP
register to update it, and control is transferred to the instruction whose address is
the contents of register PC. This process takes 5 additional clock cycles. The total
overhead for an interrupt is thus 11 clock cycles.

We mentioned previously that a copy of the interrupt vector is copied into the
PC as part of the interrupt sequence. Since the MSP430 can be interrupted by several
sources, the designers decided that a way to discriminate among the different sources
needed to be put in place. Thus, a precedence number was assigned to the different
sources and the way to determine the precedence is by using an interrupt vector table.
This table is usually placed in flash and extends from location 0xFFE0 to 0xFFFF
in the MSP430G2231. Thus, if more than one interrupt source is active when an
interrupt is recognized, the interrupt with the highest interrupt vector address within
the interrupt vector table will be serviced. In this experiment we will generate an
interrupt from port P1 whose interrupt vector is at location 0xFFE4. Note that an
interrupt vector always starts in an even numbered address and that it takes up 16
bits. Thus, there are 16 vectors in the interrupt vector table in the MSP430G2231.

You will use the following assembly code for your program.

Listing 5.1: Interrupt based I/O.

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−

EXPERIMENT 5. MSP430 INTERRUPT-BASED I/O 39

5 RESET mov .w #0280h , SP ; i n i t i a l i z e SP
6 StopWDT mov .w #WDTPW+WDTHOLD,&WDTCTL ; s top WDT
7 b i c . b #00001000b ,&P1SEL ; d e f a u l t
8 b i c . b #00001000b ,&P1DIR ; P1 . 3 as i n p u t
9 b i s . b #1,&P1DIR ; P1 . 0 as ou tpu t
10 b i c . b #1,&P1OUT ; r ed LED o f f
11 ; b i s . b #00001000b ,&P1REN ; s e l e c t i n t e r n a l r e s i s t o r
12 ; b i s . b #00001000b ,&P1OUT ; make i t p u l l −up
13 b i s . b #00001000b ,&P1IE ; e n a b l e P1 . 3 i n t .
14 e i n t ; g l o b a l i n t e r r u p t e n a b l e
15 HERE jmp HERE ; wa i t
16 ;−−
17 ; P1 . 3 I n t e r r u p t S e r v i c e Rou t i n e
18 ;−−
19 PBISR b i c . b #00001000b ,&P1IFG ; c l e a r i n t . f l a g
20 xo r . b #1,&P1OUT ; t o g g l e r ed LED
21 r e t i ; r e t u r n from ISR
22 ;−−
23 ; I n t e r r u p t Vec to r s
24 ;−−
25 ORG 0FFFEh ; MSP430 RESET Vecto r
26 DW RESET ; a d d r e s s o f l a b e l RESET
27 ORG 0FFE4h ; i n t e r r u p t v e c t o r 2
28 DW PBISR ; a d d r e s s o f l a b e l PBISR
29 END

This is pretty much the same program we have been using all along. What we
did this time to move the toggling face inside an ISR called PBISR which begins at
the instruction in line number 19. You should also notice that we have removed the
delay part of the program which accounted for how long the LED would be on or
off. In this experiment the delay part of the program is provided by your pushing
the pushbutton. We will explain only some of the instructions since the rest of them
have been explained in a previous experiment.

Instruction bic .b #00001000b,&P1SEL in line 7 is clearing bit 3 in register
P1SEL. This instruction is not really necessary since the default for register P1SEL
is that it is cleared. If we have a bit cleared in P1SEL we are telling the pe-
ripheral, in this case port P1, that that pin is allowed to interrupt. Instruction
bis .b #00001000b,&P1IE is locally enabling the interruption in pin 3 on port P1.
This is accomplished by setting P1IE.3 to a 1. After the previous instruction we find
eint in line 14. As already explained, eint globally enables maskable interrupts by

EXPERIMENT 5. MSP430 INTERRUPT-BASED I/O 40

setting bit GIE in register SR to a 1. If you do not enable a maskable interrupt both
locally and globally, that interrupt will not be serviced. After eint the program just
waits for an interrupt to occur.

If the pushbutton is pushed, control will be transferred from the main program
to the PBISR interrupt service routine. The first thing that is done inside the ISR
is to clear the flag that was set when the interrupt was received on P1. This is
accomplished with the instruction bic .b #00001000b,&P1IFG in line 19. What this
does is to clear the port 1 interrupt flag. Since only P1.3 is allowed to interrupt, we
do not have to check which of the 8 pins included in P1 generated the interrupt, nor
do we need to discriminate among them. After this we toggled the status of the red
LED and return from the interrupt with instruction reti .

The one thing we have left to explain is how the microprocessor got to the
ISR. Note that we used a label PBISR in the first instruction of the ISR. There is
nothing new about using a label, but we then used this label as part of a directive
in the very same way we have done in previous experiments and in this with label
RESET. Using the ORG 0xFFE4 directive in line 27 we instruct the assembler to do
what the DW PBISR directive is telling it to do, i.e. to reserve a 16 bit memory
location beginning at the address 0xFFE4, the interrupt vector location for port P1,
and initialize it with the address of the first byte of the instruction labeled PBISR,
i.e. the first instruction in the ISR. Now, when the pushbutton connected to P1.3 is
pushed, the microprocessor will execute the ISR thus toggling the red LED.

5.2 Procedure

1. Create a project and use the above program for your “.asm“ file. You could
name your project PBFlashLED. Your “.asm“ file could be named PBInterrupt.

2. Click Ctrl+D or ‘Project > Download and Debug‘. It will probably ask you to
save your work and to create a workspace.

3. Click F5 to run your program. If everything is ok, and it should, nothing is
happening to the red LED. Now push the pushbutton. The red LED should
toggle each time you push it.

EXPERIMENT 5. MSP430 INTERRUPT-BASED I/O 41

5.3 Exercises

1. Place breakpoints at the instructions containing bis .b in line number 13 and
eint in line 14 so that you can watch the contents of these bits before and
after the instructions are executed.

2. Remove the breakpoints you placed in the previous step, and place a breakpoint
in the first and last instruction inside the ISR, i.e. the instructions with bic .b in
line number 19 and reti in line 21. This should allow you to stop the execution
and watch how the content of P1IFG is cleared and how the status of the red
LED is toggled just prior to returning to the interrupted program.

Experiment 6

MSP430 Timer A

Objectives

• Become familiar with the MSP430 Timer A

• Understand how to configure the MSP430 Timer A to generate the timing
needed to control turning on and off the LED.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

6.1 Introduction

Thus far we have used several features of the MSP430G2231 to control the toggling
on and off of one or both of the onboard LEDs. We have used both software and
hardware features to accomplish this toggling of LEDs but none of our timing sources
so far could be said to be accurate. One of the main features of the MSP430 family
of microcontrollers is its ability to generate the timing signals you need without having
to add any hardware. The MSP430G2231 has two different timers: the watchdog
timer (WDT) and Timer A. In this experiment we will be using Timer A to generate
the timing needed to control the LEDs included as part of the MSP-EXP430G2
LaunchPad development board.

42

EXPERIMENT 6. MSP430 TIMER A 43

Timer A is a 16-bit timer that includes an asynchronous 16-bit timer/counter
TAR with four operating modes (Stop, Up, Continuous, and Up/Down), it has a se-
lectable and configurable clock source able to select from four different clock sources:
two internal (ACLK and SMCLK) and two external (TACLK and INCLK), three (3)
configurable capture/compare registers (CCR0-2), configurable outputs with pulse
width modulation (PWM) capability, asynchronous input and output latching, and
interrupt vector register for fast decoding of all Timer A interrupts.

There are two interrupt vectors associated with Timer A in the MSP430G2231.
Their locations in the interrupt vector table are 0FFF2h and 0FFF0h with interrupt
priorities 25 and 24, respectively. Both interrupts are maskable. Location 0FFF2h
is used for Timer A capture compare register 0 (TACCR0) and location 0FFF0h is
used for Timer A capture compare register 1 (TACCR1). In this experiment we will
be using TACCR0, which has TACCR0 CCIFG as interrupt flag.

Now, in the up mode the timer will count clock pulses starting at zero (0) up to
the value stored in TACCR0 or CCR0 at which point it will set its interrupt flag to a
one (1), i.e. TACCR0 CCIFG equals one (1) indicating that an interrupt is pending.
In the next clock pulse the timer will begin counting again from zero (0) and at that
point it will set flag TAIFG to one (1). As long as Timer A is operating in the up
mode it will continue to behave as explained above. Before we go on we should
point out the fact that when the CPU enters an interrupt service routine (ISR) for
Timer A, its flag is reset, i.e. TACCR0 CCIFG is automatically reset to zero (0).
This makes it unnecessary for our code to have to reset the flag to zero (0) and
accordingly we will not do so.

As mentioned above, Timer A can be sourced from four (4) different clock
sources. In order to choose the clock source you send two bits to a 4-by-1 multiplexer
using Timer A clock select signals (TASSELx), i.e. bits 8 and 9 in the Timer A
control register (TACTL). If you send the combination 00 you will be choosing the
TACLK clock, if 01 is sent instead ACLK will be used. Sending 10 will choose
SMCLK and 11 chooses clock INCLK. The corresponding clock pulses are divided by
either 1, 2, 4, or 8, depending on bits 6 and 7 in the TACTL register. These two bits
form a field called IDx or input divider. A 00 in IDx will divide the clock pulses by 1,
a 01 will divide them by 2, a 10 will divide them by 4, and a 11 will divide them by 8.
Thus, the count value in timer A register TAR is really the clock source chosen with
TASSELx divided by the value specified by IDx. Finally, Timer A mode of operation
is chosen by specifying the value in bits 4 and 5 in register TACTL. These two bits
are known as field MCx. An MCx value of 00 chooses the “Stop mode“ in which
Timer A is halted; 01 chooses the “Up mode“ in which the timer counts from zero
(0) up to the value stored in TACCR0; 10 chooses “Continuous mode“ and counts

EXPERIMENT 6. MSP430 TIMER A 44

from zero (0) up to 0FFFFh; and 11 chooses “Up/down mode“ in which the timer
counts from zero (0) to TACCR0 then down to 0000h.

The code that you will be using is shown below:

Listing 6.1: Timer A programming.

1 #i n c l u d e msp430 . h
2 ;−−
3 ORG 0F800h ; Program S t a r t
4 ;−−
5 RESET mov .w #0280h , SP ; i n i t i a l i z e SP
6 StopWDT mov .w #WDTPW+WDTHOLD,&WDTCTL ; s top WDT
7 b i s . b #BIT0 ,&P1DIR ; P1 . 0 as ou tpu t p o r t
8 b i c . b #BIT0 ,&P1OUT ; i n i t i a l i z e r ed LED o f f
9 SetupC0 mov .w #CCIE ,&CCTL0 ; e n a b l e CCR0 i n t e r r u p t
10 mov .w #50000,&CCR0
11 SetupTA mov .w #TASSEL 2+MC 1,&TACTL ; use SMCLK, up mode
12 b i s .w #GIE+LPM0, SR ; e n a b l e i n t e r r u p t s and
13 ; e n t e r low power mode 0
14 nop ; r e q u i r e d f o r debugge r
15 ;−−
16 ; TIMER A TACCR0 I n t e r r u p t S e r v i c e Rou t i n e (ISR)
17 ;−−
18 TACCR0 ISR xo r . b #BIT0 ,&P1OUT ; t o g g l e r ed LED
19 ; CCIFG a u t om a t i c a l l y r e s e t
20 ; when TACCR0 ISR i s s e r v i c e d
21 r e t i ; r e t u r n from ISR
22 ;−−
23 ; I n t e r r u p t Vec to r s
24 ;−−
25 ORG 0FFFEh ; MSP430 RESET Vecto r
26 DW RESET ; a d d r e s s o f l a b e l RESET
27 ORG 0FFF2h ; i n t e r r u p t v e c t o r (TACCR0)
28 DW TACCR0 ISR ; a d d r e s s o f l a b e l TACCR0 ISR
29 END

The instruction SetupC0 mov.w #CCIE,&CCTL0 sets bit four (4) in the
Timer A capture compare control register TACCTL0 or CCTL0 to a 1 enabling
interrupts originating in CCR0. The next instruction mov.w #50000,&CCR0 loads
the decimal value 50,000 to capture compare register zero (TACCR0 or CCR0).
Thus, Timer A will count from zero (0) to 50,000 at which point it will set TACCR0

EXPERIMENT 6. MSP430 TIMER A 45

CCIFG to one (1) and interrupt the CPU effectively waking it up. The next two (2)
instructions

SetupTA mov .w #TASSEL 2+MC 1,&TACTL
b i s .w #GIE+LPM0, SR

configure TACTL so that Timer A will be sourced from SMCLK and the operating
mode will be “Up mode“ and load the status register SR in such a way that interrupts
are globally enabled and low power mode 0 (LPM0) is selected, i.e. bits 3 and 4 in
SR are set to one (1). The MSP430 can be placed into one of several low power
modes. Each of the low power modes disables the CPU. As the digit in the low
power mode scheme increases, additional peripheral devices are disabled to conserve
energy. LPM0 means that the CPU will be off or disabled. LPM4 means that the
CPU and all clocks are disabled. Except for LMP0, all low power modes disable the
SMCLK clock. Since we need to use SMCLK we cannot disable it.

As shown in the comment the instruction nop is used to allow the debugger to
work properly. The instruction following an enable interrupt is always executed. The
“no operation“ instruction, as its name implies, does nothing except to consume one
(1) clock cycle. Also when using the debugger there is the possibility that control is
given back to the debugger when single stepping over an instruction that manipulates
flash before flash manipulation is complete, thus displaying wrong information. The
nop instruction is used to allow the debugger to synchronize.

6.2 Procedure

1. Create a project and use the above program for your .asm file. You could name
your project TAFlashLED. Your “.asm“ file could be named TACCR0.

2. Click Ctrl+D or ‘Project > Download and Debug‘. It will probably ask you to
save your work and to create a workspace.

3. Click F5 to run your program. The red LED should toggle every 50,000 SMCLK
clock periods.

6.3 Exercises

1. Place breakpoints to allow you to see how the bits of Timer A capture compare
control register CCTL0 and Timer A control register TACTL are affected.

EXPERIMENT 6. MSP430 TIMER A 46

2. Find the amount of time the 50000 number used in the code above corresponds
to.

3. Modify the code shown above to count the SMCLK clock pulses divided by 8.

4. Modify the code shown above to count the ACLK clock pulses.

Experiment 7

MSP430 Interrupt-based I/O using
the C Language

Objectives

• Become familiar with programming the MSP430 using the C language.

• Review the MSP430 interrupt sequence and how to manage the interrupt vector
table.

Duration

2 Hours

Materials

• IAR Embedded Workbench (IAR) Application.

• MSP-EXP430G2 LaunchPad development board.

7.1 Introduction

In previous experiments we have shown you how to control the time the LEDs in the
MSP430 Launchpad are turned either on or off using software methods. From ex-
periments 1 thru 4 we used purely software methods. Then in experiment 5 and 6 we
added the powerful concept of hardware interrupts. The underlying software vehicle
for performing all of these experiments has been the MSP430 assembly language. In
this experiment we will be using the C high level language to program the MSP430.

47

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE48

In particular, we will be performing a task similar to what we did in experiment 5 but
this time we will do everything using C.

In this experiment we will be examining the interrupt capabilities of the MSP430G2231
general purpose input/output ports. In particular, we will be using pin P1.3 in the
Launchpad to generate an interrupt to control the toggling of the red LED. This pin
is connected to a push button labeled S2 in the Launchpad and thus can be used to
generate an interrupt to the microprocessor inside the MSP430.

Remember that there are two classifications of interrupts: maskable interrupts
and non-maskable interrupts. Maskable interrupts are governed by the state of a
general interrupt enable bit. If this bit is enabled, then maskable interrupts will
be recognized and serviced accordingly. Otherwise, the interrupt will be ignored.
In the MSP430 microcontrollers this bit is called the global interrupt enable (GIE)
bit and it is located in bit 8 of the status register (SR). You can globally enable
maskable interrupts for the MSP430 by executing the assembly language instruction
eint. You can globally disable maskable interrupts by executing dint. There could
also be another interrupt enable bit which is local to the peripheral you are using as
in the case of this experiment. Non-maskable interrupts are beyond the scope of this
experiment.

We mentioned previously that a copy of the interrupt vector is copied into the
PC as part of the interrupt sequence. Since the MSP430 can be interrupted by several
sources, the designers decided that a way to discriminate among the different sources
needed to be put in place. Thus, a precedence number was assigned to the different
sources and the way to determine the precedence is by using an interrupt vector table.
This table is usually placed in flash and extends from location 0xFFE0 to 0xFFFF
in the MSP430G2231. Thus, if more than one interrupt source is active when an
interrupt is recognized, the interrupt with the highest interrupt vector address within
the interrupt vector table will be serviced. In this experiment we will generate an
interrupt from port P1 whose interrupt vector is at location 0xFFE4. Note that an
interrupt vector always starts in an even numbered address and that it takes up 16
bits. Thus, there are 16 vectors in the interrupt vector table in the MSP430G2231.

You will use the following C code shown in Listing 7.1 for your program. Al-
though it may not be immediately obvious, this program in C accomplishes the same
thing as the assembly language version presented in experiment 5.

Listing 7.1: Interrupt based I/O using C.

1 #i n c l u d e ‘ ‘ msp430 . h ‘ ‘
2 #i n c l u d e ‘ ‘ i n t r i n s i c s . h ‘ ‘

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE49

3 v o i d main (v o i d)
4 {
5 WDTCTL = WDTPW + WDTHOLD; // s top WDT
6 P1DIR = P1DIR | 0x01 ; // P1 . 0 as ou tpu t
7 P1OUT = P1OUT & ˜0 x01 ; // r ed LED o f f
8 P1IE = P1IE | 0x08 ; // en a b l e P1 . 3 i n t e r r u p t
9 // P1REN = P1REN | 0 x08 ; // s e l e c t P1 . 3 i n t e r n a l r e s i s t o r
10 // P1OUT = P1OUT | 0 x08 ; // as p u l l −up
11 b i s S R r e g i s t e r (GIE) ; // g l o b a l i n t e r r u p t e n a b l e
12 he r e : ; // wa i t
13 goto he r e ;
14 }
15 ;−−
16 ; P1 . 3 I n t e r r u p t S e r v i c e Rou t i n e
17 ;−−
18 #pragma v e c t o r = PORT1 VECTOR
19 i n t e r r r u p t v o i d p o r t 1 p i n 3 i n t e r r u p t s e r v i c e r o u t i n e (v o i d)
20 {
21 P1IFG = P1IFG & ˜0 x08 ; // c l e a r i n t . f l a g
22 P1OUT = P1OUT ˆ 0x01 ; // r ed LED o f f
23 }

We will now explain the instructions in Listing 7.1. Line number 2 is not an
instruction in C language but a directive. We need this directive in order to be able to
use the intrinsic in line number 11. Intrinsics are an efficient way to accomplish inside
a C program what some specific assembly language instruction does without having
to include assembly language instructions. Line number 3 is the declaration for the
main function. Every program in C must have one function and that function‘s name
is main. We are using void for both the value returned by main and for its actual
parameter because in this experiment we are not returning any parameter from main
and we are not passing any parameter to main.

The instruction in line number 5 is an assignment instruction in C language
and is used to stop the MSP430 watchdog timer. Next, in line number 6 we use the
bitwise OR operator in the C language, i.e. |, to make sure that pin P1.0 is set as an
output pin. In line number 22 we use the bitwise AND operator in C, i.e. &, and the
bitwise complement operator ˜. The rules of the C language state that the bitwise
complement will be taken first and then the bitwise AND will take place. Thus, 0x01
will be converted into 0xFE or 11111110b and then the contents of P1OUT will be
bitwise anded with 0xFE effectively clearing bit 0 in port P1.

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE50

For your reference, these are the operators available as part of the C language.
They are shown in order of precedence, shown as Pre in the table. Note that the
bitwise complement operator ˜ has a precedence of 2 whereas the bitwise or operator
| has a precedence of 10 and the assignment operator = has a precedence of 14. We
remind you that, in C, the lower the precedence number the higher the precedence
of the operator.

Pre Op Descrip Pre Op Descrip Pre Op Descrip

1 () parenth 3 / div 11 && and
1 [] subscr 3 % mod 12 —— or
1 . dir memb 4 + add 13 ?: cond
1 -¿ ind memb 4 - substr 14 = assign
2 ++ incr 5 ¡¡ shift l 14 += assign
2 -- decr 5 ¿¿ shift r 14 -= assign
2 * deref 6 ¡ lt 14 *= assign
2 & ref 6 ¡= le 14 %= assign
2 ! neg 6 ¿ gt 14 = assign
2 ˜ bw comp 6 ¿= ge 14 ¿¿= assign
2 + unary + 7 == eq 14 ¡¡= assign
2 - unary - 7 != ineq 14 &= assign
2 sizeof size 8 & bw and 14 ˆ= assign
2 (cast) cast 9 ˆ bw ex-or 15 , comma
3 * mult 10 — bw or

In line number 8 we again use the bitwise OR operator in C only this time we
are it to set pin 3 in P1IE to 1. By doing this we are locally enabling pin P1.3 to
interrupt the microprocessor. This by itself does nothing unless the global interrupt
enable (GIE) bit in register SR is set to a 1. Now in line 11 we globally enable mask-
able interrupt sources to interrupt the microprocessor. This is accomplished using
˙˙bis˙SR˙register(GIE). This is one of the intrinsics found in file intrinsics.h
and what it does is, as its name implies, to enable interrupts at the global level by
setting to one (1) the GIE bit in register SR. The empty label here in line number
12 is used as a destination for the goto instruction. A better way to do this is to
send the microprocessor to sleep using one of the low power modes as it was shown
in experiment 6, but since we wanted to show you how to implement experiment 5
we had to use the goto instruction in line 13. Indeed, the goto instruction in C is
equivalent to the unconditional jmp instruction in assembly language. This is the end
of the main program in our C code.

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE51

If the pushbutton is pushed, control will be transferred from the main program
to the port 1 interrupt service routine (ISR). The interrupt vector corresponding to
the port 1 interrupt is loaded with the address of the function which follows it. This
is accomplished using the pragma directive in line 18 and the function declaration
beginning in line 19. The first thing that is done inside the ISR is to clear the flag
that was set when the interrupt was received on P1. This is accomplished with the
instruction in line 21. What this does is to clear the port 1 interrupt flag. Since only
P1.3 is allowed to interrupt, we do not have to check which of the 8 pins included
in P1 generated the interrupt, nor do we need to discriminate among them. After
this we toggle the status of the red LED with instruction 22 and then return from
the interrupt.

The total number of actual C instructions in our program is 8, we do not count
directives as instructions. On the other hand, the total number of actual assembly
language instructions in our program in experiment 5 was 12, again we do not count
the directives. Do not be deceived by this and jump to wrong conclusion. Regardless
of the programming language that is used, a microprocessor can only understand its
own machine language. As we have already seen in our previous experiments, there
is a 1-to-1 correspondence between the number of instructions in assembly language
and the number of instructions in machine language. This means that if our assembly
language program has 12 instructions, then its machine language version will also
have 12 instructions. We will see that this 1-to-1 correspondence does not hold
for every C language instruction and, in general, a program written in a high level
language will produce one or more machine language instruction for every high lever
language instruction.

7.2 Procedure

1. In IAR click ‘Project > Create New Project‘. Make sure ‘MSP430‘ is selected
in the ‘Tool chain:‘ pull down menu.

2. Now Select ‘Empty project‘ in the ‘Project templates:‘ window. Click ‘OK‘.

3. Make sure you choose ‘workspace‘ in the ‘Documents Library‘ window. Enter
PBFlashLED in the ‘Filename:‘ text box in the ‘Save As‘ window. Click ‘Open‘
and then click ‘Save‘.

4. Select PBFlashLED in the project tree.

5. Click ‘File > New File‘ and enter the code shown in Listing 7.1.

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE52

6. Click ‘File > Save As‘ and enter ‘PBInterrupt‘. After the filename is accepted
you should see the tab name changing to ‘PBInterrupt.c‘.

7. Click ‘Project > Add Files‘ and choose ‘PBInterrupt.c‘. After the file is ac-
cepted you should see the project tree changing to reflect this fact.

8. Click ‘Project > Options‘. While in the ‘General Options‘ category go to the
‘Target‘ tab and choose ‘MSPGxxx Family‘ in the ‘Device‘ pulldown menu.
When the new options appear choose ‘MSP430G22311‘. If you are using a
different device, e.g. MSP430G2221, MSP430G2452, MSP430G2553, etc.,
then make sure that you perform the corresponding steps to choose the device
you have. Otherwise you will get errors when trying to run your program.

9. In the ‘Debugger‘ category go to the ‘Setup‘ tab to the right and choose ‘FET
Debugger‘ under ‘Driver‘. Make sure that you distinguish between the ‘FET
Debugger‘ in the ‘Setup‘ tab and the ‘FET Debugger‘ as a subcategory of the
‘Debugger‘ category. The ‘Debugger‘ category has two subcategories: ‘FET
Debugger‘ and ‘Simulator‘. At the same time the ‘Setup‘ tab has two alterna-
tives under the ‘Driver‘ pulldown menu: ‘Simulator‘ and ‘FET Debugger‘.

10. Now go to the ‘FET Debugger‘ subcategory under the ‘Debugger‘ category
and make sure that ‘Texas Instrument USB-IF‘ is selected. Click ‘OK‘.

11. Make sure that your MSP430 is connected before proceeding.

12. Click Ctrl+D or ‘Project > Download and Debug‘. It will probably ask you to
save your work and to create a workspace, if this is the case, give a name to
the workspace such as ‘PushButton‘ in the ‘File name‘ text box.

13. Click F5 to run your program. If everything is ok, and it should, nothing is
happening to the red LED. Now push the pushbutton. The red LED should
toggle each time you push it.

7.3 Exercises

1. Examine the ‘Memory‘ window to the right of you screen. Make sure you go
to the 0F800 address. You should see a lot of information here. For example,
you will see the instructions in machine language, the instructions in C and
the corresponding instructions in assembly language. Some instructions in C
language correspond to just one instruction in assembly and machine language.
However, some instructions in C correspond to more than one instruction in

EXPERIMENT 7. MSP430 INTERRUPT-BASED I/O USING THE C LANGUAGE53

assembly language. You may also notice that the C compiler took care for you
of providing the entry point address and loading the SP register.

2. Set breakpoints at your C language instructions to stop the execution and
watch how the content of P1IFG is cleared and how the status of the red LED
is toggled just prior to returning to the interrupted program.

3. Show the sequence of instructions in assembly language to

• Enable Timer A Capture Compare Register 1 interrupt.

• Load Capture Compare Register 1 with 32768.

• Select the SMCLK clock.

• Configure the timer for continuous mode of operation.

4. An Engineering student needs to generate a square waveform to drive a device.
The student decides to use the MSP430’s Timer A with a duty cycle of 60
percent at 32.768 khz. Show the sequence of instructions in assembly language
that the student might have used to configure Timer A to accomplish the
requirements.

5. Setup the MSP430 LaunchPad to use Timer A to toggle the red LED each
time the timer counts to 50,000. You should be able to do this using:

• A monolithic assembly language program.

• An assembly language program that calls a subroutine to configure Timer A
to toggle the LED every 50,000 cycles.

• An assembly language program that sets up an interrupt from Timer A
every 50,000 cycles.

• Repeat the previous parts using the C language.

6. It was stated in this chapter that the watchdog timer could be configured as
an interval counter. Configure the MSP430 Watchdog Timer to toggle the
red LED in the MSP430 LaunchPad every three (3) seconds. To conserve
energy the MSP430 needs to enter a low power mode after your configuration
is complete.

7. Write a small program to test the WDT+ failsafe feature of the MSP430.
Have the MSP430 perform some function like toggling one of the LaunchPad
LEDs and then attempt to disable all clocks.

Experiment 8

The MSP430X

8.1 Introduction

The MSP430X (CPUx) is a 20-bit version of the Texas Instruments MSP430 mi-
crocontroller. It was introduced with the second generation of MSP430 chips, i.e.
with the MSP430x4xx family of microcontrollers, and it has been present with all
subsequent versions, except for the MSP430x1xx.

The CPUx 20-bit address bus allows it to reach the 1-MB address space without
paging. Remember that the traditional MSP430 is a 16-bit processor both at its
address and data buses and can reach a 64-KB address space. The CPUx is backward
compatible with the MSP430 CPU and it can address bytes, 16-bit words, and 20-bit
words. It maintains its orthogonal RISC architecture allowing any CPU register to
be used as an operand. Several instructions have been extended for 20 bit operation.
However, using a prefix any instruction can be extended to 20 bit. It (CPUx) has
fewer interrupt overhead cycles and fewer instruction cycles in some cases than the
MSP430 CPU.

8.2 The CPUx Architecture

Figure 8.1 shows the MSP430X block diagram. As it can be seen in the figure,
except for the SR register, all the MSP430X registers are 20-bit long. Note also
that the data bus remains at 16-bit while the address bus is now 20-bit wide.

8.3 Differences between the CPUx and the MSP430

As already mentioned before, the main difference between the MSP430X and the
regular MSP430 CPU is its 20 bit address bus. In addition to this and except for
the SR register, all the CPUx registers were extended to 20 bits. There are several
instructions that were extended to take advantage of this increased address space,

54

EXPERIMENT 8. THE MSP430X 55

R6

R5

R4

R3/CG2ConstantGenerator

R7

R8

R9

R10

R11

R12

R13

R14

R15

0

0

R0/PC ProgramCounter

19

R1/SP Pointer Stack

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

General Purpose

MemoryAddress Bus −MABMDB−MemoryData Bus

16
20

16/20−bitALU

srcdstZero, Z
Carry, C

Overflow,V
Negative,N

MCLK

016 15

R2/SR Status Register

Figure 8.1: MSP430X (CPUX) Block Diagram.

namely: MOVA, CALLA, ADDA, SUBA, CMPA. ADDA, SUBA, and CMPA are
restricted to the immediate and register addressing modes only, i.e. you cannot use
the rest of the addressing modes with these three (3) instructions.

There are several instructions for performing multi-bit shifts (1, 2, 3, or 4
bits): RRCM, RRAM, RLAM, RRUM. You can also push or pop several registers
with the instructions PUSHM and POPM. You can push or pop anywhere from 1 to
16 registers with these instructions. Interrupt latency is 5 cycles for the CPUx vs 6
cycles for the regular MSP430. Returning from an interrupt is 3 cycles for the CPUx
vs 5 cycles for the MSP430.

By using an additional word of op-code called an extension word, all addresses,
indexes, and immediate values are extended to 20 bit. For example, ADDX adds the
source word to the destination word, ADDX.B adds the source byte to the destination
byte, and ADDX.A adds the source address-word to the destination address-word.
On the other hand, BISX sets bit set in the source word in the destination word,
BISX.B sets bit set in the source bye in the destination byte, and BISX.A sets bit set
in the source address-word in the destination address-word. You can do similar oper-
ations with ADDX, ADDCX, ANDX, BICX, BISX, BITX, CMPX, DADDX, MOVX,
POPM, PUSHM, PUSHX, RLAM, RRAM, RRAX, RRCM, RRCX, RRUM, RRUX,
SUBX, SUBCX, SWPBX, SXTX, and XORX.

