

ePEARLS: A Program for Recruiting, Retaining, and Engaging Academically Talented Students from Economically Disadvantaged Groups into a Pathway to Successful Engineering Careers

Manuel Jiménez, Marcelo Suarez, Sonia M. Bartolomei, Aidsa Santiago, Luisa Guillemard, Nelson Cardona, Pedro Quintero, Nayda Santiago, Betzabé Rodriguez, Carla López, and Anidza Valentin

College of Engineering, University of Puerto Rico Mayaguez

Mayaguez, PR, 00681-9000

Introduction

This project, shorthanded PEARLS (Program for Engineering Access, Retention, and LIATS Success), or ePEARLS, investigates the effectiveness of an institutional intervention model seeking to increase the retention and success of low-income, academically talented students (LIATS).

Problem Background

The College of Engineering (CoE) at the UPRM enjoys modest retention and persistence statistics in its five-year long programs. However, other statistics call for renovated efforts:

- Graduation rates at 150% time have been in decline, falling from 67% in 2006 to 56% in 2016
- On-time graduation rates have also dropped in that period from 21.2% to 5.0%.

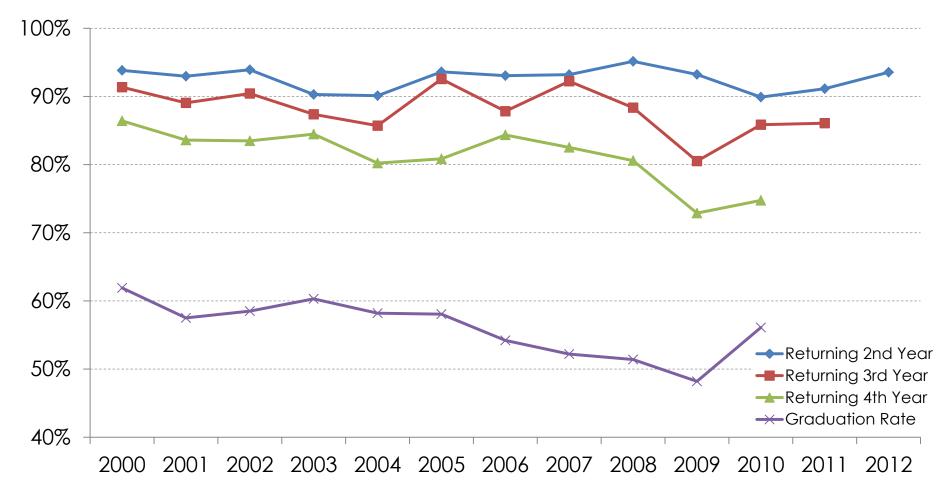
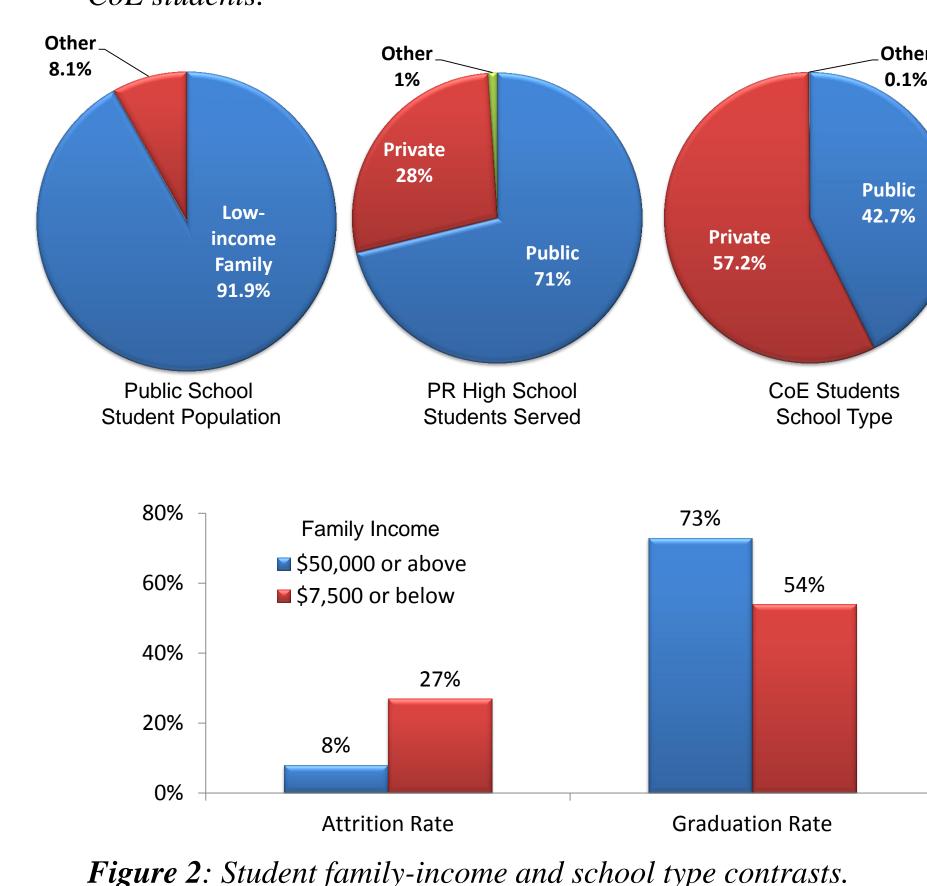



Figure 1: Retention, persistence, and graduation rates for UPRM CoE students.

ePEARLS Objectives & Vision

- Increasing the retention and success of lowincome, academically talented students (LIATS) in engineering programs at the UPRM
- Researching a hybrid intervention model that combines:
 - Elements from social cognitive career theory
 - Attrition mitigation strategies
 - A framework provided by a structured scholarship program
- The project vision is providing guidelines for institutional policies and practices aimed at improving LIATS success

Metrics for LIATS Success

Success Indicators include:

- Retention
- Persistence
- Time to graduation
- On-time graduation
- Graduation rates
- Successful insertion into grad school or the workforce

Table 3. Schedule of scholarly activities

Table 1: Scholarship schedule

 Table 2: Mentorship schedule

Civil Engineering & Surveyin

Mechanical Engineerinç

Chemical Engineering

Activity	Credits	Lecturer	Schedule										
			Year 1		Year 2		Year 3		Year 4		Year 5		
			Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	Fall	Spring	
INGE 3001	1	M. Jimenez	FY1		χ		χ		χ		χ		
INGE 3002	1	S. Bartolomei		FY1		χ		χ		χ		χ	
INGE 3003	1-2	N. Santiago	SYI	SY1,JY1	FY1,GY1	FY1	χ	χ	GY3	χ	χ	GY5	
INTD 3355	3	A. Valentín	JYI	GY1	SYI		FY1	GY3	χ		χ	GY5	
Underg Rsch	0-6	N. Cardona			JY1	SY1,JY1	SYI	FY1,SY1	FY1	FYI			
COOP	0-9	P. Quintero			ЈҮТ	SY1, <mark>JY1</mark>	SYI	FY1,SY1	FY1	FYI			
Mentoring	1	L. Medina	GY1		X		GY3, JY1		SYI		FY1, GY5		
FY1	Freshmen starting in Year 1				JY1	Juniors starting in Year 1					X On Demand		
SY1	Sophomores starting in Year 1				GY#	Grads starting in Year 1,3,5							

Lourdes Medina & Sonia Bartolor

Pedro Quintero

Project Schedules & Activities

Yr1 Yr2 Yr3 Yr4 Yr5

Totals 43 43 43 30 17 176

43 30 17 176

Status and Ongoing Work

Students have been selected to form 3 study groups:

- Participants with scholarships
- Participants without scholarships
- Non-affiliated general student population

Activities are slated to start in Spring 2019

References

- 1. UPRM Office of Institutional Information and Planning (OIIP) provided data. Available on line. Last retrieved on 02/23/18 from http://oiip.uprm.edu/dtos-estadisticos/
- 2. V. Tinto, "Leaving College: Rethinking the Causes and Cures of Student Attrition, 2nd Edition", University of Chicago Press, 1993.
- 3. R.W. Lent, S.D. Brown, and G. Hackett, "Toward a Unifying Social Cognitive Theory of Career and Academic Interest, Choice, and Performance", Journal of Vocational Behavior 45, 79-122, 1994.
- 4. P.O. Garriott, L.Y. Flores, and M.P. Martens, "Predicting the math/science career goals of low-income prospective first-generation college students", Journal of Counseling Psychology, Vol. 60, No. 2, pp. 200-209, 2013
- 5. V. Tinto, "Research and practice of student retention: what next?," Journal of College Student Retention: Research, Theory and Practice, vol. 8, no. 1, pp. 1-19, 2006
- 6. K.L. Jordan and S.A. Sorby, "Intervention to Improve Self-Efficacy and Sense of Belonging of First-Year Underrepresented Engineering Students", In Proc. Of 121st ASEEE Annual Conf. and Exhibition (ASEE-2014), paper ID #9514, Indianapolis, IN, June 2014

Theoretical Framework: The L-CAS Model

The LIATS College Access and Success Model (L-CAS) can be viewed as a structure that integrates a set of institutional interventions addressing individual's traits.

Based on Tinto's studies on attrition mitigation and Lent's Social Cognitive Career Theory, the L-CAS model seeks to answer the fundamental research question:

How effective is the proposed L-CAS model in improving engineering LIATS retention and success?

Longitudinally, the L-CAS model is arranged in five stages that include:

- LIATS Background Experiences
- Belonging Intervention
- Formation Intervention
- Growth Intervention, and
- Graduation & Performance Achievements

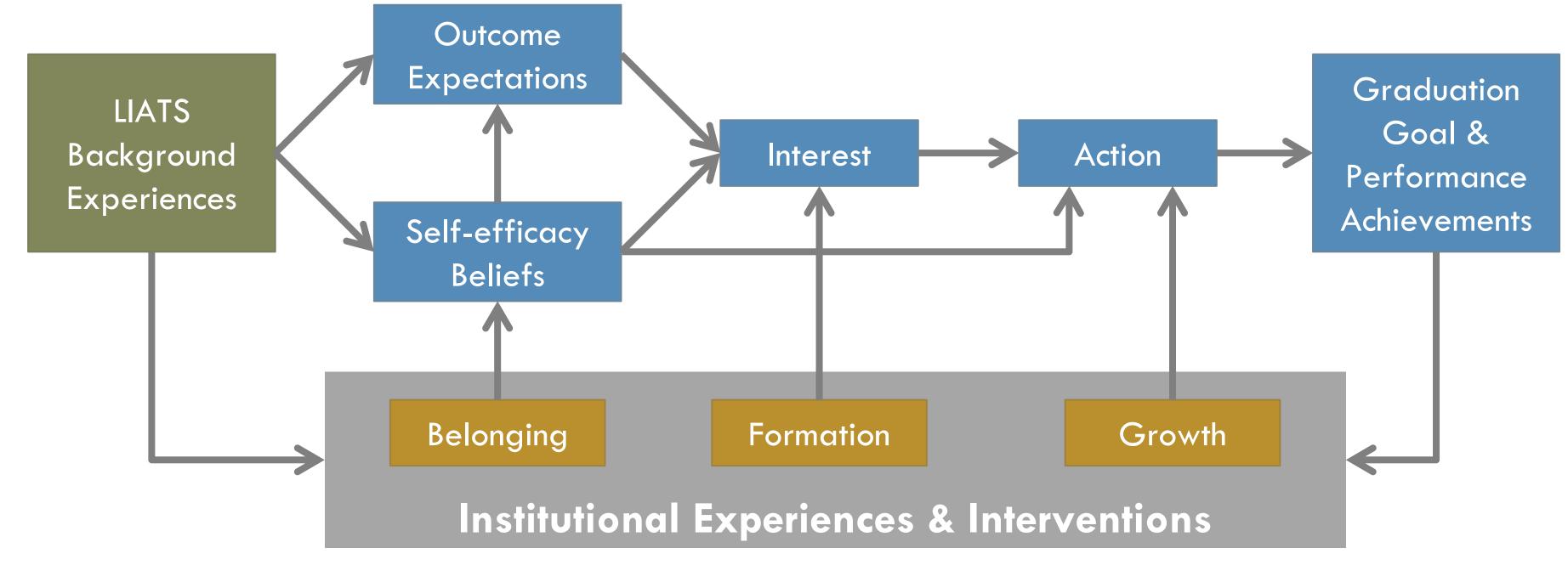


Figure 3: LIAT College Access and Success Model (L-CAS)

