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4. DYNAMIC MODELING THEORY 

4.1. INTRODUCTION 

      One of the main objectives of the development of the earthquake simulator facility is 

testing and analysis of small-scale dynamic models.  The purpose of model analysis in 

earthquake engineering is the prediction of the dynamic response of prototype structures 

from laboratory tests on physical models [4].  Prior to the discussion of the design of the 

shaking table components it is necessary a brief discussion of Dynamic Modeling Theory, 

given that many design concepts depend on or are related to its theory.  This brief 

discussion of Dynamic Modeling Theory is based on the work titled “Theory and 

Application of Experimental Model Analysis in Earthquake Engineering” by Moncarz [4] 

and on of the work titled “Analytical Modeling and Experimental Identification of a 

Uniaxial Seismic Simulator” by Twitchell [19]. 

4.2. MODELING THEORY 

      Modeling Theory establishes how the properties of the model and the properties of the 

prototype are related. Some of these properties include geometry, material properties, 

initial conditions, boundary conditions and loading.  To obtain a set of correlation or 

scaling laws for the model-prototype correspondence it is necessary to use Similitude 

Theory which can be developed by Dimensional Analysis. 

4.3. DIMENSIONAL ANALYSIS 

        Almost all physical phenomena can be described through mathematical expressions 

or equations.  Dimensional analysis is developed from considering these expressions and 

paying attention to the significant quantities involved in them and the dimensions that 



32 

 

( )nqqqFq ,....3,21 =

( )Nnf −= ππππ ,....3,21

( ) ( )
mp 11 ππ =

M

( ) ( )
mp 22 ππ =

describe these quantities. This analytical tool starts from the premise that every physical 

phenomenon can be expressed by a dimensionally homogenous equation of the type [4]: 

                                                                                                                                        (4.1) 

where n is the total number of physical quantities involved in the expression describing 

the phenomena, q1 is a dependent quantity and q2 to qn are the variables and parameters 

on which q1 depends [4].  According to Buckingham’s Pi Theorem [4]: 

“a dimensionally homo genous equation can be reduced to a functional 

relationship between a complete set of independent dimensionless products (π- 

factors).”   

Therefore Equation 4.1 can be written in the form [4]: 

                                                                                                                                        (4.2) 

where π1 to πn-N are dimensionless products of powers of the physical quantities q1 to qn.  

The number N is the rank of the dimensional matrix which is usually equal to the number 

of basic units needed to describe the physical quantities [4].  In engineering, the most 

common set of basic quantities are those of mass (M), length (L), time (T), and 

temperature (θ) or force (F), L, T and θ.  

      Since Equations 4.1 and 4.2 are the same, they describe the same physical 

phenomenon and, because the dimensionless form of Equation 4.2, it must be equal in the 

prototype and model if complete similitude is to be attained.  Therefore, for complete 

similitude [4]:                                                                                                                 (4.3) 

and 
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                                                                                                                                        (4.4) 

      Equation 4.3 is the prediction equation and Equations 4.4 constitute the design 

conditions for the model.  Methods for deriving the dimensionless products are discussed 

at depth by Moncarz [4]. It is important to know, though, that the number of N 

independent dimensionless products is equal to the total number n of physical quantities 

involved minus the number N of fundamental quantities needed to describe the 

dimensions of all physical quantities [4].  Some of the dimensionless products that are 

most frequently used in engineering and are commonly used in defining physical 

problems are shown in Table 4.1.  The physical variables in the table are: ρ = mass 

density, v = velocity, L = length, ν = Poisson’s ratio, E = modulus of elasticity, 

σ = stress, P = pressure, d = displacement, t = time and g = acceleration of gravity.  

4.4. SIMILITUDE RELATIONSHIPS AND TYPES OF MODELS 

      Following Moncarz [4], the procedure to find the necessary conditions for complete 

similitude between model and prototype can be summarized in the following procedure: 

1. Write down all physical quantities on which the solution of the physical 

phenomena under study depends significantly. 

2. Develop a complete set of independent dimensionless products from these 

physical quantities (Eq. 4.2). 

3. Establish equality between prototype and model for each of the independent 

dimensionless products (Eq’s. 4.2 and 4.4). 

      This last step establishes the scaling laws for all physical quantities or products of 

physical quantities for the physical phenomena.  These scaling laws are expressed as 
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ratios of the numbers of units needed to describe identical quantities in model versus 

prototype.  For example, the length scale factor is defined as follows: 

                                                                     
                                                                     = Length of Prototype                               (4.5) 
                                                                        Length of Model 
          

Table 4.1 Dimensionless Products.1 
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                                                          Note:       1. Modified from [4]. 
                                                              
       

      A model that fulfills all similitude requirements is called a “true replica model”.  In 

many practical situations the fulfillment of all design conditions will be an impossible 

task.  These kinds of models can be classified as “adequate” or “distorted models”.  
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“Adequate models” are those where the prediction equation is not affected and the design 

condition may be violated when insight into physical problem reveals that the results will 

not depend significantly on the violated design condition [4]. 

      Distorted models are those where the distortion in one dimensionless product either 

leads to a distortion of the prediction equation or is accounted for by introducing 

compensating distortions in other dimensionless products [4].                                                                            

4.5. PHYSICAL MODELS FOR SHAKE TABLE STUDIES 

4.5.1. TRUE REPLICA MODELS 

      As stated earlier, true replica models must satisfy all similitude requirements.  Let us 

assume that we want to reproduce at model scale the time history of stress components 

                in a replica model subjected to an acceleration time history vector a (t).  Since 

the distributions of stress and of material in the prototype and model must be the same, 

Dimensional Analysis can be applied [4].  Let’s call σ a typical stress, ρ a typical density, 

and E a representative stiffness property of the material.  The typical stress can be 

expressed through a functional relationship of the form [4]: 

                                                                                                                                        (4.6) 

where σo and        refer to initial conditions.  In this expression it is assumed a similarity of 

material between prototype and model. 

      Following Dimensional Analysis, a complete set of dimensionless products is 

generated from the dimensional matrix of the quantities in Equation 4.6 [4]. 

                                                                                                                                         

                                                                                                                                        (4.7) 

 



36 

 

LmL
pL

mL

F
mL

F

pL

F

pL

F

m

E
p

E

E λ

γ

γ

γ
λ ==





































=



















=

3

2

3

2

      Since the gravitational acceleration can not be changed between model and prototype, 

the value of λg must be taken equal to one. Therefore, from the dimensionless product a/g 

(Froude’s Number, usually written as v2/Lg) it follows that [4]: 

                                                               λa = λg = 1                                                       (4.8) 

      The ratio of the modulus of elasticity, E, to the specific weight, γ, is called the 

specific stiffness of the material.  This ratio is taken from the dimensionless product 

(gLρ/E)r, where ρg = γ [4].  For a true replica model, the specific stiffness scale factor, 

λE/γ, must be satisfied.  Using Dimensional Analysis, the specific stiffness scale factor 

may be determined as follows [19]: 

 

 

 

 

                                                                                                                                        (4.9) 

 

 

where F is force, L is length, and p and m distinguishes parameters of the prototype and 

model, respectively.  From Equation 4.9, it can be seen that since λL must be greater than 

unity the specific stiffness of the model must be less than the specific stiffness of the 

prototype.  This scaling law places a severe limitation on the choice of suitable model 

materials.   
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      It is often desirable to construct the model of the same material as the prototype.  In 

this case, the modulus of elasticity scale factor, λE, will be equal to unity and Equation 

4.9 reduces to [19]: 

     

                                                                                                                                      (4.10) 

                                                                                                                                      

 
From Equation 4.10, the specific weight at model scale can be written as [19]: 

                                                                                                                                      (4.11) 

this shows that the model’s material must have a larger specific weight than the prototype 

to comply with the true replica model similitude requirements [19].  True replica models 

are extremely difficult to realize because of problems in material simulation.  But it is 

possible to deal with this problem through artificial mass simulation. 

4.5.2. ADEQUATE MODELS 

      Adequate models are physical models that although violate one dimensionless 

product the distortion does not affect other dimensionless products or the prediction 

equation.  The need for such models is based on the desire to use the same materials as in 

prototypes [4]. 

I.  MODEL TESTS WITH “ARTIFICIAL” MASS SIMULATION [19] 

      As it has been shown above, if both the prototype and model are constructed of the 

same material, the specific weight of the model material must be larger than the specific 

weight of the prototype material [19].  But, since the same material is being used for both 

the prototype and the model (λρ = 1), and the prototype and the model are subjected to 



38 

 

33
1

3
LLLprov

m
M

pMprov
M

λλλ
ρ

λλ =⋅===

23

1

1
3

LL
L

L
greqd

m
M

pMreqd
M

λλ
λ

λ
λ

γλ
λ =

−
===

prov
m

M

pMprov
M

=λ

31 −=
−






= LpMprov

MpMprov
mM λλ

the same gravitational acceleration (λg = 1), the specific weight scale factor will be unity 

(i.e., λγ =1).  The solution to this problem lies in augmenting, the specific weight of the 

structurally effective material with additional material which is structurally not effective 

[4].  An example on how to determine the required amount of additional mass necessary 

to meet the specific weight similitude requirement is described below [19]. 

      Let’s consider a reduced-scale model which is constructed of the same material as the 

prototype and is subjected to the same gravitational accelerations (i.e., λg = λρ = λγ = λE = 

1) [19].  The mass scale factor provided in this case is: 

                                                                                                                          (4.12) 

 

The required mass scale factor for true replica model is: 

                                                                                                                                      (4.13)  

 

Equation 4.10 was used to reduce λγ with λL
-1.  It can be seen from Equation 4.12 and                                                                          

4.13 that the provided mass of the model, Mm
prov, is less than the required mass of the 

model, Mm
reqd.  Therefore, additional mass must be added to the model structure to meet 

the specific stiffness requirement.  The required additional mass ∆M is determined as 

follows [19]:  

                                                                                                                                      (4.14) 
 

                                                                                                                                                               

                                                                                                                                                                         (4.15) 

  



39 

 

reqd
m

M

pMreqd
M

=λ

21 −=
−






= LpMreqd

MpMreqd
mM λλ

( )32 −−−=−=∆ LLp
M

prov
m

M
reqd
m

MM λλ

  

                                                                                                                            

                                                                                                                                      (4.16) 

                                                                                                                      

                                                                                                                                                                         (4.17) 

 

                                                                                                                                      (4.18) 

Equation 4.18 gives the required additional mass in terms of the mass of the prototype 

structure [19].   

      The artificial mass simulation method involves the addition of structurally not 

effective mass to augment the specific weight of the model structure.  The method is 

particularly well-suited to lumped-mass models such as shear-type buildings, where the 

mass may be easily concentrated at discrete locations (e.g., at the floor levels) [4, 19].  

      Utilizing the method described above, the design of the model structure begins with 

the selection of values for N scale factors [19].  This scale factors are taken from Table 

4.2.  For seismic testing, the basic dimensions may be taken as force, length, and time, 

and thus N = 3.  In the artificial mass simulation method in which the same materials are 

used in the model and prototype, λg = λE = 1. The designer must select the last scale 

factor which is usually the value of λL.  All other quantities can be expressed in terms of 

these three scale factors, as shown in Table 4.2 [19]. 
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Table 4.2 Similitude Relationships for Artific ial Mass Simulation Method.1 

Parameter Units2 Any 
Material Same Material as Prototype 

Length L 
Lλ  Lλ  

Time T 
21

L
λ  

21

L
λ  

Frequency 
T

1  21−

L
λ  

21−

L
λ  

Velocity 
T

L  21

L
λ  

21

L
λ  

Displacement L 
Lλ  Lλ  

Gravitational Acceleration 
2

T

L  
1 1 

Acceleration 
2

T

L  
1 1 

Force F 2

LE
λλ  

2

L
λ  

Mass 

L

TF
2

⋅  2

LE
λλ  

2

L
λ  

Specific Stiffness L 
Lλ  Lλ  

Strain 
L

L  1 1 

Stress 
2

L

F  
E

λ  1 

Modulus of Elasticity 
2

L

F  
E

λ  1 

Energy FL 3

LE
λλ  

3

L
λ  

        Notes: 
1. From [19]. 
2. L = Length, T =Time, F = Force and E = Modulus of Elasticity. 

 




