DYNAMIC TESTING OF A SCALED LABORATORY PHYSICAL MODEL STRUCTURE USING THE UPRM EARTHQUAKE SIMULATOR FACILITY

Emerson Clermont Edgardo Muñiz Samuel Montalvo Steven A Aviles Preiser Brunat Orlando Flores Darlene Lopez Andrea Cruz

AGENDA

SECTION I

- Introduction
- Shaking Table
- Calibration of Shaking Table
- Prototype and Model

SECTION II

Model in SAP2000 without dampers

SECTION III

Model in SAP2000 with dampers

SECTION IV

-Conclusions

- Recommendations

INTRODUCTION

In 1960 the experimental earthquake simulation was first introduced to the research world. The first servo valves were built between 1960 and 1970. There are three ways to classify shaking tables:

- small (<10 feet)
- medium (10-30 feet)
- large (> 30 feet)

There are a varying products of shaking tables for structures such as one dimensional, bi dimensional and tridimensional. Tridimensional shaking tables are ideals for modeling scaled earthquakes.

The shaking tables components:

- 1. Reaction Mass
- 2. Simulator Rigid Platform
- 3. Linear Roller Bearings
- 4. Hydraulic Power Unit
- 5. Servo valve and Actuator
- 6. Sevo-Controller
- 7. Control & Data Acquisition
- 8. Instrumentation for Measurements

SHAKING TABLES

Rice University

- Small shaking table
- Dimensions 5x5 ft
- Payload Limit 1500 lb

State University of New York at Buffalo

- Medium shaking table
- Dimensions 12x12 ft
- Payload Limit 44000 lb

SHAKING TABLES

E-Defense Japan

- Large shaking table
- Dimensions 50x50 ft
- Payload Limit 1000 kip

Figure 3.3 Block Diagram of Seismic Simulator [19].

UPRM EARTHQUAKE SIMULATION

- The design concept of the UPRM Earthquake Simulator was the design of a small unidirectional servohydraulic shaking table facility.
- The final design consists of a rigid platform sliding over a near frictionless linear bearing system and driven by an actuator attached to a reaction frame.

UPRM EARTHQUAKE SIMULATOR MAIN PROPERTIES

Table size	4.5ft by 7.5ft
Payload (Test Structure)	5300 lb.
Shaking direction	Longitudinal (x-dir.)
Max. Acceleration (max. loading)	2.0 g (with ¼ test structure)
Max. Velocity	29.62 in/sec
Max. Displacement	+3.0/-3.0 in
Operating Frequency	0.0-20.0 Hz

REACTION FRAME

- The reaction frame is connected to the Structural Laboratory floor
- It's important to measure the reaction frame's motion during tests with connections to strong floor

SIMULATOR RIGID PLATFORM

LINEAR ROLLER BEARINGS

HYDRAULIC POWER UNIT

The Hydraulic Power Supply (pump) installed in the laboratory is a MTS Model 506.61 and is rated at 265.0 l/min (70 gpm) of steady flow [24]. A Hydraulic Service Manifold (HSM) MTS Model 293.11, with a rated capacity of 190.0 l/min (50 gpm), is mounted between the HPS and the servovalves.

HYDRAULIC POWER UNIT

- Hydraulic power systems typically consist of an arrangement of hydraulic power supplies, remote services manifolds, and accesory equipement.
- These components integrate into a hydraulic power distribution network to provide hydraulic fluid power to servocontrolled actuators

SERVO VALVE AND ACTUATOR

- The servovalve ports the fluid, provided by the hydraulic power system, into the appropriate side of the actuator's chambers. This causes the actuator's piston to move the actuator's arm in the desired direction.
- The linear actuator system also
 consists of a load cell transducer,
 which measures force.

SERVO-CONTROLLER

The servo-controller utilizes two levels of control to regulate the displacement of the actuator:

- Inner loop: it regalutes the porting of fluid by the servo-valves. This is the lowest level of control.
- Outer loop: utilizes the displacement signal of the LVDT mounted on the actuator and compares it to the command signal sent by the control computer.

- "Proportional gain" (P)
- Proportional gain increases system response by boosting the effect of the error signal on the servovalve. As proportional gain increases, the error decreases and the feedback signal tracks the command signal more closely. Too much proportional gain can cause the system to become unstable. In the other direction, too little proportional gain can cause the system to become sluggish.

The tuning command is shown as a gray square waveform, and the black waveform is the sensor feedback

- "Integral gain" (I)
- This value increases the response of the system when a signal with low frequencies or static is considered. In cases of high frequencies, it maintains the average. When a signal is used with low frequencies or static, the signal that returns usually has a "spring" effect due to the selvo-valves. This parameter corrects this behavior.

- "Derivative gain" (D)
- This parameter is considered when performing dynamic tests. Anticipate the rate of change in the signal received. It also reduces the noise caused by using a high "proportional gain". If this value is greatly increased, it can cause instability at high frequencies. Using a very low value can cause a rumbling sound.

- "Feed Forward Gain" (F)
- This parameter anticipates how much the valve should open to obtain the required response. It is used to minimize the delay of the phase. It helps the servo-control to react correctly when there is an abrupt change in the signal.

Adjusting feed forward causes the command to begin sooner so the feedback may track the original command more closely

BARE TABLE CALIBRATION GROUP 1

• Group 1

	Calibration of	Shake Table fo	r Frequencies	from 1 Hz- 5 Hz	
Frequecies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displacement (inches)	Error (%)
1	0.125	2.4	0.2	0.1261	0.88
2	0.125	2.4	0.2	0.1221	2.32
3	0.125	2.4	0.2	0.1146	8.32
4	0.125	2.4	0.2	0.1054	15.68
5	0.125	2.4	0.2	0.09596	23.23

CALIBRATION GROUP 1

LOAD TABLE CALIBRATION GROUP 1

	Calibration of	Shake Table fo	r Frequencies f	rom 1 Hz- 5 Hz	
Frequecies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displacement (inches)	Error (%)
1	0.125	2.4	0.2	0.1275	2
2	0.125	2.4	0.2	0.1238	0.96
3	0.125	2.4	0.2	0.1162	7.04
4	0.125	2.4	0.2	0.1078	13.76
5	0.125	2.4	0.2	0.09939	20.49

CALIBRATION GROUP 1

BARE TABLE CALIBRATION GROUP #2

• Frequencies: 5 Hz-10Hz

(Calibration of S	Shake Table for	Frequencies f	rom 5 Hz- 10 H	z
Frequecies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displaceme nt (inches)	Error (%)
5	0.125	2.4	0.2	0.09687	22
6	0.125	2.4	0.2	0.0883	29
7	0.125	2.4	0.2	0.08202	34
8	0.125	2.4	0.2	0.07533	39
9	0.125	2.4	0.2	0.06878	45
10	0.125	2.4	0.2	0.0639	48

FLEXIBLE STRUCTURE CALIBRATION

	Calibration of	Shake Table fo	r Frequencies f	rom 1 Hz- 5 Hz	
Frequecies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displacement (inches)	Error (%)
1	0.25	2.0	0.15	0.2531	1.2
0.5	0.5	2.0	0.15	0.5032	0.64
1	0.5	2.0	0.15	0.4984	0.32

LOAD TABLE CALIBRATION GROUP #3

• Frequencies: 11 Hz-15Hz

Frequencies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displacement (inches)	Error (%)
11	0.125	3	0.2	0.07376	40.9
12	0.125	3	0.2	0.07243	41.8
13	0.125	3	0.2	0.07135	42.9
14	0.125	3	0.2	0.07115	43
15	0.125	3	0.2	0.07067	43.4

BARE TABLE CALIBRATION GROUP #3

• Frequencies: 11 Hz-15Hz

Frequencies (Hz)	Command Signal/Amp (inches)	P-gain	I-gain	Response Displacement (inches)	Error (%)
11	0.125	3	0.2	0.07376	35.3
12	0.125	3	0.2	0.07243	38.2
13	0.125	3	0.2	0.07135	38.2
14	0.125	3	0.2	0.07115	35.6
15	0.125	3	0.2	0.07067	37.8

STRUCTURE

Prototype

STRUCTURE

- Similitude Relationships for Artificial Mass Simulation Method.
 - Same material in the model test structure as in the prototype structure
 - $\lambda_g = \lambda_E = 1$
 - $\lambda_{L} = 4$

Parameter	Units ²	Any Material	Same Material as Prototype
Length	L	λ _L	λL
Time	Т	$\lambda_L^{1/2}$	λ ^{1/2} λ_L
Frequency	$\frac{1}{T}$	$\lambda_L^{-1/2}$	$\lambda_L^{-1/2}$
Velocity	$\frac{L}{T}$	$\lambda_L^{1/2}$	$\lambda_L^{1/2}$
Displacement	L	λ _L	λL
Gravitational Acceleration	$\frac{L}{\tau^2}$	1	1
Acceleration	$\frac{L}{T^2}$	1	1
Force	F	$\lambda_E \lambda_L^2$	λ_{L}^{2}
Mass	$\frac{F \cdot T^2}{L}$	$\lambda_E \lambda_L^2$	λ_{L}^{2}
Specific Stiffness	L	λ _L	λL
Strain	<u></u> 	1	1
Stress	$\frac{F}{L^2}$	λ _E	1
Modulus of Elasticity	$\frac{F}{L^2}$	λ E	1
Energy	FL	$\lambda_E \lambda_L^3$	λ_{L}^{3}

From [19].

L = Length, T =Time, F = Force and E = Modulus of Elasticity

STRUCTURE

Model

LABORATORY PHYSICAL MODEL GENERAL GEOMETRY (in Inches)

Length between Columns (c. to c.) :	51.1875	Long Side
Length between Columns (c. to c.) :	33.5	Short Side

Height between base and First Level :	36.375	Base Plate to Center
Height between First and Second Level :	35.25	Center to Center
Height between Second and Roof Level :	36.25	Center to Center

All frame members are \$3X5.7

		SELFWEIGH	TS (in Pounds)		
Base Lev	el:		Se	cond Lev	<u>el:</u>
Weight of Base Plates :	45.94		Weight of Beams (\$3X5.7) :	80.46	
Weight of Columns (S3X5.7) :	35.98	Base Plate to Half Height	Weight of Columns (S3X5.7) :	67.93	Half Height down to Half Height Up
54 567 (MCA)	81.92	- 1094-1	Weight of Grating plus Holding Angles:	109.00	
			Weight of Beam to Column Angles :	2.56	
Firs	t Level:		Weight of Column Splices :	40.80	-
Weight of Beams (S3X5.7) :	80.46		4413 24	300.74	-
Weight of Columns (S3X5.7) :	69.47	Half Height down to Half Height Up			
eight of Grating plus Holding Angles:	109.00				
Weight of Beam to Column Angles :	2.56		1	Roof Leve	Ŀ
Weight of Column Splices :	40.80	29	Weight of Beams (\$3X5.7) :	80.46	
	302.29	3	Weight of Columns (S3X5.7) :	34.44	Half Height down
			Weight of Grating plus Holding Angles:	109.00	
			Weight of Beam to Column Angles :	2.56	
			Weight of Column Splices :	40.80	_
			-	267.25	

FrameWeight Only: 449.18 Total Weight: 952.20

			Artificial M	lass Simul	lation (Theoretical)			
FULL SCALE (in K	E WEIGHTS ips)	REQUIRED LA (0.0625 s	A <mark>B MODEL WEIGHTS (</mark> in x PROTOTYPE WEIGHT	n Kips) TS)				
Roof: Second Level: First Level: Total:	11.584 12.858 12.858 37.30	R Second Le First Le To	Roof: 0.7240 evel: 0.8036 evel: 0.8036 otal: 2.3313					
Total								
VEIGHT OF FRAM (Self Mass in S	E ONLY - S3X5.7's SAP) (in Kips)	REST-OF-S	SELFWEIGHT (RSW) (in Kips)		THEORETICAL ADDIT (FOR A.M.S.)	IONAL WEIGHTS (in Kips)	RSW + AMS (for Add	litional Mass in S (ips)
VEIGHT OF FRAM (Self Mass in S Roof:	E ONLY - S3X5.7's SAP) (in Kips) 0.1149	REST-OF-	SELFWEIGHT (RSW) (in Kips) 0.1524		THEORETICAL ADDIT (FOR A.M.S.) Roof:	IONAL WEIGHTS (in Kips) 0.4567	RSW + AMS (for Add (in) Roof:	litional Mass in S (ips) 0.6091
VEIGHT OF FRAM (Self Mass in S Roof: Second Level:	E ONLY - S3X5.7's SAP) (in Kips) 0.1149 0.1484	REST-OF-S Roof: Second Level:	SELFWEIGHT (RSW) (in Kips) 0.1524 0.1524		THEORETICAL ADDIT (FOR A.M.S.) Roof: Second Level:	ONAL WEIGHTS (in Kips) 0.4567 0.5029	RSW + AMS (for Add (in F Roof: Second Level:	litional Mass in S (ips) 0.6091 0.6552
VEIGHT OF FRAM (Self Mass in S Roof: Second Level: First Level:	E ONLY - S3X5.7's SAP) (in Kips) 0.1149 0.1484 0.1499	REST-OF-S Roof: Second Level: First Level:	SELFWEIGHT (RSW) (in Kips) 0.1524 0.1524 0.1524		THEORETICAL ADDIT (FOR A.M.S.) Roof: Second Level: First Level:	ONAL WEIGHTS (in Kips) 0.4567 0.5029 0.4194	RSW + AMS (for Add (in F Roof: Second Level: First Level:	litional Mass in S (ips) 0.6091 0.6552 0.5718
WEIGHT OF FRAM (Self Mass in S Roof: Second Level: First Level: Base:	E ONLY - S3X5.7's SAP) (in Kips) 0.1149 0.1484 0.1499 0.0360	REST-OF-S Roof: Second Level: First Level: Base:	SELFWEIGHT (RSW) (in Kips) 0.1524 0.1524 0.1524 0.0459		THEORETICAL ADDIT (FOR A.M.S.) Roof: Second Level: First Level: Base:	O.4567 0.4509 0.4194 0.0000	RSW + AMS (for Add (in F Roof: Second Level: First Level: Base:	litional Mass in S (ips) 0.6091 0.6552 0.5718 0.0459

A.M.S. = Artificial Mass Simulation

	Artificial Mass Simulation (Actual)													
	FULL SCALE WEIGHTS (in Kips)	REQUIRED LAB MODEL WEIGHTS (in Kips (0.0625 x PROTOTYPE WEIGHTS)	5)											
	Roof: 11.584 Second Level: 12.858 First Level: 12.858 Total: 37.30	Roof: 0.7240 Second Level: 0.8036 First Level: 0.8036 Total: 2.3313												
[WEIGHT OF FRAME ONLY - S3X5.7's (Self Mass in SAP) (in Kips)	REST-OF-SELFWEIGHT (RSW) (in Kips)	ACTUAL ADDITIONAL WEIGHTS (FOR A.M.S.) (in Kips)	RSW + AMS (for Additional Mass in SAP) (in Kips)										
	Roof: 0.1149 Second Level: 0.1484 First Level: 0.1499 Base: 0.0360 Total: 0.4492	Roof: 0.1524 Second Level: 0.1524 First Level: 0.1524 Base: 0.0459 Total: 0.5030	Roof: 0.4860 (*) Second Level: 0.4860 (*) First Level: 0.4860 (*) Base: 0.0000 (*) Total: 1.4580 (*)	Roof: 0.6384 Second Level: 0.6384 First Level: 0.6384 Base: 0.0459 Total: 1.9610										
			A.M.S. = Artificial Mass Simulation											

(*) Three 24"x24"x1" thick plates.

TABLE: Assembled Joint Masses - MASS CHECK																
Joint	MassSource	U1	U2	U3	R1	R2	R3	CenterX	CenterY	CenterZ				[TO	TALS
Text	Text	Kip-s2/in	Kip-s2/in	Kip-s2/in	Kip-in-s2	Kip-in-s2	Kip-in-s2	in	in	in			Kips	[SAP2000	Calculated
1	Self+AddMass	2.217E-05	2.217E-05	2.217E-05	0	0	0	0	0	0	Base	Node 1:	0.0086	Base Level:	0.0343	0.0819
2	Self+AddMass	0.0005087	0.0005087	0.0005087	0	0	0	0	0	36.375	First	Node 2:	0.1966	First Level:	0.7862	0.7883
3	Self+AddMass	0.0005086	0.0005086	0.0005086	0	0	0	0	0	71.625	Second	Node 3:	0.1965	Second Level:	0.7861	0.7868
4	Self+AddMass	0.0004871	0.0004871	0.0004871	0	0	0	o	0	107.875	Roof	Node 4:	0.1882	Roof Level:	0.7529	0.7533
5	Self+AddMass	2.217E-05	2.217E-05	2.217E-05	0	0	0	o	33.5	0	Base	Node 5:	0.0086	8	2.3595	2.4103
6	Self+AddMass	0.0005087	0.0005087	0.0005087	0	0	0	o	33.5	36.375	First	Node 6:	0.1966		2.11% difference	
7	Self+AddMass	0.0005086	0.0005086	0.0005086	0	0	0	o	33.5	71.625	Second	Node 7:	0.1965			
8	Self+AddMass	0.0004871	0.0004871	0.0004871	0	0	0	o	33.5	107.875	Roof	Node 8:	0.1882			
9	Self+AddMass	2.217E-05	2.217E-05	2.217E-05	0	0	0	51.188	0	0	Base	Node 9:	0.0086			
10	Self+AddMass	0.0005087	0.0005087	0.0005087	0	0	0	51.188	0	36.375	First	Node 10:	0.1966			
11	Self+AddMass	0.0005086	0.0005086	0.0005086	0	0	0	51.188	0	71.625	Second	Node 11:	0.1965			
12	Self+AddMass	0.0004871	0.0004871	0.0004871	0	0	O	51.188	0	107.875	Roof	Node 12:	0.1882			
13	Self+AddMass	2.217E-05	2.217E-05	2.217E-05	0	0	0	51.188	33.5	0	Base	Node 13:	0.0086			
14	Self+AddMass	0.0005087	0.0005087	0.0005087	0	0	0	51.188	33.5	36.375	First	Node 14:	0.1966			
15	Self+AddMass	0.0005086	0.0005086	0.0005086	0	0	0	51.188	33.5	71.625	Second	Node 15:	0.1965			
16	Self+AddMass	0.0004871	0.0004871	0.0004871	0	0	0	51.188	33.5	107.875	Roof	Node 16:	0.1882			
SumAccelUX	Self+AddMass	0.0061	0	0	0	0	0	25.594	16.75	70.406	S					
SumAccelUY	Self+AddMass	0	0.0061	0	0	0	0	25.594	16.75	70.406						
SumAccelUZ	Self+AddMass	0	0	0.0061	0	0	0	25.594	16.75	70.406						

SAP2000 MODEL PROPERTIES

- Linear 3D Model
- 3 Story Building
- Natural Frequency: 8.28209 Hz
- Period of Structure: 0.12074 s

LOMA PRIETA 1989 EARTHQUAKE

IMPERIAL VALLEY(EL CENTRO) EARTHQUAKE

ATH of Imperial Valley 1979, as actual ATH (accessed from http://ngawest2.berkeley.edu/,27 July 2015).

SAP2000 – WITHOUT DAMPERS DISPLACEMENT AND ACCELERATION FIRST FLOOR (LOMA PRIETA)

Displacement [in]

SAP2000 – WITHOUT DAMPERS DISPLACEMENT AND ACCELERATION SECOND FLOOR

Displacement [in]

X Display Plot Function Traces (EQ Accelerations (LP)) File Legend Time[s] x10 -3 100. Joint 11 80.3 Displacement UX 60. Min is -9.087e-02 at 1.950e+00 40.3 Dis Max is 9.306e-02 20. at 2.240e+00 daattähala aaalliittaaaa ahtitaaa 0. lts[in] -20. -40. -60. -80. 1.2 2.4 3.6 4.8 6. 7.2 8.4 9.6 10.8 12. OK

SAP2000 – WITHOUT DAMPERS DISPLACEMENT AND ACCELERATION THIRD FLOOR

Displacement [in]

DAMPERS CONFIGURATIONS

Model	Damping Force	Α	в	С	D	Е	F	G	н	1	J	к	L	М
1 x 2 D	450 lbs. max	1.00	.28	.75	.38	.63	8.25	2	.62	.38	.44	.25	1.10	.35
1 x 4 D	450 lbs. max	1.00	.28	.75	.38	.63	12.50	4	.62	.38	.44	.25	1.10	.35
<mark>1 x 6 D</mark>	450 lbs. max	1.00	.28	.75	.38	.63	16.75	6	.62	.38	.44	.25	1.10	.35
1.5 x 2 D	2000 lbs. max	1.50	.44	1.00	.62	1.12	9.75	2	1.40	.50	.56	.50	1.73	.93
1.5 x 4 D	2000 lbs. max	1.50	.44	1.00	.62	1.12	14.80	4	1.40	.50	.56	.50	1.73	.93
1.5 x 6 D	2000 lbs. max	1.50	.44	1.00	.62	1.12	19.85	6	1.40	.50	.56	.50	1.73	.93
1.5 x 8 D	2000 lbs. max	1.50	.44	1.00	.62	1.12	24.90	8	1.40	.50	.56	.50	1.73	.93

- 1. A modern, monotube hydraulic damper with internal construction similar to the M-Series Fluidicshoks.
- 2. A true linear damping system using a fluidic amplifier that applies a damping force in direct proportion to velocity input.
- 3. Output is continuously compensated for temperature ranges of -40 degrees F to +160 degrees F.
- 4. Damping force does not vary with stroke position.
- 5. Solid stainless steel piston rod, corrosion protected steel cylinder.
- 6. Ideal for high speed machinery and robotic applications.
- 7. Choice of damping directions:
- ALL MODELS:
 - C = Compression damping, free extension
 - T = Tension damping, free compression
 - TC = Double acting damping

VELOCITY RANGE:

Any desired damping force up to the maximum listed can be set at any specified velocity between 1 in/sec. and 200 in/sec.

8. ORDERING NOTES:

Specify: Model, damping type letter code, maximum damping force at maximum damping velocity. Example: Model 1 x 2 D, damping code C, 250 lb. at 30 in/sec.

SAP2000 RESULTS FOR CONFIGURATION #1

- Damping of dampers: 0.45 kip*s/in
- Natural frequency of Structure: 8.28209 Hz
- Period of Structure: 0.12 s

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION FIRST FLOOR

Displacement [in]

Acceleration [in/s^2]

Without dampers: 0.04158 in With dampers: 0.01677 in Difference: 59.67%

First Floor Acceleration

Without dampers: 113.85 in/s² With dampers: 39.01 in/s² Difference: 65.73% SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION SECOND FLOOR

> 250 200

150

100

50

0

-50

-100 -150

-200

-250

Acceleration (in/s^2)

Displacement [in]

Acceleration [in/s^2]

Second Floor Acceleration

Time (s)

10

12

Sin Dampers — Con Dampers Without dampers: 0.09307 in With dampers: 0.03579 in Difference: 61.55% Sin Dampers Con Dampers Without dampers: 210.05 in/s^2 With dampers: 86.21 in/s^2 Difference: 58.96%

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION THIRD FLOOR

Displacement [in]

Without dampers: 0.12804 in With dampers: 0.04794 in Difference: 62.56%

-Sin Dampers ---- Con Dampers

Third Floor Acceleration

Without dampers: 294.09 in/s² With dampers: 117.74 in/s² Difference: 59.96%

-Sin Dampers ---- Con Dampers

SAP2000 RESULTS FOR CONFIGURATION #2

- Effective damping of each dampers: 0.45 kip*s/in
- Natural frequency of Structure: 8.28209 Hz
- Period of Structure: 0.12 s

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION FIRST FLOOR

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION SECOND FLOOR

Displacement [in]

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION THIRD FLOOR

Displacement [in]

SUMMARY OF RESULTS

	SAP2000 Results Modal Loma Prieta									
	Displacement 1st Level (in)	Displacement 2nd Level (in)	Displacement 3rd Level (in)	Acceleration 1st Level (in/s^2)	Acceleration 1st Level (g)	Acceleration 2nd Level (in/s^2)	Acceleration 2nd Level (g)	Acceleration 3rd Level (in/s^2)	Acceleration 3rd Level (g)	Max Acceleration (g)
Without Dampers	0.042	0.093	0.128	113.500	0.294	206.200	0.534	293.300	0.759	0.759
With Dampers	0.018	0.039	0.053	60.470	0.156	67.030	0.173	97.790	0.253	0.253
%Reduction	56.02	57.60	58.41	46.72	46.72	67.49	67.49	66.66	66.66	66.66

SAP2000 RESULTS FOR CONFIGURATION #3

- Damping of dampers: 0.45 kip*s/in
- Natural frequency of Structure: 8.28209 Hz
- Period of Structure: 0.12 s

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION FIRST FLOOR

Displacement [in]

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION SECOND FLOOR

Displacement [in]

SAP2000 – WITH DAMPERS DISPLACEMENT AND ACCELERATION THIRD FLOOR

Displacement [in]

SUMMARY OF RESULTS

\triangleleft	SAP2000 Results Model Loma Prieta									
1	Displacement 1st level(in)	Displacement 2nd level(in)	Displacement 3rd level(in)	Acceleration 1st level(in/s^2)	Acceleration 2nd level(in/s^2)	Acceleration 3rd level(in/s^2)	Max Acc(g)			
Without Dampers	0.04156	0.09306	0.1279	113.5	206.2	293.3	0.759058			
With Dampers	0.02751	. 0.0633	0.08199	65.25	117.9	147.7				
%Reduction	34%	32%	36%	43%	43%	50%				
	SAP2000 Results Prototype Loma Prieta									
Without Dampers	0.7448	3 1.943	2.873	202.7	453.1	599.2				
			SAP20	00 Results Model El Centro						
	Displacement 1st level(in)	Displacement 2nd level(in)	Displacement 3rd level(in)	Acceleration 1st level(in/s^2)	Acceleration 2nd level(in/s^2)	Acceleration 3rd level(in/s^2)	Max Acc(g)			
Without Dampers	0.06589	0.1511	0.2105	210.5	415.8	564	1.4596273			
With Dampers	0.02308	0.05035	0.06878	74.97	183.2	218.1				
%Reduction	65%	67%	67%	64%	56%	61%				
	SAP2000 Results Prototype El Centro									
Without Dampers	0.8238	2.032	3.061	401.4	570.5	761				

Figure 1. Test fixture mounted on the simulator at the University at Buffalo.

Figure 2. Suspension grid components.

SIMULATOR TESTING OF SUSPENDED CEILING SYSTEMS

Four variables that affect the seismic performance of suspended ceiling systems were investigated herein: size and weight of tiles, use of retainer clips, installation of compression posts, and physical condition of grid components. Six ceiling system configurations were tested:

- 1. undersized tiles (4 systems)
- 2. undersized tiles with retainer clips (3 systems)
- 3. undersized tiles with recycled grid components (3 systems)
- 4. normal-sized tiles (6 systems)
- 5. normal-sized tiles with retainer clips (4 systems)
- 6. normal-sized tiles without the compression post (6 systems)

All tiles, connections, anchors, hanging wires, and splay wires were examined after each test. All damaged ceiling components (e.g., broken latches of cross tees, chipped tiles, etc.) were replaced prior to the following test. After each test cycle, the ceiling system (tiles and grid) was disassembled and then reassembled to return the ceiling system to a newly installed condition.

Figure 9. Failure of grid and tiles in configuration 5.

 Table 4. Observed threshold peak floor accelerations¹ for damage in ceiling systems

	Threshold peak floor acceleration (g)							
Ceiling system	Configuration	Minor damage	Moderate damage	Major damage	Grid failure			
Undersized tiles	1	0.70	0.90	1.05	1.25			
Undersized tiles with clips	2	1.25	NR ²	NR ²	1.10			
Normal-sized tiles	4	0.85	1.05	1.60	1.25			
Normal-sized tiles with clips	5	1.0	1.60	1.60	1.05			
Normal-sized tiles w/out compression post	6	0.60	1.00	1.35	1.00			

¹ Values rounded down to nearest 0.05 g

² Damage state not reached in testing program; >1.25 g

INPUT PARAMETERS FOR RESPONSE EVALUATION USING MATLAB EXTENDED MODAL ANALISIS-NO DAMPER CONFIGURATION

Configuration #2			
Items	Story 1	Story 2	Story 3
Gravity (in/s^2)	386.4	386.4	386.4
Weight (kip)	0.7883	0.7868	0.7533
K (stiffness, kip/in)	36.153	39.726	36.528
Height (in)	36.375	35.25	36.25
Length (in)	51.1875	51.1875	51.1875
Z (damping)	0.02	0.02	0.02
C (damping coefficient)	0	0	0
Degrees of Freedom	3	3	3
Time Step (scaled, s)	0.001	0.001	0.001

RESPONSE USING MATLAB (EXTENDED MODAL ANALISIS) NO DAMPER CONFIGURATION

Configuration #1 Results for 1st, 2nd, and 3rd Story							
Items	Story 1	Story 2	Story 3				
PGA (g)	0.27	0.27	0.27				
Natural Frequencies (rad/s)	60.981	168.72	247.37				
Natural Period (s)	0.10303	0.037241	0.0254				
Damping Ratio	0.0020	0.0020	0.0020				
Max. Relative Displacement to Base (in)	0.038777	0.065466	0.080356				
Max Relative Displacement	0.031609	0.021762	0.012231				
Max Damping Force	0	0	0				

INPUT PARAMETERS FOR RESPONSE EVALUATION IN MATLAB CONFIGURATION #1

Configuration #3			
Items	Story 1	Story 2	Story 3
Gravity (in/s^2)	386.4	386.4	386.4
Weight (kip)	0.7883	0.7868	0.7533
K (stiffness, kip/in)	36.153	39.726	36.528
Height (in)	36.375	35.25	36.25
Length (in)	51.1875	51.1875	51.1875
Z (damping)	0.02	0.02	0.02
C (damping coefficient)	0.9	0	0.9
Degrees of Freedom	3	3	3
Time Step (scaled,s)	0.001	0.001	0.001

RESPONSE FOR MATLAB (EXTENDED MODAL ANALISIS) CONFIGURATION #1

Configuration #1 Results for 1st, 2nd, and 3rd Story								
Items	Story 1	Story 2	Story 3					
PGA (g)	0.27	0.27	0.27					
Natural Frequencies (rad/s)	60.981	168.72	247.37					
Natural Period (s)	0.10303	0.037241	0.0254					
Damping Ratio	1.0000	1.0000	1.0000					
Max. Relative Displacement to Base (in)	0.021365	0.036392	0.043783					
Max Relative Displacement	0.80909	0.96074	0.33335					
Max Damping Force	0.72818	0	0.30001					

INPUT PARAMETERS FOR RESPONSE EVALUATION IN MATLAB CONFIGURATION #2

Configuration #2			
Items	Story 1	Story 2	Story 3
Gravity (in/s^2)	386.4	386.4	386.4
Weight (kip)	0.7883	0.7868	0.7533
K (stiffness, kip/in)	36.153	39.726	36.528
Height (in)	36.375	35.25	36.25
Length (in)	51.1875	51.1875	51.1875
Z (damping)	0.02	0.02	0.02
C (damping coefficient)	0.9	0.9	0
Degrees of Freedom	3	3	3
Time Step (scaled,s)	0.001	0.001	0.001

RESPONSE MATLAB (EXTENDED MODAL ANALISIS) CONFIGURATION #2

Configuration #2 Results for 1st, 2nd, and 3rd Story							
Items	Story 1	Story 2	Story 3				
PGA (g)	0.27	0.27	0.27				
Natural Frequencies (rad/s)	60.981	168.72	247.37				
Natural Period (s)	0.10303	0.037241	0.0254				
Damping Ratio	0.4811	0.4811	0.4811				
Max. Relative Displacement to Base (in)	0.019194	0.031627	0.038542				
Max Relative Displacement (in)	0.015646	0.01014	0.0074249				
Max Damping Force (kip)	0.63209	0.46243	0				

INPUT PARAMETERS FOR RESPONSE EVALUATION FOR MATLAB CONFIGURATION #3

Configuration #2			
Items	Story 1	Story 2	Story 3
Gravity (in/s^2)	386.4	386.4	386.4
Weight (kip)	0.7883	0.7883	0.7883
K (stiffness, kip/in)	36.153	39.726	36.528
Height (in)	36.375	35.25	36.25
Length (in)	51.1875	51.1875	51.1875
Z (damping)	0.02	0.02	0.02
C (damping coefficient)	0.9	0	0
Degrees of Freedom	3	3	3
Time Step (scaled, s)	0.001	0.001	0.001

RESPONSE FOR MATLAB (EXTENDED MODAL ANALISIS) CONFIGURATION #3

Configuration #1 Results for 1st, 2nd, and 3rd Story								
Items	Story 1	Story 2	Story 3					
PGA (g)	0.27	0.27	0.27					
Natural Frequencies (rad/s)	60.981	168.72	247.37					
Natural Period (s)	0.10303	0.037241	0.0254					
Damping Ratio	0.2554	0.2554	0.2554					
Max. Relative Displacement to Base (in)	0.022988	0.039868	0.049721					
Max Relative Displacement	0.76984	0.88445	0.67351					
Max Damping Force	0.69285	0	0					

SAP RESPONSE SPECTRUM CURVES

EXCITATION VS RESPONSE OF THE SYSTEM

Experimental Run: "Setup 3" Loma Prieta

Top => at floor 3 Bot => Shake Table
FOURIER TRANSFORM

ACCELERATION TOP VS BOTTOM RATIO

Natural frequency of Structure:

From Analytical SAP2000 model 8.282 Hz

From MATLAB Modal Analisis model 9.706 Hz

Run ID "Set-up 3" : Loma Prieta

RECOMMENDATIONS

1 – For rigid diaphragm action a steel plate welded all around to the perimeter holding angles shall be used instead of the actual grating which reflects a semi-rigid diaphragm action instead.

2 – The effects of the column splices at mid-height shall be taken into account on the numerical model representing the additional stiffness they provide to the columns.

3 - The beam-to-column joints shall be modeled as semi-rigid joints instead of fixed joints or, as an alternative, gusset plates between beams and columns could be welded.

4- Maintain a data base of the calibration parameters used in previous studies in order to have these as starting points.