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Abstract – Remote sensing is a valuable tool for determining acid sulphate soils is quite a challenge 

based on minerals in costal zones. Based on the correlation of mineral and vegetation index using 

Sentinel 2A sensor there can be areas that can be unique to study in the field based on the wetlands 

selected. The wetlands are Caño Boqueron (Cabo Rojo), Jobo’s Bay (Guayama), and Hiltons Wetland 

(Ponce), these areas have been identified as potential acid sulphate soils. The main objective is to 

identify potential areas to be sulfuric soils in the coastal areas of the wetlands selected. We used ENVI 

5.3 and ArcMap 10.6 to conduct supervised classification, calculate vegetation and minerals index 

algorithms, and calculate statistics. Mineral index (Iron Oxide, Ferric Iron) and Vegetation index (NDVI) 

were correlated to establish potential areas that can be sample to determine potential areas. Caño 

Boqueron and Hilton Wetland gave an inversely proportional distribution given the Pearson correlation 

to the Fe 3+ index based on the NDVI.  
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Introduction  

Acid sulphate soils remain largely 

"ecologically safe" while anoxic conditions 

prevail (Mosley, et al., 2017). However, exposure 

to air (physical disturbances or droughts) 

promotes sulphuration, a process by which soil 

minerals containing sulfides (pyrites) are 

oxidized, producing large amounts of sulfuric 

acid ‘next reaction’ (Beucher et al., 2016; 

Karimian et al., 2017; Payne and Stolt, 2017). The 

sulfurization process can create serious 

ecological damage in estuaries and coastal areas, 

causing large fish deaths and extreme 

degradation of concrete and steel structures 

(Fitzpatrick et al., 2017b). 

 

The recognition of acid sulphate soils goes 

back to the 18th century, where they were 

referred to as "clay with sulfuric acid" (Pons, 

1973). The terms "sulfidic materials" and 

"sulfuric horizon" were introduced in the United 

States in the first formal classification system 

developed for these soils (Soil Taxonomy, 1975) 

(Fanning, et al., 2017). However, recognition and 

identification of CLASS is still an evolving science 

as the presence of these soils has gone largely 

undetected in many regions of the world where 

the deleterious impacts of the mismanagement 

of these soils is commonly attributed to other 

causes. 

 The Australian classification system, a country in 

which the presence of CLASS was not recognized 

until the 1990s, recognizes three main 

categories, namely: hyper-sulfidic soils, hypo-

sulfide soils and mono-sulphide materials. 

(Fanning, et al., 2017). Mono-sulfide materials 

are those that undergo a color change, from 

black to gray, immediately after exposure to air, 

an indication of the presence of metastable iron 

sulphides (wetlands). The use of the pH results of 

the wet aerobic incubations is considered as the 

primary classification criterion of all the systems 

(Wessel, et al., 2017; Fanning, et al., 2017). On 

the other hand, hypo-sulfidic materials undergo 



pH drop of 0.5 units or more during a 16-week 

moist aerobic incubation (MAI) to a final pH 

greater than 4.0.  Finally, hyper-sulfidic materials 

also experience a pH drop greater than 0.5 units 

during MAI but reach a final pH lower than 4.0. 

The use of pH results from moist aerobic 

incubations is now regarded as the primary 

classification criteria by all systems (Wessel, et 

al., 2017; Fanning, et al., 2017). In Puerto Rico 

there’s no soil classification for acid sulphate 

soils.  

In this case study the cost side or Puerto Rico 

is being evaluated to identify this presence of 

acidity in the soils, basically the wetlands are 

study areas. Wetlands are areas where water 

covers the soil or is present on or near the soil 

surface throughout the year for varying periods 

during the year, including the growing season. 

Based on the USDS (2016) this areas are 

classified as  Water soil, and are formed under 

conditions of saturation, flooding, or ponding for 

sufficient time in the growing season as allowing 

anaerobic conditions to occur in the upper part 

of the soil profile, in this case can be potential 

areas if the are pyrite in the soil profile. They can 

support both aquatic and terrestrial species. The 

presence of water creates conditions that favor 

the growth of specially adapted plants 

(hydrophytes) and promote the development of 

soils characteristic of wetlands (water) (EPA, 

2012).  

Rowan and John (2003) used the Advanced 

Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) sensor to evaluate image of 

the Mountain Pass, California areas indicating 

several lithologic groups using spectral-matching 

techniques. The three visible and six near-

infrared bands, which have 15-m and 30-m 

resolution, respectively, were calibrated by using 

in situ measurements of spectral reflectance. Fe-

muscovite, which is common in these intrusive 

rocks, was distinguished from Al-muscovite 

present in granitic gneisses and Mesozoic 

granite. Bienworth et al. (2005) generates an 

application to identify sulfuric acid soil stains 

from radiometric gamma data of mineral 

spectrums that are proportionally inverse to acid 

sulphur and GIS analysis. And Bienworth et al. 

(2005) uses a similar method but with iron 

mineral spectrum and a hyperspectral sensor.   

Scientific Question: Could the indicators help 

predict acid sulfuric soils given satellite images? 

Objectives: General: Identify potential areas to 

be sulfuric soils in the coastal areas of Jobos Bay, 

Caño Boquerón and Ponce Hilton. Specific: Use 

vegetation and mineral indices to identify 

potential areas to be sampled with multi-

spectral sensor. 

Material and Methods  

A. Images 

The image selected to analyze the potential acid 

sulfate soils corresponded to Sentinel 2A, of 

December 9, 2018. This is a 12 bands 

multispectral sensor with spectral information 

between the visible and mid infrared spectrum. 

It has 10 m spatial resolution in the visible 

spectrum and 1 band in the near infrared 

spectrum, 20 m spatial resolution in some 

Vegetation Red Edges (red to infrared spectrum) 

and SWIR, and 60 m spatial resolution the SWIR 

and Coastal aerosol bands. The image was 

retrieved from the Earth Explorer (2000) 

database, based on minimum clouds. 

 

Image 1. Sentinel 2A sensor description 



B. Acid Sulphate Soils indicators  

Based on visual and chemical interpretations we 

can determine acid sulphate soils (Beucher et al., 

2016, Fitzpatrick et al., 2017, Wessel, et al., 

2017; Fanning, et al., 2017). Some of the 

indicators are aerobic incubated pH (< 5), 

minerals (pyrite, iron oxide, jarosite, 

swerminate, ferric iron etc.), oil films in the 

superficial water (bacterias), and death of 

vegetation of moribund state. 

C. Sentinel 2A index applied 

i. NDVI 

The normalized difference vegetation index 

(NDVI), which is derived from remote-sensing 

(satellite) data, is closely linked to drought 

conditions. To determine the density of green on 

a patch of land, the distinct colors (wavelengths) 

of visible and near-infrared sunlight reflected by 

the plants are observed. Range of NDVI is −1 to 

+1. Higher value of NDVI refers to healthy and 

dense vegetation and lower NDVI values show 

sparse vegetation: 

NDVI=(NIR−RED)/(NIR+RED) 

Where: NIR = band 5 ; RED =  band 4 

where RED and NIR stand for the spectral 

reflectance measurements acquired in the red 

(visible) and near-infrared regions, respectively 

(Drisya et al., 2018). 

ii. Iron Oxide and Iron Ferric (Fe2+ and 

Fe3+) Index 

Based on the results of Rowan and John (2003) 

from Aster and some comparisons between this 

sensor and the Sentinel 2A, Henrich (2009) 

created an online index databased related to the 

Sentinel 2A sensor and the iron derivate index 

where created and used in this study. Where 

some of the algorithms are based on the visible 

spectrum and near and mid infrared.  

Iron oxide = band 11/band 8 

Fe 2+ = (band 12/band 8) + (band 3/band 4) 

Fe 3+ = band 4/band 8 

Based on the indicators to determine potential 

acid sulphate soils like the mineral precipitated 

in the soil surface this index for this sensor where 

selected.  

D. Description of study area 

The areas selected for this case of study are 

based on potential acid sulphate soils that have 

been classified with previous soil samples 

recollected in those areas (Image 2). They are in 

the western and southern coastal areas of 

Puerto Rico: Caño Boqueron at the wester side 

coast, Ponce Hilton Wetland and Jobo’s Bay at 

the southern side coast of Puerto Rico. Caño 

Boqueron Wetland is at the Boqueron Bay where 

the Boqueron Wildlife Refuge is located and its 

managed by the Department of Natural and 

Environmental Resources. The Caño consist of 

the protected area and the wetland areas, it’s 

has an area approximated 5 km2. The Jobos Bay 

National Research Reserve is the second largest 

estuarine area of Puerto Rico. It expands 

between the towns of Guayama and Salinas 

(aprox. 14 km2) and its grounds were acquired by 

the Department of Natural and Environmental 

Resources in 1981 and was designated as Jobos 

Bay National Estuarine Research Reserve by the 

National Oceanic and Atmospheric 

Administration (NOAA) as part of the National 

Estuarine Research Reserve System (NERRS) 

(DRNA, 2019).  The final areas selected to study 

is a wetland next to the Hilton Casino and 

Restaurant Resort in Ponce, this area isn’t 

regulated by any federal agency like the DRNA 

and the  approximated area of this wetlands is 11 

km2. The classification of this types of wetlands 

based on the Fish and Wildlife are Estuarine and 

Marine Deep-Water Wetlands for the wetlands 

selected (USGS, 2015), due to the intrusion of 

saline water of the beach. 



 

Image 2. Spatial distribution of the Jobo’s Bay, Caño Boqueron, and Ponce Wetlands in the coast side of 

Puerto Rico

 

E. Image Processing 

 

Image 3. Flow chart based on the process generated in ENVI and ArcMap 10.6 program 

Based on the image retrieve from Earth Explorer 

different steps in ENVI and ArcMap 10.6 where 

conducted to analyses was made (Image 3).  

In the interpretation in the image 3, we used 

layer stacking to combine the band necessary to 

estimate the index selected and a dark 

subtraction to clean the atmospheric reflection. 

Then based on empirical knowledge we trained 

potential areas due to the precipitated iron 

(reddish or dark orange color) and used a 

minimum distance and maximum likelihood 

supervised classification. Then, due  the dark 

subtraction we used band math to apply all the 

algorithms of each index, then based on the 

NDVI a mask was created and applied to all the 

mineral and vegetation index. Those results 

where exported to ArcMap 10.6 to create areas 

of interest based on high values of mineral index 

and determine if those values correlate with the 

values of the NDVI. The data was create using 

Create Random Points in the polygons of each 

index, and an Extract Multi Value to Points of 

each Index and the NDVI values. This data was 

exported to Excel and applied a Pearson 

Correlation to determine if there’s a distribution 

to the data.
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Results and Discussion  

A. Hilton’s Casino and Golf Resort Wetland, Ponce 

  

 

Image 4. Maximum Likelihood and Minimum Distance supervised classification for the Wetland next to 

Ponce Hilton Resort. 

For this image 4, yellow of this classification represents the Potential Acid Sulfate Soils. Due to the  

RGB image of this area  and the trained area, the  Maximum Likelihood Classification  is more suited to 

the areas that can have precipitated iron based on the color of the surface in the soil.  The city, water, and 

vegetated classification are more well distribute in the Maximum Likelihood Classification. 

 

 

Image 5. Iron Oxide and Iron Ferric Index applied for the Wetland next to Ponce Hilton Resort



The image 5 the mineral index is represented at the Ponce Hilton Resort Wetland, and the maximum of 

each mineral index was converted into polygon and represented in the RGB satellite image of the zone. 

Iron Oxide and Fe 3+ data intersect in some areas more in comparison with Fe 2+ data, some bare soils 

areas are detected by the polygons of the Oxide and Fe 3+ and that can be an indicator that in those areas 

are more precipitated iron. And based on image 6 we can see that on the NDVI zones with lower value 

the Iron Oxide and Fe 3+ have higher values. Based on Person’s correlation comparing the NDVI and the 

minerals (Annex, Graph 1 – 3), Fe 3+ has -0.72 (inversely proportional), Iron Oxide has -0.62 (inversely 

proportional), and Fe 2+ has 0.31 (directly proportional), but in consideration for the samples the one the 

Fe3+ index is more suitable. Indicating that in areas where there is minimum vegetation biomass based 

on the NDVI there can be more precipitated Fe3+ iron in the soil.  

 

Image 6. NDVI index at Ponce Hilton Wetland and the values of the mineral index 

B. Jobos Bay Wetland, Guayama 

  

Image 7. Maximum Likelihood and Minimum Distance supervised classification for the Jobo’s Bay 

Wetland 



For this image 7, blue of this classification represents the Potential Acid Sulfate Soils. Due to the  RGB 

image of this area  and the trained area, the  Maximum Likelihood Classification  is more suited to the 

areas that can have precipitated iron based on the color of the surface in the soil.  The water, and 

vegetated classification are more well distribute in the Maximum Likelihood Classification.  Bur based on 

the image there are clouds interfering in some costal areas. 

 

 

Image 8. Iron Oxide and Iron Ferric Index applied for the Jobo’s Bay Wetland 

The image 8 the mineral index is represented at the Jobo’s Bay Wetland, and the maximum of each 

mineral index was converted into polygon and represented in the RGB satellite image of the zone. Iron 

Oxide and Fe 3+ data intersect in some areas more in comparison with Fe 2+ data, the bare soils areas are 

detected by the polygons of the Oxide and Fe 3+ and that can be an indicator that in those areas are more 

precipitated iron and on the  contrary areas with more NDVI has more higher values on the Fe 2+ index. 

Based on image 9 we can see that on the NDVI zones with lower value the Iron Oxide and Fe 3+ have 

higher values, and NDVI zones with higher values to the Fe2+ index. Based on Person’s correlation 

comparing the NDVI and the minerals (Annex, Graph 4 – 6), Fe 3+ has -0.49 (inversely proportional), Iron 

Oxide has -0.52 (inversely proportional), and Fe 2+ has 0.69 (directly proportional), but in consideration 

for the samples the one the Fe 2+ index is more suitable. Indicating that in areas where there is more 

vegetation biomass based on the NDVI there can be more precipitated Fe2+ iron in the vegetation, 

possible due to the micronutrients that the plant’s needs. 

 



 

Image 9. NDVI index at Jobo’s Bay Wetland and the values of the mineral index 

C. Caño Boqueron Wetland, Cabo Rojo 

  

Image 10. Maximum Likelihood and Minimum Distance supervised classification for the Caño Boqueron 

Wetland at Cabo Rojo 

For this image 10, blue of this classification represents the Potential Acid Sulfate Soils. Due to the  RGB 

image of this area  and the trained area, the  Maximum Likelihood Classification  is more suited to the 

areas that can have precipitated iron based on the color of the surface in the soil.  The city, water, and 

vegetated classification are more well distribute in the Maximum Likelihood Classification. 

 



 

Image 11. Iron Oxide and Iron Ferric Index applied for the Caño Boqueron Wetland at Cabo Rojo 

 

The image 11 the mineral index is represented at the Jobo’s Bay Wetland, and the maximum of each 

mineral index was converted into polygon and represented in the RGB satellite image of the zone. Iron 

Oxide and Fe 3+ data intersect in some areas more in comparison with Fe 2+ data, some bare soils areas 

are detected by the polygons of the Oxide and Fe 3+ and that can be an indicator that in those areas are 

more precipitated iron.  

On image 12 we can see that on the NDVI zones with lower value the Iron Oxide and Fe 3+ have higher 

values, and NDVI zones with higher values to the Fe2+ index. Based on Person’s correlation comparing 

the NDVI and the minerals (Annex, Graph 7 – 9), Fe 3+ has -0.76 (inversely proportional), Iron Oxide has -

0.68 (inversely proportional), and Fe 2+ has -0.16 (inversly proportional), but in consideration for the 

samples the one the Fe 3+ index is more suitable. Indicating that in areas where there is minimum 

vegetation biomass based on the NDVI there can be more precipitated Fe3+ iron in the soil.  

 

Image 12. NDVI index at Caño Boqueron Wetland at Cabo Rojo and the values of the mineral index 



D. Overall results  

In the table 1 gives the statistics representation of each Person correlation based on the minerals 

index and the vegetation index. Based on the results the best areas to infer potential areas to sample is 

the Fe3+ due to the Caño Boqueron (-0.76) and Ponces (-0.72) correlation index results. In Jobo’s Bay 

results the Fe2+ gave a high correlation but the graph 6 at the annex, the relationship between the  

mineral index and the NDVI was that the more the vegetation biomass the more the Fe2+ index is, and 

based in the indicators to determine potential acid sulphate soils we need degradation on the 

vegetation.  

Table 1. Pearson correlation given each mineral index with respect to the vegetation index (NDVI), in 

each place of interest. 

AREAS MINERAL PEARSON R^2 

Boqueron OxFe -0.67993 0.46 

Boquerón Fe3 -0.75731 0.57 

Boqueron Fe2 -0.15736 0.03 

Jobos OxFe -0.52468 0.28 

Jobos Fe3 -0.49229 0.24 

Jobos Fe2 0.689965 0.48 

Ponce OxFe -0.62128 0.39 

Ponce Fe3 -0.71989 0.51 

Ponce Fe2 0.305353 0.09 

 

Limitations and Recommendations  

Not having created a mask for the cloudiness 

and city, could have generated alterations to the 

values of each applied index. Where the 

supervised classifications were going to be 

applied and to be able to establish the areas of 

greatest impact of each index with more 

precision. For this model, other variables can 

help describe these areas of interest like soil 

moisture and the water table for the prediction. 

A comparison based on time it would give a good 

distribution of the index applied, and the 

correlations of the minerals with respect to the 

NDVI were different with respect to the data 

obtained now (exam.: dry season vs wet season), 

due to the hydrological change that 

predominates in the coastal areas. The mineral 

index would be more credible based on field 

validation to determine if there are those types 

of minerals exist based on the data of the 

mineral index. Spectral data of the mineral 

derived from pyrite can be another classification 

but due to the humidity and vegetation would be 

difficult to identify the minerals.   

Conclusion 

The supervised classification given the indicator 

of the color of the precipitated iron (dark red or 

orange) could help us to identify or infer 

potential areas to be sulphic acid soils, but it had 

its limitations. The classifications supervised 

with empirical criteria (color) for this 

identification method can help determine areas 

with the characteristics that are being sought. 

We can associate areas to collect soil samples 

given the Fe3 + index and Iron Oxide, since these 

showed an inversely proportional correlation 

given the Pearson correlation. Where the areas 

with the highest mineral index would be chosen 



to collect soil samples such as: Caño Boquerón 

and Ponce.
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Appendix  

 

Graph 1.  Pearson’s correlation based on the Fe2+ mineral index and NDVI index on Ponce 

Hiltons Resort Wetland 

 

Graph 2.  Pearson’s correlation based on the Fe3+ mineral index and NDVI index on Ponce 

Hiltons Resort Wetland 
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Graph 3.  Pearson’s correlation based on the Iron Oxide mineral index and NDVI index on Ponce 

Hiltons Resort Wetland 

 

 

 

Graph 4.  Pearson’s correlation based on the Iron Oxide mineral index and NDVI index on Jobo’s 

Bay Wetland 
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Graph 5.  Pearson’s correlation based on the Fe3+ mineral index and NDVI index on Jobo’s Bay 

Wetland 

 

 

Graph 6.  Pearson’s correlation based on the Fe2+ mineral index and NDVI index on Jobo’s Bay 

Wetland 
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Graph 7.  Pearson’s correlation based on the Iron Oxide mineral index and NDVI index on Caño 

Boqueron at Cabo Rojo 

 

 

Graph 8.  Pearson’s correlation based on the Fe3+ mineral index and NDVI index on Caño 

Boqueron at Cabo Rojo 
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Graph 9.  Pearson’s correlation based on the Fe2+ mineral index and NDVI index on Caño 

Boqueron at Cabo Rojo 
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