
Correlation between reflectance indices and the electrical conductivity of the soil in the 

Lajas Valley, Puerto Rico 

José Pablo Castro-Chacón - jose.castro23@upr.edu 

Department of Agro-environmental Sciences, University of Puerto Rico - Mayaguez Campus. 

Abstract 

The apparent electrical conductivity of the soil (ECa) was measured in three pilot plots located in the Lajas 

Valley using an EM-38, and electromagnetic induction sensor (EMI). The ECa signal was correlated with 

multispectral images of the Landsat 8 and Sentinel 2A using different vegetation and salinity indexes. A 

digital elevation model (DEM) from a LIDAR sensor was considered to evaluate and understand how the 

ECa signal is related with the relieve. The preliminary results show a statistically significant relationship 

between the ECa spatial distribution and the different indexes of the remote sensors evaluated. This study 

concluded the viability of combine the use of ECa and multispectral images for the digital mapping of saline 

and sodic soils in the Lajas Valley Agricultural Reserve (LVAR). 
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Introduction 

Digital soil mapping has incorporated the use of modern techniques as electromagnetic induction (EMI) 

and remote sensing (RS) to create thematic edaphological maps that represents the spatial and temporal 

distribution of soil parameters. The EMI technique incorporates a soil electrical conductivity meter (EM-

38) to receive the apparent electrical conductivity (ECa). This signal is used to infer physical and chemical 

soil properties, while different global satellites allow us to obtain accurate information of the earth surface 

at different spatial, temporal, radiometric and spectral scales. Through the combination of both technologies 

is possible to create regional maps to predict soils and environmental conditions, such as saline and sodic 

toxicity, which are recurrent in the Lajas Valley. 

Bonnet and Brenes (1958) studied the problems of salinity and sodicity of the soil in the Valley of Lajas 

using a grid of soil samples, they determined that in a depth of 0 to 60 cm the saline, saline-sodic and sodic 

lands were 9,700 ha. The origin of the salts in the Valley of Lajas is associated with the geological formation 

process, since it is recognized that this territory was under direct influence of the sea, which would have 

led to a large accumulation of these minerals within the stratigraphic column. Coupled with this, the climatic 

conditions characteristic of a semi-arid regime increase the salinity problems, since these salts accumulated 

in the soil profiles do not dissolve easily, if don’t they are exposed on the surface and affect the root zone 

of the plants, decreasing the productivity of the crops and causing the mortality of the plants. There are also 

other problems of associated anthropogenic origin such as excessive irrigation with high salt concentrations. 

Since 1980, with the appearance of the first electromagnetic induction instruments, there has been a 

considerable increase in the number of investigations carried out on the cartography of sodicity and salinity 

soils, Cameroni et al. (1980) made in Canada (a country that was a pioneer in the development of this type 

of equipment, with the Geonics company that still operates today) a correlation between the ECa signal 

captured by the EM38 instrument and the results obtained from a soil analyst of effective electric 

conductivity (ECe) in samples of saturated paste soil and determined that there was a high correlation 

between both variables. Similar studies with the same techniques were carried out in the United States by 

members of the US Salinity Lab, such as the works of Wollenhaupt et al. (1986) and Rhoades et al. (1989). 

In the decade of 1990 the works of mapping of salinity and sodicity of soils increase considerably, the first 

advances in the use of remote sensors are given as a technique of regional cartography, most of the 



investigations continue to correlate the induction electromagnetic with soil chemical analysis. The first 

identified works that make use of remote sensors were those of Mougenot, Pouget and Epema (1993) 

developed in France, Verma et al. (1994) employed in India, Wiegand et al. (1994) in the United States and 

Eklund (1998) in Australia. 

Since 2000, studies using RS with EMI are numerous, in many parts of the world this technology is being 

applied to predict the distribution of saline soils. It's important to mention the investigations carried out by 

the United States Salinity Lab team, Scudiero, Skaggs y Corwin (2014), Scudiero, Skaggs y Corwin (2015), 

Scudiero, Skaggs y Corwin (2016), who executed this procedure to characterize the saline soils of the San 

Joaquin Valley in California. 

Materials 

- Soil electrical conductivity meter (EM38). 

- Multispectral image of the Landsat 8 mission of December 9, 2018, with a percentage of 

cloudiness of 0%. 

- Multispectral image of the Sentinel 2 mission of January 8, 2019, with a percentage of cloudiness 

of 0%. 

- Digital Elevation Model of LIDAR. 

- Spectroradiometer GER 1500. 

Remote sensors description 

- Soil electrical conductivity meter (EM38):  

The instrument sends an electromagnetic pulse that interacts with the ground and receives the response 

pulse. This electromagnetic pulse response depends of the mineralogical properties of the soil and it is 

known as apparent electrical conductivity ECA. 

Figure N1. Soil electrical conductivity meter EM38. 

 

- Landsat 8 and Sentinel 2:  

They are sensors that have some similar characteristics but also big differences. The blue, green and red 

bands on both sensors are practically the same. Landsat 8 has a panchromatic band, whereas Sentinel 2 does 

not have, however Sentinel 2 has a better spatial resolution than Landsat 8, so this panchromatic band is 

not as important. 

Sentinel 2 has four bands in the near infrared which allows it to capture greater differences in the vegetation, 

while Landsat 8 only has one. Sentinel 2 has a band to detect water vapor while Landsat 8 does not 

specifically. With respect to the medium infrared bands are very similar, each sensor has three. Finally, 

Landsat 8 has thermal sensors whereas Sentinel 2 does not have. Below is a table with the differences. 



Table N1. Technical characteristics of Landsat 8 and Sentinel 2. 

 

- LIDAR sensor: 

A high resolution digital elevation model obtained with a LIDAR sensor was used, it was obtained from 

the USGS electronic database and was captured in 2016. 

- Spectroradiometer GER 1500: 

This instrument was used to measure the reflectance of certain objects in the field, to understand what are 

the differences between different soil coverings and the internal differences between each surface. 

Methods 

A. Capture the ECa signal: 

The ECa signal was measured in three plots of the Lajas Valley, this measurement was calculated in vertical 

position with penetration of 1.5 meters. The total area sampled corresponds to 18 hectares, was selected 

arbitrarily with the intention of conducting preliminary studies on two soil series, Fe and Guánica, which 

have been identified by NRCS with salinity problems. 

Figure N2. Study Plots 

 



B. Interpolation of the ECa:  

The ECa signal was interpolated by means of the ordinary kriging method, which is recommended for 

high density point clouds like the one used in this case. Remember that the EM38 captures ten data per 

second. The ECa maps were created in a 30x30 pixel size to be able to correlate these on a regional scale 

with the sensors of Landsat 8 and Sentinel 2. 

Figure N3. ECa signal in vertical position 

 

C. Landsat 8 and Sentinel 2A indices: 

From the multispectral images a series of indices were calculated, which were recommended by different 

authors reviewed in the literature. 

Table N2. Calculated Indices of Landsat 8 and Sentinel 2. 

NDVI 

 

Asfaw et al. (2016) 

SAVI 

 

Asfaw et al. (2016) 

DVI NIR-RED From: indexdatabase.de 

CRSI 

√
𝑵𝑰𝑹𝒙𝑹𝑬𝑫−𝑮𝒙𝑩

𝑵𝑰𝑹𝒙𝑹𝑬𝑫+𝑮𝒙𝑩
 

Scudiero et al. (2014) 

NDVI2 

 

From: indexdatabase.de 

NDSI= 

 

Azabdaftari, A, y Sunarb, 

F. (2016) 

SI 

 

Gorija et al. (2017) 

SI3 

 

Gorija et al. (2017) 

SI9 

 

Azabdaftari, A, y Sunarb, 
F. (2016) 

VSSI 2 x B2 – 5 x (B3+B4) Asfaw et al. (2016) 

Natural Bands Each of the individual bands was evaluated as an index From: indexdatabase.de 

 

 



Figure N4. Example of some of the indices calculated with Landsat 8 and S2. 

 

 

 



D. Pearson Correlations:  

ECa maps were transferred to central points considering the value of each one pixel. This coverage of points 

was intersected with each of the Landsat 8 and Sentinel 2A bands and indices to obtain paired data series. 

With this data, a Pearson correlation model was constructed through the following equations. 

 

Where: 

r = Pearson correlation coefficient 

θxy = Covariance 

θ = Standard deviation 

x = Observed variable (Multispectral bands) 

y = Inferred variable (ECa) 

n = Number of data 

 

Results 

Plot N1: This land was planted with natural grass at the time of measurement, the table N3 shows the 

bands and indices with results higher than 0.6 in the Pearson R. 

Table N3. Correlation between ECa and multispectral bands (Plot 1) 

 

The results show that both, the Landsat 8 sensor and Sentinel 2 can to strongly predict the ECa signal in 

that case. The best prediction for L8 was panchromatic band and the best index was Salinity 3. While for 

Sentinel 2 the best prediction was obtained in band 3 and in the index Salinity 1. In that case LIDAR 

DEM is not a good predictor. 

SENSOR R PEARSON ECA_V_UTM ECA_H_UTM

LANDSAT 8 OLI NDVI2 -0.68 -0.66

LANDSAT 8 OLI NDVI -0.68 -0.66

LANDSAT 8 OLI SAVI -0.68 -0.66

SENTINEL 2 B05 0.61 0.60

SENTINEL 2 B12 0.61 0.59

LANDSAT 8 OLI SI9 0.61 0.62

SENTINEL 2 SENTINEL SI 0.62 0.65

LANDSAT 8 B3 0.66 0.64

LANDSAT 8 B4 0.66 0.65

LANDSAT 8 B1 0.68 0.68

LANDSAT 8 B2 0.68 0.68

LANDSAT 8 OLI NDSI 0.68 0.66

LANDSAT 8 OLI SI 0.70 0.71

SENTINEL 2 B04 0.73 0.74

SENTINEL 2 B02 0.75 0.75

LANDSAT 8 B8 0.77 0.78

LANDSAT 8 OLI SI2 0.78 0.77

LANDSAT 8 OLI SI3 0.78 0.78

SENTINEL 2 B03 0.78 0.79

EM38 ECA_H_UTM 0.96 1.00

EM38 ECA_V_UTM 1.00 0.96



The following graphic is a linear regression model using the best predictive band, in this case the green 

band of Sentinel 2. 

Graphic N°1. Linear regression between ECa and Band 3 (S2 – Plot 1)  

 

The results show a direct relation and a R2 of 0.61 which indicates that it is a good band to predict ECa to 

regional scales. 

 

Plot N2: This land was plow at the time of measurement, the table N4 shows the bands and indices with 

results higher than 0.6 in the Pearson R. 

Table N4. Correlation between ECa and multispectral bands (Plot 2) 

 

The results show that both, the Landsat 8 sensor and Sentinel 2 can to strongly predict the ECa signal in 

that case. The best prediction for L8 was the infrared band and the best index was Salinity 9 and VSSI. 

SENSOR R PEARSON ECA_V_UTM ECA_H_UTM

LANDSAT 8 B5 -0.76 -0.75

LANDSAT 8 B6 -0.71 -0.68

LANDSAT 8 B3 -0.69 -0.64

LANDSAT 8 OLI SI9 -0.68 -0.68

LANDSAT 8 OLI SI -0.67 -0.67

LANDSAT 8 B8 -0.66 -0.60

LANDSAT 8 OLI DVI -0.64 -0.66

SENTINEL 2 B11 -0.63 -0.60

SENTINEL 2 B08 -0.63 -0.58

SENTINEL 2 B07 -0.62 -0.57

SENTINEL 2 B03 -0.62 -0.55

SENTINEL 2 B06 -0.62 -0.56

SENTINEL 2 B05 -0.61 -0.54

LANDSAT 8 OLI SAVI -0.60 -0.64

LANDSAT 8 OLI NDVI2 -0.60 -0.64

LANDSAT 8 OLI NDVI -0.60 -0.64

LANDSAT 8 OLI NDSI 0.60 0.64

LIDAR DEM 0.61 0.66

LANDSAT 8 OLI VSSI 0.68 0.68

EM38 ECA_H_UTM 0.97 1.00

EM38 ECA_V_UTM 1.00 0.97



While for Sentinel 2 the best prediction was also obtained in band infrared. In that case LIDAR DEM is a 

good predictor, so the elevation is related to salinity. 

The following graphic is a linear regression model using the best predictive band, in this case the infrared 

band of Landsat 8. 

Graphic N°2. Linear regression between ECa and Band 5 (L8) (Plot 2) 

 

The results show a inverse relation and a R2 of 0.57 which indicates that it is a good band to predict ECa 

to regional scales. 

 

Plot N3: This land was planted with natural grass at the time of measurement, the table N5 shows the 

bands and indices with results higher than 0.6 in the Pearson R. 

Table N5. Correlation between ECa and multispectral bands (Plot 3) 

 

The results show that both, the Landsat 8 sensor and Sentinel 2 can to strongly predict the ECa signal, but 

there were few bands and indices with good results with respect to those obtained in plots 1 and 2. The 

best prediction for L8 was the mid infrared. While for Sentinel 2 the best prediction was tha band of water 

vapour. In that case LIDAR DEM is a good predictor, so the elevation is related to salinity. 

The following graphic is a linear regression model using the best predictive band, in this case the water 

vapour band of Sentinel 2. 

 

 

 

SENSOR R PEARSON ECA_V_UTM ECA_H_UTM

SENTINEL 2 B09 -0.88 -0.84

LANDSAT 8 B7 -0.71 -0.69

LANDSAT 8 B6 -0.71 -0.73

SENTINEL 2 B01 -0.67 -0.64

LIDAR DEM 0.78 0.73

EM38 ECA_H_UTM 0.97 1.00

EM38 ECA_V_UTM 1.00 0.97



Graphic N°3. Linear regression between ECa and Band 9 (S2) (Plot 3) 

 

The results show a inverse relation and a R2 of 0.77 which indicates that it is a good band to predict ECa 

to regional scales. 

Discussion of results 

For plot No. 1, the statistical assessment determined that the band with the highest correlation was the B3 

(Green) of the Sentinel A2 sensor, with a Pearson r of 0.78. It was possible to construct a graph of B3 with 

the ECa to make a linear regression model, it was determined that using the formula y=0.664x-24.743 it is 

possible to obtain a good prediction of ECa with an R2 equal to 0.61. For plot No. 2, was possible to 

construct a graph of B5 (Infrared) of the Landsat 8 sensor with the ECa to make a linear regression model, 

it was determined that using the formula y=0.372x+757.66 it is possible to obtain a good prediction with 

an R2 equal to 0.57. For plot No. 3, the band with the highest correlation was the B9  (Water Vapour) of the 

Sentinel 2 sensor, with a Pearson r of -0.88. It was possible to construct a graph of B9 with the ECa to make 

a linear regression model, it was determined that using the formula y=-0.1754x+595.79 it is possible to 

obtain a good prediction with an R2 equal to 0.77. 

For each one of the properties, good correlations were obtained between the ECa and the bands and spectral 

indices, this means that it is possible to generate prediction models of these variables. Now it was observed 

that the best predictions vary, this means that the best bands are not the same for plot 1, 2 or 3, since they 

have different characteristics. These characteristics are related to soil cover, texture, mineralogical 

properties, elevation and position in the landscape. 

This means that to generate a prediction of ECa for the entire Lajas Valley, these auxiliary quantitative and 

qualitative variables must be integrated into a multivariable statistical model, to minimize spatial 

differences. These special differences are because different land coverings have different reflectance 

patterns therefore, it is not possible to predict the ECA signal with only one equation. Figure N5 and graph 

N4 show how different surfaces have different reflectance curves. 

 

 

 

 

 



Figure N5. Different reflectance surfaces were measured with the spectroradiometer GER1500. 

 

 Picture A - Spectroradiometer GER1500. Picture B - Water. Picture C – Dry sand. Picture D – 

Limestone. Picture E – Wet sand. Picture F – White rock. Picture G – Serpentine. Picture H – Red 

Rock. Picture I – Ultisol. Picture J – Vertisol. 

 

Graphic N°4. Reflectance differences in some surfaces. 
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Now each one of these land covers has differences in internal patterns. For example, it is possible to observe 

more green and leafy pastures in places where the soil has good nutritional content, while we will find 

yellow pastures in areas where there are problems of toxicity or absence of minerals to supply the needs of 

the plant. 

This experiment could be verified in the soccer field of the University Campus of Mayaguez, where the 

reflectance of the grass in different sites was measured, obtaining different spectral curves with the same 

tendency but different intensity. 

Graphic N°5. Reflectance differences in pasture surface. 

 

Conclusions 

It is possible to predict the ECa signal from the multispectral bands. In each of the evaluated plots the best 

correlations vary between different bands, this is due to the fact that the soil cover is different, therefore it 

is necessary to resort to a more advanced multivariable method to process composite bands and improve 

the prediction levels. 

Future work 

Over the next two semesters, ECa data and soil samples will be captured by different lands in the Lajas 

Valley, with the objective of feeding the predictive model with quality data to create a salinity and sodicity 

map at a regional scale. 
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As can be seen in the graph although the measurements are made in a specific use as the grass, there are 

differences in the intensity of the signal. This internal difference is possible to relate to nutritional or 

moisture aspects for example. 

Conclusions 

This research demonstrates that it is possible to correlate the ECa signal with multispectral images of 

Sentinel 2 and Landsat 8 to predict edaphological parameters such as salinity. It is necessary to create 

differentiated equations considering aspects such as terrain coverage, elevation and texture, this in order 

to eliminate errors due to variability between different terrain coverings and the internal variability that 

exists within each one. 

Over the next two semesters, ECa data and soil samples will be captured by different lands in the Lajas 

Valley, with the objective of feeding the predictive model with quality data to create a salinity and sodicity 

map at a regional scale. 
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