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1. Introduction

The Laboratory for Applied Remote Sensing and Image Pro-
cessing (LARSIP) at the University of Puerto Rico Mayagiiez
(UPRM) Campus was established in 1989 through a grant from
the US National Science Foundation Minority Research Centers
Program. Since then, LARSIP has become an important research
group insignal processing, remote sensing and its applications. It
iscurrently funded by grantsfromNSF, NASA, NIMA, and DoD.
Thelaboratory is currently comprised of nine professors, onere-
searcher, two Ph.D. students, 24 M..S. students, and over 20 under-
graduate students.

The objectives of LARSIP are to develop advanced algo-
rithmsand technol ogiesfor extraction and management of infor-
mation from remote sensing sensors, and to educate and train
students in the various technologies associated with remote
sensing and signal processing. LARSIP provides an environ-
ment for multi-disciplinary interaction of eectrica and com-
puter engineering researchers and students with their
counterparts in application areas such as marine sciences, geol-
ogy, civil engineering, and chemistry.

LARSIP is associated with the Center for Subsurface
Sensing and Imaging Systems (CenSSIS), a National Sci-
ence Foundation Engineering Research Center, whichisan
industry/university consortium led by Northeastern Uni-
versity, in partnership with Boston University, RPI and
UPRM. It is also associated with the UPRM Tropical Cen-
ter for Earth and Space Studies sponsored by the NASA
University Research CentersProgram. Moreinformation on
these centers can be found at http://www.censsis.neu.edu
and http://tcess.uprm.edu, respectively.

Themajor research thrustsat LARSIP are hyperspectral im-
age processing, applied electromagnetics, bio-optics, and sig-
nal processing. Research effortsin theseareaswill bedescribed
in the following sections.

2. Hyperspectral Image Processing
High-gpectral resol ution (hyperspectral) imaging sensorsmea:

suredatain hundreds of wavelength bands. Imaging sensors such

as SEBASS (125 bands), Orbview-4 (200 bands), AVIRIS (224

bands), andHY DICE (210 bands) will giveearth scientistsand re-
source managers a powerful tool to detect and classify features,
measure productivity/yield, and identify trendsin data not avail-
ablefrom conventional multi-spectral sensorssuchasLANDSAT
7. To take full advantage of the available information in
hyperspectral imagery, information extraction tools are being de-
veloped to handlethislarge volume of dataefficiently. Sponsored
by NASA, DoD, and NSF, LARSIPhasperformed researchinthe
development of classification and compression adgorithms that
take full advantage of the high spectral resolution information in
hyperspectral imagery (HSI). Research work in this area has fo-
cused on dimensionality reduction, classification and compres-
sionalgorithms, and analysisfor subsurface object identification.

2.1 Band Selection for Dimensionality Reduction

From astatistical modeling perspective, asthe number of bands
increases, the number of samples needed to trainaclassfier canin-
crease exponentialy, depending on the classifier being used [1,2].
Therefore, it is of interest to develop methodologies to reduce the
dimensiondity of the hyperspectrd image datawhileretainingtheir
classdiscriminatory information asmuch aspossible. Optima band
sdlection is a combinatoria optimization problem. Band selection
agorithms have been developed to use QR and singular value de-
composition matrix factorizations to select bands that gpproximate
the principal components that explain most of the data variability.
The advantages of these algorithms are that they runin polynomia
time and that they have been shown to yield reasonably good solu-
tions[3] and better approximationsto the principa components[4].
Application of these dgorithmsto classification and datacompres-
sion have been reported in the literature [5,6].

2.2 Classification Algorithms

Hyperspectral imagery offersthe potential for high discrim-
ination by integrating spatial and spectral information. How-
ever, due to the high dimensionality of the data, this potential
benefitishampered by thedifficulty of training classifierswith
high dimensional feature vectorsand the complexity of models
that integrate spatial and spectral information. One of the ap-
proaches to deal with high dimensionality problemsin classi-
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Figure 1. Use of Unsupervised Classifier ECHO algorithms. (a) Segment of original AVIRIS
image of NASA Kennedy Space Center exhibiting urban spatial structure. (b) Classical
C-means clustering classification on a pixel-by-pixel basis (c) Unsupervised ECHO classifi-
cation using spatial information to improve the detection of urban spatial structure.

fier training is to reduce dimensionality using the band
selection methods previously described. Another approach be-
ing studied at LARSIP isthe use of regularization methods to
stabilize the classifier parameter estimates. Another important
research thrust in hyperspectral classifiersisthe incorporation
of spatial information. At LARSIP an unsupervised version of
the ECHO classifier [7] has been developed. It was shown to
have very good performance compared to other approaches
based on Markov random fields [8] and post-processing filter-
ing [9]. Figure L illustrates the application of the unsupervised
classifier ECHO agorithm to an AVIRIS image of NASA
Kennedy Space Flight Center.

2.3 Losdess Compression of Hyperspectral Imagery

Another application of theband salection methodisfor losdess
compression of hyperspectral images. Because of the nature of
hyperspectral images, different spectral bandscan bevery smilar,
and this similarity can be exploited for compression. Use of con-
tiguous spectral bands has been attempted in the prediction phase
of compression algorithms, but this causes both compression and
decompression to be sequential. For example, if the last band
compressed needsto be decompressed, all previousbandsmust be
decompressed. In order to avoid this, an algorithm hasbeen devel -
oped to use a subset of bandsto predict the rest. The advantageis
that decompression of any band requires only the decompression
of thissubset. Compression resultsequivalent to contiguousbands
were achieved for AVIRISimagesusing only six of the 224 origi-

Table 1. Entropy results of prediction using principal components and a subset of bands.

nal bands. The results using these six
bands were aso nearly identical to using
thefirst Six principal components, the op-
timal linear predictors. Some results are
shown in Table 1.

4 2.4 Hyperspectral Image analysis
. for Subsurface Object
| dentification

A fundamentd chalenge to imaging
and pattern recognition systems is the de-
tection of objects embedded in a diffusive
and dispersive medium with discrete
sources of clutter. Particular examples of
complex mediaare the atmosphere and the
ocean. Mogt of the previous work focuses
on ddidtical detection and estimation of
parameters. Physics-based modeling has been used to understand
therelation between the objectsof interest, the sensorsand the envi-
ronment [10, 11]. Current research a LARSIPincludestheintegra-
tion of physics-based signd processing with the spectral and spatia
information in hyperspectrd data for subsurface sensing. Algo-
rithmsare being devel oped to solveill-posed problemsininversion
methods applied to hyperspectral image andysis[12, 13]. The ap-
plications mainly focus on remote sensing to detect objects under
the atmosphere or the ocean surface (e.g. cord reefs). The sensor
mainly used is a high-resolution imaging spectrometer
(hyperspectral) sensor.

3. Applied Electromagnetics

The applied eectromagnetics group applies computational
modelsto avariety of remote sensing applications, such as micro-
wave absorption spectranear 22 GHz and active remote sensing of
clouds[14-16]. They examinethe effects of the atmospheric sabil-
ity over the ocean on agorithms for radio path delay and wind
speed retrieval from space. The applied eectromagnetics group
aso examinesthe effect of theair pressure in water vapor retrieva
agorithms a tropospheric heights. For these studies, a variety of
data sources are used, including data from the atimeter and water
vapor radiometer of the NASA Topex/Poseidon Satellite and from
the National Westher Service radiosondes.

A preiminary study examined the effects of the aimogpheric
stability of the ocean in the estimation of radio path dday used in
current spaceborne radiometric instruments
[14]. This effect was studied using a NASA

Bands Linear predictor Number of | Linear predictor Topex/Poseidon data set, which included low

entropy PCsused | entropy wind speeds, aswell as ocean and amosphere
29 7.830790 1 7.989636 ancillary data from the Nationad Oceano-
29-42 7.262668 2 7.109786 graphic DataCenter (NODC) and theNational
29-42-89 6.776586 3 6.476988 Westher Service (NWS). The effect of the at-
9-29-36-42-66 6.543167 S 6.157913 amined and corrected [16]. The corrdation
1-29-37-42-70-123 6.046576 6 5.919479
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between the path delay derived from the
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Figure 2. UMass-CPRSradar reflectivity scans of a stratus cloud at (a) Ka-band (33 GHz) and at (b) W-band (95 GHZz), both processed at
UPRM. The microphysical structure of the liquid water content inside the cloud can be retrieved from the difference in extinction rates at
these two frequency bands. The total cloud liquid water content can then be computed by integrating over the antenna scattering volume.

Topex/Poseidon radiometer and that derived from the radiosonde
balloon profiles was examined for two very low wind cases.

Thefirst case was when neutral stability at the air-sea inter-
face was assumed. Most current wind speed and path-delay al-
gorithms assumethis, including the Topex/Poseidon agorithm.
In this case, it is assumed that the sea surface temperature is
equal to the air temperature just above the surface. The correla
tion is computed again for the case when the wind speed is cor-
rected to takeinto account the actual air-seainterface conditions.
This state was derived from atmospheric profiles around the
globe collocated in space and time with the Topex/Poseidon
data. These ancillary data were obtained from the Nationa
Oceanographic Data Center (NODC) and the National Weather
Service (NWS). Theair temperature at the surface was assumed
to be the sample nearest to the ground of the radiosonde’ satmo-
spheric profile. The seasurfacetemperaturewasmeasured using
ocean buoys from the NODC data set [17].

It was found that degradation in the amospheric path delay cor-
rection occurs, using the phase difference between the Topex micro-
wave radiometer and radiosonde observation, when the atmospheric
Sability sate of the oceanistaken into account. Thisisto beexpected
since the dgorithm used to cadculate path dday did not take into ac-
count this condition, and the need for aradio path-delay dgorithm
that takesinto account air-seaa@mospheric stateistherefore evident.
Current work is underway to compare alarger dataset of Topex/Po-
seidon and coincident radiosonde data, which will indlude clear-sky
conditionsat al wind speeds, over two yearsof Topex/Posaidon data
over 30 instead of 15 radiosonde gations.

Collaborative work with the University of Massachusetts at
Amherst is being performed in the area of cloud studies. The
specificareasof interest arethemicrophysical structureof stra-
tusclouds, the devel opment of better algorithmstoretrieverain
rate and raindrop size distribution from precipitating clouds
and the modeling of ice crystalsin high cirrusclouds. For these

studies, this group used data from the UMass Cloud Profiling
Radar System (CPRS) and from NOAA S-band profilers. The
UMass CPRS is a dual-frequency Doppler radar operating at
Ka- and W-bands. The use of two frequenciesalowsonetore-
trieveinformation about the hydrometeor content. Figure 2 de-
pictsthe CPRSdataprocessed by UPRM students, showing the
radar reflectivity from the cloud at both frequencies (33 GHz
and 95 GHz). Thisresearch is conducted in collaboration with
Dr. Stephen Sekelsky. Other collaborations with UMass in-
clude ground penetrating radar for profiling of lake sediments
and front-end design for a UHF wind profiler radar using sur-
face mount components.

Other research activities by the gpplied € ectromagnetics group
include the devel opment of alaboratory for smulation, fabrication,
and testing of different types of microwave antennas and circuits
[18]. Duringthelast two years, studentshave beenworking onava:
riety of projects such as the design of GPS receivers, design of a
broadband amplifier and antenna for GPR gpplications, modding
of MMIC passive structures, and design of RF remote sensing ra-
dars. The group worksin the smulation of new microwave struc-
turesincluding microstrip passive structures and printed antennas.
Thisgroup aso performsresearch on the smuletion of averiety of
microwave tunable components fabricated with ferrodl ectric mate-
rids. Thesmulationsare performed using various numerica meth-
ods for eectromagnetics such as the Method of Moments and the
Finite Difference Time Domain method.

3.1 Radiation Lab Facilities

Thegpplied dectromagneticsgroup of LARSIPhasavailable Ra-
digtion Lab facilities, equipped with gate-of-the-art equipment ac-
quired froman NSFMRI grant. The principa instrumentshoused in
thelab aretwo vector network anayzers (13 and 50 GHz), one spec-
trum anayzer (50 GHz), anear fidld scanner and an anechoic cham-
ber for antenna measurements (2-40 GHz, see Figure 3), amilling
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mechinefor prototypefabrication, anHP J-Class
Workgtation and one IBM RISC 6000 Worksta- [
tion. Thelaboratory sohesavailableavariety of i aias
electromagnetic Smulation tools, such as Mo~ g

mentum, XFDTD, and HFSS.

4, Space Information
Laboratory and Bio-Optical
Oceanography Laboratory

4.1 Satellite Receiving Capabilities
The Space |nformation Laboratory (SIL) of
the NASA-funded Tropicd Center for Earth
and Space Studies (TCESS) aims to provide
data from severa orbiting satdllites to the scientific community.
Its facilities currently house a TeraScan HRPT reception system
from SeaSpace, which schedules, acquires, and processes data
from NOAA and NASA satellites. More than 700 GB of data
from over 10,000 passes have been received and stored on digital
tapessincetheingtallation of the HRPT antenna(Figure4d) in De-
cember of 1996. We have distributed satdllite datato userswith a
variety of interests, both inside and outside of Puerto Rico. In ad-
dition, we recently ingtalled an X-Band antenna (Figure 4b) that
alows us to receive data from the RADARSAT, LANDSAT-7
and Terrasatdlites. Thelocation of theseantennas makespossible
theacquisition of datafrom the Mid-Atlantic Ocean to the Gulf of
Mexico and from Brazil to the Northern United States. Satellite
data collected a SIL is used by the Bio-Optica Oceanography
Laboratory (BIOL) in a variety of ways. The NOAA-AVHRR
data provide information on sea surface temperature (SST) and
alsoallow tracking of hurricanesintheregion. Orbview-SeaWiFS
dataareusedto study the dynamicsof phytoplankton populations.

4.2 Validation of Satellite Data

During the past severd years, an important part of our research
has been focused on the acquisition of field data for validation of
bio-optical agorithmsused in ocean color sensors, like SeaWiFSand
MODIS. Field measurementswere performed in oceanic and coasta
watersusing abio-optica rosette. Thisoptica rosetteisused to mea-
aure the bio-optica properties down to 200 meters. Multi-year time
series recorded at the Caribbean Time Series (CaT'S) gation show
seasond variations in the optica properties of near-surface weters

the UPRM Radiation Lab, part of the
recently acquired facilities and equip-
ment supported by an NSF Major In-

strumentation Research grant.

that are associated with seasonal events, likethe
intrusion of the Orinoco River during fall. Such
varigbility isthecauseof low accuracy inthees-
timation of phytoplankton Chlorophyll-ausing
the current bio-optical agorithms. We are now
focusing on studying other seasond events, like
coastal upwdling in Venezudla during spring
(see lower pand of cover image), to determine
their importance in determining the bic-optical
properties of the region. Near red-timeimages
of AVHRR and SeaWiFS are provided by SIL
and used by the organizers of field campaigns
(see cover image, lower pand). That was the
case during our last research cruise in March
2001, in which theimages hel ped to samplethe very strong coastal
upwelling more completely.

5. Signal Processing

5.1 Multisensor Fusion Algorithm for Feature

Recognition using Subsurface Sensing

The goal of thisresearch isthe creation of an algorithm (or
algorithms) to perform Automatic Object Recognition (AOR)
using the archeological multisensor data as the testbed.

This research is conducted in collaboration with Dr. Marco
Giardino, aresearch scientist at theNASA Earth System Science
Office a Stennis Space Center. The multisensor data are ob-
tained from a Ground Penetrating Radar (GPR), a magnetome-
ter, aconductivity sensor, a15-band ATLAS plane, and a CCD
array sensor. All areobtained at ageographically referenced site,
along with actual excavation data. Example data are shown in
Figure 5. Accurate interpretation of the datais achieved using
object recognition a gorithms, combined with signal verification
and validation obtained through detailed excavations.

5.2 TexARS (Texture Analysisfor Remote Sensing)
Thisprojectisintheareaof image anaysiswith emphasison
textural cues. Texture can be defined as the property of avisua
scene characterizing the placement of ssimple elements called
texelsfollowing specific rules. Texture hasbeenwidely used for
image segmentation, medical imaging and in computer vision
systems. Integrating texture with edge information, contrast,

Fig. 4. Antennas at
the Space Informa-
tion Laboratory for
receiving remote

== sensing satellite

| data. (a) L-Band and
(b) X-Band.
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Figure 5. Ground-penetrating radar (GPR) survey data of a Native
American burial site. Data provided by NASA Sennis Space Center.

color, and shading, complex vision systems can be devel oped to
perform automated recognition of objectsin ascene. These ob-
jects can be distinct as well as obscured, and can vary with re-
spect to rotation, scaling and lighting conditions.

A texture has several properties such as homogeneity, peri-
odicity, coarseness, fineness, etc. These properties can be ex-
tracted by applying certain algorithmsto theimages, which can
be broadly classified as statistical, structural, multifrequency
and multiscale methods. Recently, thetextureanalysisgroup of
LARSIP has concentrated on developing new agorithms for
texture anaysis that are computationally efficient and give
good classification performance for a wide variety of images
[19]. New multi-resolution algorithms have been developed
and used for invariant texture classification [20]. Many of the
algorithms have been applied for classification of remote sens-
ing images [21] from sensors such as Landsat and SAR. The
upper panel of the cover image shows a L andsat image of San
Juan, Puerto Rico (left) and its classification using a wavelet
transform method (right).

Research efforts are now focused on parameter extraction from
radar images for characterization of soil moisture and ocean cur-
rents. New techniques are being investigated for optima texture
feature selection using evol utionary computation methods[22]. Al-
gorithms are being developed that yield religble results, snce re-
lated multidisciplinary projects, such as climate modeling, demand
accurate estimates of parameters from remote sensing images for
use in their modes. The focus of this research is to develop tex-
ture-based agorithmsthat cater to the needs of awidevariety of ap-
plications and to implement these procedures efficiently.
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