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Abstract —This research is focused in the study of local climate effects due to urbanization in tropical coastal cities. 
With the use of remote sensing technology, climate changes due to urban growth can be detected. The clearest local 
indicator of climate changes due to urban growth is a urban/rural convective circulation known as Urban Heat 
Islands (UHI). The main scientific objective of this research is to investigate the impact of the fast urbanization in 
the local climate of tropical coastal cities that is related to UHI. The Airborne Thermal and Land Applications 
Sensor (ATLAS) from NASA/Stennis that operates in the visual and IR bands was used as the main sensor for this 
study with the objective of investigating the Urban Heat Island (UHI) in San Juan, Puerto Rico. Temperatures as 
high as 60°C over the developed areas differ from temperatures over vegetated areas of more than 30°C during 
daytime. The UHI curve over the San Juan area is a clear evidence of the characteristic high temperature domes over 
urbanized areas. Correlations between temperature and albedo provide additional information of the different 
surface energy budget components. The Normalized Difference Vegetation Index (NDVI) was also estimated to 
separate the land use and land cover components over the San Juan area.  Results from this research have shown 
outstanding evidence of elevated surface temperatures over the urban landscape and clearly validate the 
development of UHI in San Juan, Puerto Rico. 
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I. INTRODUCTION 
 

    It is difficult to imagine that cities in small tropical 
islands show local climate change effects similar to 
those in great continental cities. It was recently 
discovered in (González et al., 2006) that this might 
be the case for the city of San Juan, Puerto Rico, a 
relatively affluent coastal tropical city of nearly 2 
million inhabitants. The main scientific objective of 
this research is to investigate the relationship between 
urban growth, land cover change, and the 
development of the urban heat island phenomenon 
over a tropical coastal city; San Juan, Puerto Rico. 
Also study the overall effects of urban development 
on surface energy budget characteristics across the 
urban landscape through time at nested spatial scales 
from local to regional. A field campaign was 
designed and executed in February 2004 to validate 
this phenomenon. The field campaign included on-
board high resolution infrared sensors, ground 
stations, and upper air balloons. The Airborne 
Thermal and Land Applications Sensor (ATLAS) 
from NASA/Stennis that operates in the visual and IR 
bands was used as the main sensor for this field 
campaign with the objective of investigating the 
Urban Heat Island (UHI) in San Juan, Puerto Rico. 
Infrared sensor measurements can provide land 

surface parameters such as temperature and albedo. 
These two parameters are the key elements in the 
study of urban heat island. A brief review of relevant 
works is provided in this section. 
    Landsat 7 has been used in urban heat island 
studies in the city of Atlanta (Poreh, 1996). This 
sensor has a spatial resolution of 60 m in the spectral 
range of 10.40 to 12.5 µm. One constraint of the 
instrument is the temporal variation due to overpasses 
through Puerto Rico which is every 16 days. To 
retrieve surface temperature, band 6 is adjusted with 
an atmospheric model or profile. (Fukui et al., 2002) 
presented a study based on the surface temperature 
distribution and the urban structure in Tokyo using 
the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) and LIDAR data. 
ASTER has a spatial resolution of 90m in the spectral 
range of 8.125 to 8.825µm, 8.925 to 9.275µm and 
10.25 to 11.65µm. In this study, two different scenes 
from ASTER were used to calculate the surface 
temperature via the temperature/emissivity separation 
(TES) algorithm. The correlation of the surface 
temperature and the urban structure shows the impact 
of green areas on the urban heat environment and the 
falling of surface temperature in tall buildings during 
daytime and increasing of surface temperature during 
nighttime. Furthermore, NOAA Advanced Very High 
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Resolution Radiometer (AVHRR) thermal IR images 
have been studied to understand the urban 
microclimates of cities such as Paris and Los Angeles 
(Dousset and Gourmelon, 2001). This radiometer has 
a spatial resolution of 1km and two thermal bands in 
the spectral range of 10.3 to 11.3µm and 11.5 to 
12.5µm. To retrieve surface temperature, it uses a 
split window equation.  MODIS has the same 
resolution as NOAA AVHRR but has the capability 
of acquiring data over 36 spectral bands. (McCabe et 
al., 2001) compared MODIS and NOAA AVHRR 
land surface temperatures with ground based infrared 
thermometry measurements made in Tomago, 
Sandbeds, north of Newcastle, Australia. 
Comparisons show good agreement between 
MODIS, NOAA AVHRR and the infrared 
thermometer. (Quattrochi  and Luvall) explain in 
detail the surface temperature retrieval from these 
instruments. No major research has been reported 
where remote sensing images are used to investigate 
the urban climate in tropical and subtropical regions. 
    The remaining parts of the paper are organized as 
follow: Section II presents the theoretical aspects and 
the post-processing of the ATLAS data, Section III 
presents results obtained from the San Juan area, 
Section IV includes the conclusions and the future 
work,and finally, Section V includes the references. 
 
II. ENERGY SURFACE BUDGET DEFINITIONS 

AND ATLAS DATA POST-PROCESSING 
 

The Airborne Thermal and Land Applications Sensor 
(ATLAS) of NASA/Stennis operates in the visual and 
infrared bands. The ATLAS can detect 15 
multispectral channels of the radiation through the 
visible, near infrared, and thermal spectrums (see 
Figure 1 and 2). The sensor also incorporates the 
active sources of calibration needed for all bands. 
The data is corrected for the atmospheric radiation, 
and georectified before the analysis of the data is 
performed. The ATLAS sensor has been used in 
other field campaigns to investigate the UHI in 
Atlanta, Salt Lake City, Baton Rouge, and 
Sacramento, all in the continental mass of the United 
States of North America described in (Luvall et al., 
2005). 

 
Figure 1. Spectral resolution of the airborne thermal and 
land applications sensor(ATLAS). Bands 1-8.    

 

 
Figure 2. Spectral resolution of the airborne thermal and 
land applications sensor(ATLAS). Bands 10-15.    
 
    The ATLAS Mission of San Juan, Puerto Rico was 
conducted during February of 2004 to investigate the 
impact of the urban growth and landscape in the 
climate of this tropical city. The flight plan of the 
mission covered the metropolitan area within San 
Juan, the national forest of El Yunque to the east of 
San Juan, the city of Mayagüez in the west coats of 
Puerto Rico, and the Arecibo Observatory located in 
the north-central coast, for a total of 25 flight lines. 
The downtown area of San Juan, Hato Rey, was 
covered in a horizontal resolution of 5 meters in 
flights during the day and during the night. The 
remaining areas of the city were covered in 10 meters 
of resolution. The flights were executed between the 
11 and the 16 of February of 2004. In order to 
analyze the existence of an urban heat island in San 
Juan, and to support the data of the ATLAS sensor, 
several experimental campaigns for data collection 
were designed and conducted by different teams, in 
addition diverse numerical experiments were 
performed that helped to understand the phenomenon 
and its characteristics.  
    The atmospheric corrections needed to produce 
calibrated data sets from ATLAS involve a complex 
procedure. They require direct measurements of the 
atmosphere extinction coefficients by wavelength and 
profiles of atmospheric temperatures and water 
vapor. ATLAS instrument characteristics and 
calibration are also required. Figure 3 details the 
process flow followed for this project including 
resulted images from every relevant routine. A 
combination of software was used for the processing, 
including the public domain image processing/remote 
sensing package ELAS (Beverley and Penton, 1989) 
and a series of custom programs, Watts and Energy 
from ELASII (Rickman et al., 2000).   
    MODTRAN4 (Berk et al., 1999) was used to 
model the atmospheric radiance and transmittance 
using input from radiosonde data and shadow band 
radiometers. (Rickman et al., 2000) details the 
procedure for calibrating the ATLAS sensor to 
produce the system transfer function to convert 
digital values (DV) into radiance measurements. 
These procedures produce ATLAS data files that are 
in physical units of energy. These files are used for 



the generation of files which derive albedo and 
surface temperature. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.ATLAS overall data-processing flowchart.      
 

Surface temperature is a major component of the 
surface energy budget. In (Oke, 1987) the use of 
energy terms in modeling surface energy budgets 
allows the direct comparison of various land surfaces 
encountered in a landscape, from vegetated (forest 
and herbaceous) to non-vegetated (bare soil, roads, 
and buildings). The partitioning of energy budget 
terms depends on the surface type. In natural 
landscapes, the partitioning is dependent on canopy 
biomass, leaf area index, aerodynamic roughness, and 
moisture status, all of which are influenced by the 
development stage of the ecosystem. In urban 
landscapes, coverage by man-made materials 
substantially alters the surface energy budget. The net 
all-wave radiation balance (W/m2) of landscape 
canopies can be determined as follows (Oke, 1987). 
 
The net solar radiation, K *, is given by 
K*= (1-a)(K↓)                                                         (1) 
where a is the site albedo and K↓ is the incoming 
solar radiation. The albedo is defined as 
a=((K↑)/(K↓))                                                          (2) 
where K↑ is the reflected solar radiation. The long 
wave energy emitted from a surface (L↑) is 
dependent on surface temperature: 
L↑=ε[σT4]                                                                (3) 
where ε is the emissivity and σ is the Stefan-
Boltzman constant (5.7x10-8W/m²-K4) and  T is the 
land surface temperature (Kelvin). The net long wave 
radiation at the surface, L*, is given by 
 L*=L↓-L↑                                                               (4) 

where L↓ is the long wave radiation from the 
atmosphere. The net all-wave radiation, Q *, can be 
given as: 
    Q*=K*+L*                                                           (5) 
Net radiation, under most conditions, represents the 
total amount of energy available to the land surface 
for partitioning into non-radiative processes (mass 
heating, biological synthesis, etc.) at the surface. It is 
the amount of energy the system holds on to and 
degrades. In vegetated areas the amount of net 
radiation is dependent upon vegetation type and 
varies with canopy leaf area and structure. The net 
radiation may be expressed as the sum of these non-
radiative fluxes: 
Q*=λE+H+G                                                           (6) 
where H is the sensible heat flux, λ is the latent heat 
of vaporization of water, E is the transpiration flux 
and G is the energy flux into or out of storage (both 
canopy and soil). The partitioning λE, H and G are 
also dependent on the makeup of the surface. Both 
the physiological control of moisture loss (stomatal 
resistance) and leaf/canopy morphology for 
vegetation determines how Q* is partitioned among 
λE, H, and G. For urban surfaces the coverage of 
both man-made materials and vegetation results in a 
heterogeneous mixture of surfaces which determine 
the partitioning of energy. The ATLAS remotely 
sensed data allows the measurement of important 
terms in the radiative surface energy budget: K↑ and 
L ↑ on a urban landscape scale. When combined with 
output from MODTRAN4 (Berk et al., 1999) 
atmospheric radiance models the remaining terms 
and Q* can be determined. 
 

III. MATERIALS AND METHODS 
 

The image processing software that was used in this 
laboratory was ENVITM. Images from San Juan, 
Puerto Rico at a spatial resolution of 10 meters, Hato 
Rey at a spatial resolution of 5 meters and El Yunque 
at a spatial resolution of 10 meters were acquired by 
ATLAS. The dataset products were WATTS 
MOSAIC and ENERGY MOSAIC. Since the 
ATLAS datasets are not compatible with the ENVITM 
software, new ENVI formatted headers were created 
(see Appendix 1 for more information).  
Different tasks were performed to obtain information 
about the urban climate phenomena studied. 
 
1) Normalized Difference Vegetation Index 
 
The first step was to open and interpret the WATTS 
MOSAIC image to examine the Red and Infrared 
bands.  The second step was to select the Red channel 
that absorbs more and the Infrared channel that 
reflects more. The third step was to calculate the 



NDVI for the image using by entering the equation 
(7) in the Band Math basic tool of ENVITM. 
 
NDVI= ((float(b6))-(float(b4)))/((float(b6))+(float(b4))) (7) 
 
where b4 is the spectral reflectance in the Red Visible 
Band and  b6 is the spectral reflectance in the Near-
Infrared Band from the WATTS MOSAIC datasets.A 
mask was prepared to filter values out of the range 
between 0 and 1 by using the Build Mask basic tool.  
A scale bar was added to the image by using the 
ENVITM Color Tables under the Color Mapping tool 
and then a Color Ramp Object under the Annotation 
tool from the Overlay menu. 
 
2) Multispectral Classification 
 
     The first task was to perform unsupervised 
classification of the WATTS MOSAIC datasets. 
ENVITM provides two different unsupervised 
classifiers: isodata and k-means.  
     As explained by the ENVITM helper, isodata 
calculates class means evenly distributed in the data 
space and then iteratively clusters the remaining 
pixels using minimum distance methods. Each 
iteration recalculates means and reclassifies pixels 
with respect to the new means. Iterative class 
splitting, merging, and deleting are done based on the 
input threshold parameters. All pixels are classified 
to the nearest class unless a standard deviation or 
distance threshold is specified, in which case some 
pixels may be unclassified if they do not meet the 
selected criteria. This process continues until the 
number of pixels in each class changes by less than 
the selected pixel change threshold or the maximum 
number of iterations is reached. The isodata 
classification of the images was realized with the 
default parameters.  
     In theory, k-means is an algorithm to cluster 
objects based on attributes into k partitions.  The idea 
of the algorithm is to find the centers of natural 
clusters in the data. The objective is to minimize total 
intra-cluster variance, or, the squared error function. 
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where there are k cluster Si, i=1,2,…,k and μi is the 
centroid or mean point of all the points xj∈Si.  The 
procedure is similar to isodata. In the case of k-
means, the images were classified for 10 classes and 
2 iterations were done.  
     The second task was to perform supervised 
classification of the subset image by using the 
minimum distance, Mahalanobis distance and 
maximum likelihood classifiers.  As explained by the 
ENVITM helper, the minimum distance technique 

uses the mean vectors of each endmember and 
calculates the Euclidean distance from each unknown 
pixel to the mean vector for each class. All pixels are 
classified to the nearest class unless a standard 
deviation or distance threshold is specified, in which 
case some pixels may be unclassified if they do not 
meet the selected criteria. The Euclidean distance or 
Euclidean metric (defined in Fukunaga, 1990) is the 
distance between two points ( )nppppP ,...,321 ,,=  
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Maximum Likelihood (ML) is a parametric classifier 
that uses the training samples to estimate some 
parameters such as mean vector and covariance 
matrix. This is the most common supervised method 
used with remote sensing image data (Richards, 
1993).  This method involves specifying the joint 
probability distribution function for the sample data.    
Under relatively weak assumptions, usually called 
regularity conditions, maximum likelihood estimates 
are consistent, asymptotically normal, and efficient.  
Consistency means that as the sample size increases, 
the ML estimate tends in probability to the true 
parameter value.  Moreover, for large sample size, 
the ML estimate will have an approximate normal 
distribution centered on the true parameter value.  
The spectral classes for an image be represented by 

Mi ,....1=ω  where M is the total number of 
classes. The probability p(ωi\x) gives the likelihood 
that the correct class is ωi for a pixel at position X. 
Then, the classification is performed according to X  
ε ωi if 
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where mi and ∑i are the mean vector and covariance 
matrix of the data in class ωi .   
     Mahalanobis distance is a parametric classifier that 
uses the training samples to estimate some 
parameters such as mean vector and covariance 
matrix. It is a distance measure introduced by P. C. 
Mahalanobis in 1936. It is based on correlations 
between variables by which different patterns can be 
identified and analyzed. It differs from the Euclidean 
distance in that it takes into account the correlations 
of the data set and is scale-invariant, that means that 
it’s not dependent on the scale of measurements.  The 
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Mahalanobis distance from a group of values with 
mean and ( T

nμμμμμ ,...,321 ,,= ) covariance matrix Σ 

for a multivariate vector  is 
defined as: 
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 A ROI (region of interest) file was prepared with 5 
classes: ocean, lakes, forest, agriculture and cities.  
This ROI file will be used as training samples for the 
supervised classifiers. By result, three different 
images were produced. Every image created was 
saved in ENVITM and jpeg format. The final task is to 
compare the images and discuss about the similarities 
and differences between the results. 
 
3) Correlations between surface parameters 
 
Albedo alone does not truly reflect how the lands' 
surface partitions energy. A good example is the 
comparison between vegetated and asphalt surfaces ( 
see Table 1). Both surfaces have a low albedo, but 
the asphalt surface temperature can be over 34ºC 
greater than the vegetated surface. If the surface 
temperature is included the needed additional 
information to asses the "urban fabric" of the city is 
provided. The surface temperature and albedo 
classifications represent a functional classification of 
that surface, that can readily be incorporated into the 
surface parameterization of meteorological and air 
quality models. Within each city, each land use has a 
unique "energy print" that is directly physically 
related to how that surface is processing energy. 
These "energy prints" of the land use are unique for 
each city. 
 

Surface Albedo % 
Water 5-10 
Desert 25-30 
Fresh snow 80-90 
Old snow 45-70 
Green forest 5-10 
Green leaves 5-25 
Clouds (average) 50-55 

Clouds < 150 m thick 25-63 

Clouds 150-300 m thick 45-75 

Clouds 300-600 m thick 59-84 

Sea ice 30-40 
Bitumen road 5-10 

Table 1. Albedo values for different surfaces. 

Surface parameters such as the temperature and 
albedo were obtained from the ENERGY MOSAIC 
datasets. The first steps to visualize this correlation is 
by selecting the two surface parameters and 
displaying them in ENVITM, then go to Image 
Menu/Tools/2-D Scatter plots and select the X-band 
and the Y-band to be displayed. A window with a 
scatter plot will appear. By moving the window box 
through the image, one can select the area to be 
observed.  
 
4) Urban Heat Island Curve 
 
To show evidence of the elevated temperature domes 
that are characteristic of urban areas with surrounding 
rural areas that present low temperature patterns, a 
UHI curve must be plotted. First, the surface 
temperature must be selected from the ENERGY 
MOSAIC datasets and displayed in ENVITM. Then go 
the Image Menu/Tools/Profile/Arbitrary Profile 
(Transect) and select the path over the image to be 
observed.  
 

IV.RESULTS and DISCUSSION 
 

NDVI results from San Juan, Puerto Rico show the 
dominant city (white pixels) surrounded by rural 
areas (mostly green pixels).  Oceans, lakes and rivers 
can be well distinguished with black pixels. Figure 4 
show the NDVI generated image by ENVITM for the 
San Juan Metropolitan area.  In Figure 5, a different 
contrast between forest and coastal cities is observed. 
El Yunque, at the East of Puerto Rico, predominates 
with green pixels surrounded by coastal cities in 
white pixels. Results from Hato Rey also show 
similar relation between pixels(see Appendix 2). 
 

 
Figure 4 NDVI values for the San Juan Metropolitan 
area and its surroundings. 
Two different tasks were performed: one for 
unsupervised classification and the second for 
supervised classification. Figure 6 shows the 
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classified image using the isodata classifier and 
figure 7 shows the classified image using the k-
means classifier. What is more obvious is that ocean 
is very well classified in the three images. The 
isodata classifier detects better the vegetation and the 
cities pixels.   
 

 
Figure 5 NDVI values for the East of Puerto Rico. 

 

 
Figure 6 Unsupervised classification using the Isodata 
classifier. 
 

 
Figure 7 Unsupervised classification using the K-means 
classifier. 

The supervised classification of the images shows a 
different scenario in which 5 classes are selected: 
ocean, lakes, forest, agriculture and cities. Based on 
these samples, the supervised algorithm is executed. 
Figure 8-10 shows the classified image based on 
minimum distance, Mahalanobis distance and 
maximum likelihood, respectively. Minimum 
distance didn’t make distinction between ocean and 
lakes pixels. On the other part, maximum likelihood 
shows a better overall performance. Also agriculture 
and forest pixels are discriminated better in the 
maximum likelihood classified image. 
 

 
Figure 8 Supervised classification using the Minimum 
distance classifier. 
 

 
Figure 9 Supervised classification using the Mahalanobis 
distance classifier. 
 
     Compared to the unsupervised classifiers, this one 
works better for the distinction of cities and 
vegetation.  By just looking at the classified images, 
it seems that the supervised minimum distance 
classify better. In this type of exercise, the 
unsupervised classifiers were not effective. Another 
important observation is the selection of samples to 
be trained by the classifier, they make a big 
difference. One important observation about the 



images is that river pixels did not vary from highway 
pixels which seem to be a problem to discriminate 
one class from the other. One good recommendation 
is to use surface temperature ranges for rivers and 
roads when selecting the ROIs.  (Fukunaga, 1990) 
proves that second-order classifiers (such as 
minimum distance and maximum likelihood) can 
discriminate very well by using a quadratic relation 
between training samples and dimensionality.  On the 
other side, unsupervised classifiers like isodata and k-
means do not depend on the samples and it may 
result in a disadvantage. In this case, dimensionality 
is not tested but it seems that a combination of 
dimensionality and training samples can lead to a 
better classification. This might be a good future 
exercise. 
 

 
Figure 10 Supervised classification using the Maximum 
Likelihood classifier. 
 
The San Juan Metropolitan zone includes vegetated 
areas such as the Experimental Station, lake, airport, 
coastal industrial areas such as Cataño and central 
building areas. Differences in temperatures indicate a 
heat pattern dominating urban and coastal areas. 
Vegetated areas reflect albedo values around 0.07 
and 0.15. Water bodies reflect albedo values around 
0.06 and 0.3. Albedo values higher than 0.78 
correspond to cloud bodies. Since the San Juan 
Metropolitan zone includes vegetation, water bodies, 
residential, industrial and central building 
components, the surface energy budget can be 
evaluated by observing the energy contribution of 
each component to the whole UHI energy print. The 
way each surface partitions energy is unique 
depending on material type, vegetated or non-
vegetated, water status, atmospheric vapor deficits, 
and the relative mixtures and arrangements of the 
various components of that surface. Figure 11 shows 
an image of San Juan with its relative surface energy 
components. Individual vegetated components such 
as the Experimental Station Area which is one of the 

most vegetated areas in the city shows a very low 
contribution of surface temperature vs albedo. 
Generally the industrial areas had the highest albedo, 
and the hottest temperatures. The park areas show the 
lower albedo (not always the lowest) and lowest 
temperatures. Residential areas reflect low albedo 
values in a range from low to high surface 
temperatures. The airport area is mostly an asphalt 
surface that can be very hot in terms of temperature. 
The hottest surfaces correlate with roofs and asphalt 
pavements.  See Appendix 2 for more results. 
 

 
Figure 11 San Juan scatter plots that identifies the energy 
portions from urbanized and vegetated areas at differents 
spots. 
 
Finally, the evidence of UHI over the San Juan area 
can be represented by the temperature curve(see 
Figure 12).  The concept of UHI  domes over the city 
can be represented by using the Transect tool of 
ENVITM. Using this method with remote sensing data 
can be more convenient than selecting points and 
creating an Excel graph. 

 
Figure 12 Temperature curve for the San Juan Metropolitan 
area showing domes of elevated temperatures over the 
downtown area. 

 
V. CONCLUSIONS 

 
The work presented is part of a comprehensive 
investigation of the impact of land use for 
urbanization on the environment of a city located on 
a small tropical island, in this case, San Juan, Puerto 



Rico. The ATLAS field campaign conducted in 
February 2004 validates the development of UHI 
showing temperatures as high as 60°C with 
temperature differences between the developed and 
vegetated areas of more than 30°C during daytime. 
Classification methods are very important in the 
analysis of UHI data.  Supervised classifiers show a 
higher level of performance when detecting surface 
components from a city. Correlation between surface 
temperature and albedo show the thermal 
characteristic of energy prints. These prints represent 
the surface energy portion from the urban city 
component that contributes to the total surface energy 
budget. Surface temperature, albedo and NDVI 
results from San Juan show evidence of the urban 
growth impact in a tropical coastal city.  Because 
ATLAS also has superior spectral resolution within 
the thermal IR channels, it offers the potential to 
make accurate measurements of thermal responses 
for different landscape characteristics and their 
corresponding land-atmosphere interactions over 
small wavelength regions. Energy prints from the 
different components in a urban city represent the 
surface energy portion that contributes to the total 
surface energy budget. Future work will include the 
validation of the supervised classifiers to create a 
table with the characteristic surface temperature and 
albedo for every surface. 
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APPENDIX 1 

How to read ATLAS data in ENVITM 
 

 Because ATLAS data is written in formats not recognized by ENVI, several steps must be done to read 
ATLAS data.  Raw data is written in .flat and .img formats.  Atmospherically corrected data product is a .wats 
output from the ELAS software.  Geometrically corrected data product is a .geo output from the ELAS software. 
Surface data product is an .energy output from the ELAS software. 

 In the File Menu, select Open Image File to open ENVI image files (flat binary files) or other binary image 
files of known format.  

1. Select File  →  Open Image File.  

2. When the Enter Data Filenames dialog appears, select the file to open by clicking on its name and clicking 
OK or Open.  

 3.  When ENVI first opens a file, it requires specific information regarding the file characteristics. If the file  
  is an ENVI format file, the necessary information is contained in a separate text header file. The text  
  header file has the same name as the image file, but the file extension is .hdr.  

 If ENVI cannot find the header file (.hdr file) or other valid header information upon opening a file, the 
 Header Info dialog box appears (see Figure 13). You must enter the required information into the dialog   
 before an imported image can be displayed in ENVI. The information needs to be entered only once and is 
 automatically stored into an ENVI header file in the input directory when the OK button at the bottom of 
 the Header Info window is selected. 

 

Figure 13 Header Info dialog box. 

 Use the Header Info dialog to enter this information: 

• The Samples field displays the number of samples in the file.  



• The Lines field displays the number of lines in the file.  
• The Bands field displays the number of bands stored in the file.  
• The Offset field displays the offset in bytes from the start of the file to where the actual data begins. (The 

Offset is sometimes known as the embedded header.)  
• The xstart and ystart fields define the image coordinates for the upper left- hand pixel in the image.  The 

default values are (1,1) so that the upper left hand pixel has an image coordinate of (1,1).  
• Use the Data Type pull-down menu to select the appropriate data type (byte, integer, unsigned integer, 

long integer, unsigned long integer, floating point, double precision, 64-bit integer and unsigned 64-bit 
integer, complex, or double complex).  

• Use the Byte Order pull-down menu to select the byte order of the data. This parameter varies by platform:  
o For DEC machines and PCs, select Host (Intel), for the host least significant first byte order.  
o For all other platforms, select Network (IEEE), for the network most significant first byte order.  

• Use the Interleave menu to select the data storage order from these choices(see Table 2):  
o BSQ — band sequential  
o BIL — band interleaved by line  
o BIP — band interleaved by pixel  

 

Table 1  Band storage order description. 
File Format Minor Frame Major Frame 
BSQ # of samples (line) # of samples by # of lines (band) 
BIL # of samples (line) # of samples by # of bands 
BIP # of bands (spectrum) # of bands by # of samples 

All additional information stored in the ENVI Header is optional. To access this optional information, click 
the Edit Attributes button in the Header Info dialog. This optional information includes setting the default 
Z-Plot range, default stretch for display, entering georeferencing information, associated wavelengths and 
associated FWHM (full-width-half-maximum) values, sensor type, band names, and bad bands.  

Map information is associated with georeferenced files. In ENVI, the term georeferenced refers to images 
that have been geometrically corrected (i.e., rectified) such that they conform to a known projection. To 
establish the georeferenced data coordinate system, you must know the sample and line coordinates of one 
pixel (the reference pixel), the pixel size, the map projection, and map coordinates of this pixel.  

4. After the file is opened, the bands are listed in the Available Bands List.  
5. In the Available Bands List, click on the Display #X button menu (where X is the number corresponding to 

the number in a display window's title bar) and select the display from the list.  
6. To start a new display, select New Display from the button menu.  
7. Click Load Band or Load RGB to load the selected bands into the active display (see Figure 14).  

  



 
Figure 14 Display of the selected bands. 

 

 

 

 

 

 

 



APPENDIX 2: Additional figures 

 
Figure 15 NDVI values for the Hato Rey downtown area. 

 

Figure 16 Additional scatter plots for residential and building areas. 

 

 



 

Figure 17 Additional scatter plots for vegetated and industrial areas. 

 

 

 

 

 

 
 
 
 
 
 
 
 


