

Environmental Effects on Deformation, Strength, and Degradation of Glass Fiber Reinforced Polymers: A Micromechanics-Based Study

Pi: Dr. Felipe J. Acosta CoPi's: Dr. Miguel A. Pando Dr. Luis A. Godoy

Sponsor: US Army Research Office Dr. Larry Russell (POC) Start: October 1, 2006 Ends: September 30, 2008

Purpose

- To investigate fundamental degradation mechanisms of FRP composites due to environmental effects (Hygrothermal) at the micromechanical level based on the basic degradation mechanisms involved.
- Develop of a predictive tool for long term behavior for FRP composites

The Problem of Hygrothermal Ageing

The Problem of Hygrothermal Ageing (Cont.)

(1.02 K X)

Cracks at Fiber-matrix Interface

Objectives

- Experimentally and analytically identify the fundamental damage degradation mechanisms of glass FRP composites at the constituent level (i.e. fiber, resin and their interface).
- Develop a computational assessment tool based on micromechanics to serve as basis for life prediction models.

Tasks to Perform

- Develop publication database
 - Hygrothermal ageing of polymer composites
 - Micromechanics of unit cell including interface
 - Other ...
- Analytical Model
 - Finite Element
 - Cellular Automata
 - Diffusion problem

Tasks to Perform (Cont.)

- Base Material Mechanical Characterization
 - Tension
 - Fatigue
 - Flexural
 - Impact
- Material Characterization as Function of Time
 - 50, 100, 200, 300, 400, 500 days
- Dynamic Mechanical Analyzer and Microscopy Analysis
 - Chemical and physical changes

Schedule

Table 1: Schedule of the Activities Designed for the Proposed Work.

Activity	Performance period in Quarters (Proposed start date 9/1/2006)							
	1	2	3	4	5	6	7	8
1. Literature Review								
2. FRP panels purchasing & sample preparation								
4. Mechanical testing								
5. Analytical model development								
6. Analytical model calibration								
7. Report & dissemination								

Team and Preliminary Tasks

Dr. Luis Godoy

 Victoria Mondragon: Micromechanical modeling of the hygrothermal ageing development. Model of the fiber/matrix interface in FEM implementing user subroutines in ABAQUS.

Dr. Miguel Pando

- Juan Carlos Obando: Gathering publications related to composite materials aging and related publications
- Possible Topic: Diffusion of water in epoxy resins
- Dr. Felipe Acosta
 - Irene Mejias and Ruth Roman: Material characterization (Micro and Macro)