NEW INDUSTRIAL ENGINEERING CURRICULUM

University of Puerto Rico
Mayagüez, PR

IE Program Facts

- 175 credits

Current Curriculum

- 5 - year (10 semesters)
- 7.2 years (20152021)

Average Time Completion Time

- 75% (at the time of graduation)

UPRM Fall 2021-2022

Programa Académico	Cantidad Estudiantes Matriculados
Ingeniería Mecánica - BC	1038
Biología - BC	772
Ingeniería Industrial - BC	696
Ingeniería Eléctrica - BC	642
Ingeniería Química - BC	631
Ingeniería Civil - BC	589
Ciencia Animal (Industria Pecuaria) - BCA	558
Ingeniería Computadoras - BC	544
Ingeniería de Software - BC	419
Microbiología Industrial - BC	410
Psicología - BA	340
Contabilidad - BCAE	277
Química - BC	269
Enfermería - BC	237
Mercadeo - BCAE	228
Agrimensura y Topografía - BC	228
Pre-Médica - BC	193
Agricultura General - BCA	161
Sistemas Computadorizados de Informació	158
EDFI-Adiestramiento y Arbitraje - BA	157
Ciencias e Ingeniería de la Computación - B	157

National ASEE 2020-2021 Engineering by the Numbers
Top 50 Institutions by Total Bachelor's Degrees awarded in Industrial/Manufacturing Engineering
Table 21: Top 50 Institutions by Total Bachelor's Degrees awarded in Industrial/Manufacturing Engineering

No	Institutions	Degrees Awarded
1	University of California, Berkeley	735
2	Georgia Institute of Technology	338
3	Purdue University	264
4	Texas A\&M University	212
5	Virginia Polytechnic Institute and State University	205
6	University of Michigan	186
7	The Pennsylvania State University	183
8	Arizona State University	162
9	Clemson University	160
10	University of Illinois at Urbana-Champaign	152
11	University of Arizona	147
12	University of Florida	140
13	University of Central Florida	138
14	The Ohio State University	129
15	California Polytechnic State University, San Luis Obispo	126
16	West Virginia University	125
17	Aubum University	123
18	California State Polytechnic University, Pomona	120
19	lowa State University	117
20	University of Virginia	108
21	University of Wisconsin-Madison	105
22	North Carolina State University	103
23	Lehigh University	102
24	University of Puerto Rico, Mayaguez Campus	94
25	Oregon State University	89
26	University of Southern California	87
27	Comell University	86
28	University of Pittsburgh	85
29	University of Minnesota -Twin Cities	81
30	The University of Texas at El Paso	79
31	San Jose State University	73
32	Northwestern University	72
32	University of Oklahoma, Gallogly College of Engineering	72
34	Mississippi State University	69
35	Stanford University	67
36	Rutgers, The State University of New Jersey. School of Engineering	64
36	Texas State University	64
36	The State University of New York at Binghamton	64
39	University of Arkansas	63
40	Fu Foundation School of Engineering and Applied Science - Columbia University	62
41		59
42	Louis 146 Institutions included	56

Highlights of proposed curriculum

- Keeps the same graduates' profile
- Complies with ABET Criteria
- Provides necessary coursework to pass the Fundamental and Professional exams.
- Offers no reduction in free electives (12 credit hours)
- Complies with engineering common criteria ("parámetros comunes")
- Reduces from 175 to 149 the number of total credits (15\%)
- Reduces from 194 to 164 the number of contact hours (15\%)

Sources of Information

Systematic Course Assessment Process Course Modules

Departmental
Meetings - professors
and student
representatives

Accreditation Process Feedback - ABET

Feedback from employers - surveys \& one-on-one
conversations

IE Industry
Advisory Board
Meetings

Relevant Program Statistics

Time to graduate (in years)

Data from IE graduates, excluding "programa articulado"

Issues related to the "time-to-graduate" statistic

PERCENT OF STUDENT OBTAINING THE DEGREE ON-TIME (5 YEARS) OR IN OR LESS THAN 150% OF THE TIME (7.5 YEARS) (80\%-85\% IN 7.5 YEARS OR LESS, 2\%-3\% IN 5 YEARS OR LESS)

COST OF THE DEGREE FOR STUDENTS

Credits per Semester

Data from academic years 2011-2021

Curriculum Restrictions Used in the Design

Sciences

Chemistry

Eliminate QUIM 3132 General Chemistry II and QUIM 3134
General Chemistry Laboratory II, from the list of required courses

Chemistry

Current

| QUIM $3131+$ QUIM
 3133 GENERAL
 CHEMISTRY I LAB |
| :---: | :---: |\quad| QUIM $3132+$ QUIM |
| ---: |
| 3134 GENERAL |
| CHEMISTRY II + LAB |

Proposed

$$
\begin{aligned}
& \text { QUIM } 3131 \text { + QUIM } \\
& 3133 \text { GENERAL } \\
& \text { CHEMISTRY I + LAB }
\end{aligned}
$$

Physics

Current

Sciences

Physics
No change

> FISI 3172 + FISI 3174 PHYSICS II + LAB

Proposed

FISI 3171 + FISI 3173 PHYSICS I + LAB

FISI 3172 + FISI 3174 PHYSICS II + LAB

Social sciences, humanities, behavioral sciences, and education

Decrease the number of required electives in social sciences, humanities, behavioral sciences, and education to 6 credits (from 15), and increase the number of required electives in ethics to 3 (from 0).

Current

Electives

Electives in social sciences, humanities, behavioral sciences, and education

Credits: 15

Ethics

Elective in ethics

Proposed

Electives in social sciences, humanities, behavioral sciences, and education

Elective in ethics

Languages

Require students in the "intermediate sequence" to have at least 3 credits in INGL 3250
Public Speaking or INGL 3236
Technical Communication

Sequence Proposed

Basic Same

Require 3 credits from:
Intermediate INGL 3250 Public Speaking
INGL 3236 Technical Communication

Advanced Same

General Idea

Engineering Fundamentals

Move from a strict set of required courses to a smaller set of required courses and a list of elective courses

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces
the credits in the area from a total of 37 , to a total of 25 .

Engineering Fundamentals

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces the credits in the area from a total of 37 , to a total of 25 .

Current required courses kept

 as required| Course | Cr. |
| :--- | :---: |
| INGE 3011 ENGINEERING GRAPHICS I | 2 |
| INGE 3031 ENGINEERING MECHANICS
 STATICS | 3 |
| ININ 4010 PROBABILITY AND STATISTICS FOR | 3 |
| ENGINEERS | |
| ANIN 4015 ENGINEERING ECONOMIC | 3 |
| INGE 3016 ALGORITHMS AND COMPUTER
 PROGRAMMING OR CIIC 3015
 INTRODUCTION TO COMPUTER
 PROGRAMMING I | $3-4$ |

Elective (pick 6 credits)

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces the credits in the area from a total of 37 , to a total of 25 .

Current required

coursework kept as required,

 but modified

Proposed required coursework summary

INGE 3011 ENGINEERING GRAPHICS I 2
INGE 3031 ENGINEERING MECHANICS STATICS 3
ININ 4010 PROBABILITY AND STATISTICS FOR ENGINEERS 3
ININ 4015 ENGINEERING ECONOMIC ANALYSIS 3
INGE 3016 ALGORITHMS AND COMPUTER PROGRAMMING OR CIIC 3015 INTRODUCTION TO COMPUTER PROGRAMMING I 3-4
INEL 4078 CIRCUITS AND ELECTRONICS

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces
the credits in the area from a total of 37 , to a total of 25 .

Current required

courses moved to elective course

Course	Cr.
INGE 3032 ENGINEERING MECHANICS	3
DYNAMICS	
INGE 4001 ENGINEERING MATERIALS	3
INGE 4011 MECHANICS OF MATERIALS I	3
INME 4045 GENERAL THERMODYNAMICS FOR ENGINEERS	3
INME 4055 MANUFACTURING PROCESSES	3
INME 4056 MANUFACTURING PROCESSES	1

INGE 4001 ENGINEERING MATERIALS 3
INGE 4011 MECHANICS OF MATERIALS I 3

FOR ENGINEERS

Elective

Courses not currently required and added to elective course list

Engineering Fundamentals

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces
the credits in the area from a total of 37 , to a total of 25 .

Course

CIIC 3075 FUNDAMENTALS OF COMPUTING

INGE 4019 INTRODUCTION TO MECHANICS OF MATERIALS (ALT. INGE 4011)
INGE 4015 FLUID MECHANICS
INGE 4035 NUMERICAL METHODS APPLIED TO ENGINEERING
INGE 5015 THEORY AND MANAGEMENT OF
SYSTEMS
INME 4108 MATERIAL SCIENCE AND ENGINEERING (ALT. INGE 4001)

INME 4001 THERMODYNAMICS I (ALT. INME 4045)

INME 4065 PRODUCT DESIGN
INEL 4205 LOGIC CIRCUITS

INCI 4005 AGRICULTURAL SURVEYING

Proposed elective course list, summary

Elective

 (pick 6 credits)
Engineering Fundamentals

Divide engineering fundamental courses in 19 required credits and
6 elective credits. This reduces
the credits in the area from a total of 37 , to a total of 25 .
Course
INGE 3032 ENGINEERING MECHANICS DYNAMICS
INGE 4001 ENGINEERING MATERIALS
INGE 4011 MECHANICS OF MATERIALS I
INME 4045 GENERAL THERMODYNAMICS FOR ENGINEERS
INME 4055 MANUFACTURING PROCESSES
INME 4056 MANUFACTURING PROCESSES LABORATORY
CIIC 3075 FUNDAMENTALS OF COMPUTING
CIIC 4010 ADVANCED PROGRAMMING
INGE 4019 INTRODUCTION TO MECHANICS OF MATERIALS (ALT. INGE 4011)
INGE 4015 FLUID MECHANICS
INGE 4035 NUMERICAL METHODS APPLIED TO ENGINEERING
INGE 5015 THEORY AND MANAGEMENT OF SYSTEMS
INME 4108 MATERIAL SCIENCE AND ENGINEERING (ALT. INGE 4001)
INME 4001 THERMODYNAMICS I (ALT. INME 4045)
INME 4065 PRODUCT DESIGN
INEL 4205 LOGIC CIRCUITS
INCI 4005 AGRICULTURAL SURVEYING

INGE 3032 ENGINEERING MECHANICS DYNAMICS
INGE 4001 ENGINEERING MATERIALS
INGE 4011 MECHANICS OF MATERIALS I
INME 4045 GENERAL THERMODYNAMICS FOR ENGINEERS
INME 4055 MANUFACTURING PROCESSES
INME 4056 MANUFACTURING PROCESSES LABORATORY
CIIC 3075 FUNDAMENTALS OF COMPUTING
CIIC 4010 ADVANCED PROGRAMMING
INGE 4019 INTRODUCTION TO MECHANICS OF MATERIALS (ALT. INGE 4011) INGE 4015 FLUID MECHANICS
INGE 4035 NUMERICAL METHODS APPLIED TO ENGINEERING
INGE 5015 THEORY AND MANAGEMENT OF SYSTEMS
INME 4108 MATERIAL SCIENCE AND ENGINEERING (ALT. INGE 4001)
INME 4001 THERMODYNAMICS I (ALT. INME 4045)
INME 4065 PRODUCT DESIGN

INCI 4005 AGRICULTURAL SURVEYING

Physical Education, Kinesiology

No changes proposed

Courses in Proposed Curriculum

Course
 Cr.

Physical education elective 2

Microeconomy Requisite

Removed from required course

FIRST YEAR

CURRENT
 First Semester

Δ	Number	Credits	Contact	Course
	* MATE 3005	5	5	Pre-Calculus
	QUIM 3131	3	3	General Chemistry I
	QUim 3133	1	3	General Chemistry Laboratory I
	* INGL 3--	3	3	First year course in English
	* ESPA 3101	3	3	Basic course in Spanish I
	INGE 3011	2	4	Engineering Graphics I
		17	21	
			Second	Semester
Δ	Number	Credits	Contact	Course
	MATE 3031	4	4	Calculus I
II	QUIM 3132	3	3	General Chemistry II
II	QUim 3134	1	3	General Chemistry Laboratory II
	* ${ }^{\text {* }}$ NGL 3--	3	3	First year course in English
	* ESPA 3102	3	3	Basic course in Spanish II
	** Elective	3	3	Socio-Humanistic Elective
	EDFI ----	1	1	Physical Education Elective
		18	20	

Δ	Number	Credits	Contact	Course
	* MATE 3005	5	5	Pre-Calculus
II	QUIM 3131	3	3	General Chemistry I
II	QUIM 3133	1	3	General Chemistry Laboratory I
	* INGL 3--	3	3	First year course in English
	* ESPA 3131 or	3	3	Academic Literacy I or
	ESPA 3101			Basic Spanish I
		15	17	
		Second Semester		
Δ	Number	Credits	Contact	Course
	MATE 3031	4	4	Calculus I
	INGE 3011	2	4	Engineering Graphics I
	* ${ }^{\text {NGL }} 3$---	3	3	First year course in English
	** ELECTIVE	3	3	Socio-Humanistic Elective
	* ESPA 3132 or	3	3	Academic Literacy II or
	ESPA 3102			Basic Spanish II

SECOND YEAR

CURRENT

First Semester

$\Delta \quad$ Number
Credits Contact Course

MATE 3032	4	4	Calculus II
FISI 3171	4	4	Physics I
FISI 3173	1	2	Physics Laboratory I
INGL 3---	3	3	Second year course in English

Algorithms and Computer
INGE 3016
3 Programming

INGE 3031 | | 3 |
| :---: | :---: |
| 18 | 3 | Engineering Mechanics-Static

Second Semester

Δ Number Credits Contact Course

MATE 3063	3	3	Calculus III
FISI 3172	4	4	Physics II
FISI 3174	1	2	Physics Laboratory II
INGE 3032	3	3	Engineering Mechanics-Dynamics
ININ 4010	3	4	Probability and Statistics for Engineers
INGE 4001	3	3	Engineering Materials
EDFI ----	1	1	Physical Education Elective
	18	20	

Δ Number Credits Contact Course

$\begin{array}{llll}\text { FISI } 3174 & 1 & 2 & \text { Physics Laboratory II }\end{array}$
ININ $4010 \quad 3 \quad 4 \quad$ Probability and Statistics for Engineers
INGL 3--- 3 English Second Year or Elective
EDFI ---- 111 Physical Education Elective

PROPOSED

First Semester

Δ Number Credits Contact Course

THIRD YEAR

CURRENT First Semester					PROPOSED First Semester				
Δ	Number	Credits	Contact	Course	Δ	Number	Credits	Contact	Course
	MATE 4145	4	5	Linear Algebra and Differential Equations	VI	ININ 4071	3	4	Ergonomics and Human Factors in Work Systems Design
	ININ 4020	3	3	Applied Industrial Statistics		ININ 4020	3	3	Applied Industrial Statistics
VI	ININ 4077	4	5	Work Systems Design		MATE 4145	4	5	Linear Algebra and Differential Equations
V	INEL 4075	3	3	Fundamentals of Electrical Engineering		INGE 3031	3	3	Engineering Mechanics Statics
V	INME 4055	3	3	Manufacturing Processes		ININ 4015	3		Engineering Economic Analysis
		17	19				16	18	
	Second Semester				Second Semester				
Δ	Number	Credits	Contact	Course	Δ	Number	Credits	Contact	Course
V	INME 4056	1	3	Manufacturing Processes Laboratory	VI	ININ 4021	3	3	Deterministic Models in Operations Research
V	INEL 4076	3	3	Fundamentals of Electronics	VI	ININ 4072	3	4	Methods and Work Measurement
	ININ 4015	3	3	Engineering Economic Analysis	V	INEL 4078	4	5	Circuits and Electronics
VI	ININ 4150	4	4	Introduction to Models in Operations Research		EDFI ----	1	1	Physical Education Elective
	INGL 3---	3	3	Second year course in English	V	${ }^{* * *}$ INGE/INME	3	3	Elective in General or Mechanical Engineering
VI	ININ 4009	4	5	Work Measurement					
		18	21				14	16	

FOURTH YEAR

CURRENT

First Semester

PROPOSED

First Semester

Δ	Number	Credits	Contact	Course
V	INGE 4011	3	3	Mechanics of Materials I
V	INME 4045	3	3	General Thermodynamics for Engineer
V	INEL 4077	1	3	Basic Electronics Laboratory
IX	ECON 3021	3	3	Principles of Economics I
	ININ 4155	4	4	Design and Analysis of Production Systems and Inventory Management
	ININ 4087	4	4	Cost Management
		18	20	
		Second Semester		
Δ	Number	Credits	Contact	Course
VI	ININ 4018	3	3	Discrete-Event System Simulation
	ININ 4027	3	3	Design and Analysis of Engineering Experiments
	ININ 4040	3	4	Facilities Layout and Design
	ININ 4078	3	4	Statistical Quality Control
	** ELECTIVE	3	3	Socio-Humanistic Elective
		15	17	

FIFTH YEAR

INDUSTRIAL ENGINEERING UNDERGRADUATE PROGRAM OF STUDY APPROVED 2022, EFFECTIVE 2023

Curriculum Restrictions Used in the DesignVerification

Curriculum Restrictions Used in the DesignVerification

Accreditation ABET, Check

Criterion 5. Engineering Curriculum	Proposed	Credits	
a. a minimum of 3o semester credit hours (or equivalent) of a combination of college-level mathematics and basic sciences with experimental experience appropriate to the program.	MATE 3031; MATE 3032; MATE $3063 ; ~ M A T E ~ 4145 ; ~ I N I N ~ 4010 ; ~$ QUIM 3131; QUIM 3132; FISI $3171 ; ~ F I S I ~ 3172 ; ~ F I S I ~ 3173 ; ~ F I S I ~$ 3174		

| IE Curriculum | | |
| :--- | :--- | :---: |$|$| The curriculum must include design,
 analysis, operation and improvement
 of integrated systems that produce or
 supply products or services in an
 effective, efficient, sustainable and
 socially responsible manner. | ININ 4071, ININ 4072,
 ININ 4155, ININ 4040,
 ININ 5025, ININ 4078,
 ININ 4079 |
| :--- | :--- |
| The curriculum must utilize real-world
 experiences and business perspectives. | ININ 4040, ININ 5025, |
| The curriculum must include the
 topical areas of | |
| productivity analysis | ININ 4155 |
| operations research | ININ 4021, ININ 5025 |
| probability | ININ 4010 |
| statistics | ININ 4010, ININ 4020 |
| engineering economy | ININ 4015 |
| human factors | ININ 4071 |

Curriculum Restrictions Used in the DesignVerification

Hoja de Cotejo (CERTIFICACION NÚMERO 19-20-01) de Parámetros Comunes para los Programas Académicos del Colegio de Ingenieri

"Parámetros communes"

Programa académico bajo consideración: Bachillerato en Ciencias en Ingeniería Industrial (0503)

Evaluación de Cursos y Horas Crédito del Currículo Propuesto		
Codificación y Titulo de Cursos en Ciencias Básicas	Créditos	Tipo ${ }^{1}(\mathrm{R}, \mathrm{E})$
QUIM 3131: General Chemistry I	3	R
QUIM 3133: General Chemistry Laboratory I	1	R
FIIS 3171: Physics I	4	R
FISI 3172: Physics II	1	R
FISI 3173: Physics Laboratory I	4	R
FISI 3174: Physics Laboratory II	1	R
Total de Horas Crédito para Cursos en Ciencias Básicas	14	
Codificación y Titulo de Cursos de Matemáticas	Créditos	Tipo (R,E)
MATE 3005: Pre-Calculus	5	R
MATE 3031: Calculus I	4	R
MATE 3032: Calculus II	4	R
MATE 3063: Calculus III	3	R
MATE 4145: Differential Equations \& Linear Algebra	4	R
Total de Horas Crédito para Cursos de Matemáticas	20	
Codificación y Titulo de Cursos de Áreas Temáticas	Créditos	Tipo (R,E)
Probabilidad y estadísticas ININ 4010	3	R
Economia ingenieril ININ 4015	3	R
Diseño creativo, visualización o graficas en diseño ingenieril INGE 3011	2	R
Algoritmos y programación de computadoras INGE 3016 o CIIC 3015	3-4	R
Total de Horas Crédito para Cursos de Áreas Temáticas	11-12	
Cursos relacionados a las ciencias sociales, ciencias de la conducta, educación, economía, kinesiología o las humanidades (Educación General)	Créditos	Tipo (R,E)
Ciencias Sociales, Humanidades y Filosofía	6	E
Educación Fisica	2	R
Idiomas	18	R
Electivas libre	12	E
Total de Horas Crédito para Cursos de Educación General	26	
Total de Horas Crédito para Cursos de Electivas Libres	12	
Codificación y Titulo de Cursos en el tema de ética	Créditos	Tipo (R,E)
La lista de cursos para satisfacer los créditos de ética está disponible en el siguiente enlace:	3	R

Programa académico bajo consideración: Bachillerato en Ciencias en Ingeniería Industrial (0503)

"Parámetros communes"

Codificación y Titulo de Cursos en Ciencias Básicas	Créditos	$\mathrm{Tipo}^{1}(\mathrm{R}, \mathrm{E})$
QUIM 3131: General Chemistry I	3	R
QUIM 3133: General Chemistry Laboratory I	1	R
FISI 3171: Physics I	4	R
FISI 3172: Physics II	1	R
FISI 3173: Physics Laboratory I	4	R
FISI 3174: Physics Laboratory II	1	R
Total de Horas Crédito para Cursos en Ciencias Básicas	14	
Codificación y Titulo de Cursos de Matemáticas	Créditos	Tipo (R,E)
MATE 3005: Pre-Calculus	5	R
MATE 3031: Calculus I	4	R
MATE 3032: Calculus II	4	R
MATE 3063: Calculus III	3	R
MATE 4145: Differential Equations \& Linear Algebra	4	R
Total de Horas Crédito para Cursos de Matemáticas	20	
Codificación y Titulo de Cursos de Áreas Temáticas	Créditos	Tipo (R,E)
Probabilidad y estadisticas ININ 4010	3	R
Economía ingenieril	3	R
Diseño creativo, visualización o gráficas en diseño ingenieril INGE 3011	2	R
Algoritmos y programación de computadoras INGE 3016 o CIIC 3015	3-4	R
Total de Horas Crédito para Cursos de Áreas Temáticas	11-12	
Cursos relacionados a las ciencias sociales, ciencias de la conducta, educación, economía, kinesiología o las humanidades (Educación General)	Créditos	Tipo (R,E)
Ciencias Sociales, Humanidades y Filosofía	6	E
Educación Física	2	R
Idiomas	18	R
Electivas libre	12	E
Total de Horas Crédito para Cursos de Educación General	26	
Total de Horas Crédito para Cursos de Electivas Libres	12	
Codificación y Titulo de Cursos en el tema de ética	Créditos	Tipo (R,E)
La lista de cursos para satisfacer los créditos de ética está disponible en el siguiente enlace:	3	R

https://www.uprm.edu/engineering/accepted-ethics-courses-faculty-ofengineering/		
Total de Horas Crédito para Cursos de Ética	3	
Codificación y Titulo de Cursos en la ruta crítica (acompañe anejo)	Créditos	Año/ Semestre
MATE 3005: Pre-Calculus	5	$1 \mathrm{er} / 1 \mathrm{er}$
MATE 3031: Calculus I	4	1er/2ndo
MATE 3032: Calculus II	4	2ndo/1er
MATE 3063: Calculus III	3	2ndo/2ndo
MATE 4145: Linear Algebra and Differential Equations	4	$3 \mathrm{er} / 1 \mathrm{er}$
ININ 4021: Deterministic Models in Operations Research	3	3er/2ndo
ININ 4155: Production and Inventory Management	4	4to/1er
ININ 4040: Facilities Layout and Design	4	4to/2ndo
ININ 4999: Intro to Design Project	1	4to/2ndo
ININ 4079: Design Project	3	5to/1er
Total de Cursos en la Secuencia de la(s) Ruta(s) Critica(s)	10	
Cotejo de elementos incluidos en la propuesta de revisión curricular		
Indique si la propuesta de revisión curricular incluye cada uno de los siguientes elementos:	Sí	No
- Ruta crítica de los cursos correspondientes al programa de estudio	\checkmark	
- Un curso de Experiencia Capstone	\checkmark	
- Un total de al menos 12 horas-crédito para cursos de áreas temáticas	\checkmark	
- La secuencia de cursos de matemáticas comienza con Cálculo I, en el segundo semestre del primer año de estudios (sugerido).	\checkmark	
- El programa cumple con el parámetro mínimo (24 horas-crédito para programas de agrimensura y topografía o 30 horas-crédito para programas de ingeniería) en destrezas cuantitativas en matemáticas y ciencias básicas.	\checkmark	
- La revisión curricular requiere modificaciones de cursos o creación de cursos nuevos en su departamento. Si aplica, incluya una tabla con la codificación, titulo y créditos de estos cursos.	\checkmark	
- La revisión curricular requiere modificaciones de cursos o creación de cursos nuevos de otros departamentos (Eg. INGE, MATE, QUIM). Si aplica, incluya una tabla con la codificación, título y créditos de estos cursos.	\checkmark	
- Un total de al menos 6 horas-crédito en cursos relacionados a las ciencias sociales, ciencias de la conducta, educación, economía o las humanidades.	\checkmark	

"Parámetros communes"

Curriculum Restrictions Used in the DesignVerification

Credits per Semester

Contact-Hours per Semester

Benchmark

Requisitos	Propues to UPRM	UC Berkeley	Purdue	Georgia Tech	U of Michigan	Penn State
Matemática de Nivel Universitario y Ciencias Básicas						
Math	20	16	18	12	16	15
Física	10	8	6	8	8	8
Química	4	4	3	0	8	4
Otra	0	0	0	0	0	3
Sub-Total	34	28	27	20	32	30
Temas de Ingeniería						
Temas de Ingenieria Fundamentales	25	20	32	26	18	29
Temas de Concentracion en Ingenieria Industrial	45	41	36	41	37	36
Capstone	4	4	4	4	4	3
Sub-Total	74	65	72	71	59	68
Componente Educacional Amplio						
Libres	12	12	0	11	0	0
Profesionales fuera de concentración	0	0	0	0	13	1
Kinesiologia	2	0	0	2	0	3
Sociohumanisticas (incluyendo lenguaje)	27	19	24	24	24	27
Sub-Total	41	31	24	37	37	31
Total	149	124	123	128	128	129

Benchmark

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES

Covered in the required coursework
$\left.\begin{array}{|l|l|l|l|}\hline \text { Knowledge } & \text { No. of Questions } & & \\ \hline \text { 1. } & \text { Mathematics } & 6-9 & \\ \hline \text { Proposed } \\ \text { Curriculum }\end{array}\right]$

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES

		Covered in the required coursework	
Knowledge	No. of Questions	Current Curriculum	Proposed Curriculum
6. Modeling and Quantitative Analysis	9-14		
A. Data, logic development, and analytics (e.g., databases, flowcharts, algorithms, data science techniques)		Fully	Fully
B. Linear programming and optimization (e.g., formulation, solution, interpretation)		Fully	Fully
C. Stochastic models and simulation (e.g., queuing, Markov processes, inverse probability functions)		Fully	Fully
7. Engineering Management	8-12		
A. Principles and tools (e.g., planning, organizing, motivational theory, organizational structure)		Partially	Partially
B. Project management (e.g., WBS, scheduling, PERT, CPM, earned value, agile)		Partially	Partially
C. Performance measurement (e.g., KPIs, productivity, wage scales, balance scorecard, customer satisfaction)		Partially	Partially
D. Decision making and risk (e.g., uncertainty, utility, decision trees, financial risk)		Not covered	Not covered

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES

		Covered in the required coursework	
Knowledge	No. of Questions	Current Curriculum	Proposed Curriculum
10. Human Factors, Ergonomics, and Safety	8-12		
A. Human factors (e.g., displays, controls, usability, cognitive engineering)		Partially	Fully
B. Safety and industrial hygiene (e.g., workplace hazards, safety programs, regulations, environmental hazards)		Not covered	Not covered
C. Ergonomics (e.g., biomechanics, cumulative trauma disorders, anthropometry, workplace design, macroergonomics)		Fully	Fully
11. Work Design	7-11		
A. Methods analysis (e.g., charting, workstation design, motion economy)		Fully	Fully
B. Work measurement (e.g., time study, predetermined time systems, work sampling, standards)		Fully	Fully
C. Learning curves		Fully	Fully
12. Quality	9-14		
A. Quality management, planning, assurance, and systems (e.g., Six Sigma, QFD, TQM, house of quality, fishbone, Taguchi loss function)		Fully	Fully
B. Quality control (e.g., control charts, process capability, sampling plans, OC curves, DOE)		Fully	Fully

FE Industrial and Systems Exam knowledge areas covered by required coursework, NCEES
$\left.\begin{array}{|l|c|cc|}\hline & & & \begin{array}{c}\text { Covered in the required } \\ \text { coursework }\end{array} \\ \hline \text { Knowledge } & \text { No. of Questions } & & \begin{array}{c}\text { Current } \\ \text { Curriculum }\end{array} \\ \text { Proposed } \\ \text { Curriculum }\end{array}\right]$

