UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGÜEZ PRECÁLCULO 1 MATE 3171

TERCER EXAMEN PARCIAL 23 de julio de 2024.

Valor: 100%

Nombre:	ID:								
Profesor:	Sección:								
Instrucciones:									
■ Dispone de 1 hora y 30 minutos para responder el examen.	- · · · · · · · · · · · · · · · · · · ·								
 Debe apagar y guardar todo teléfono celular y todo reproductor de música. Puede utilizar calculadora no gráfica. 	■ En los problemas abiertos debe mostrar claramente su procedimiento de lo contrario no obtendrá puntos parciales.								
PARTE I. Escoge (51 PUNTOS) (3 puntos cada uno) En los siguientes ejercicios sen la siguiente tabla.									
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)								
1. Seleccione la función par:									
A. $f(x) = x^2 - x$ B. $f(x) = x^3 - x$	C. $f(x) = x^4 - x^2$ D. $f(x) = x$								
2. La gráfica de una función impar es simétrica e	con respecto al:								
A. Origen B. Eje y	C. Eje x D. Ninguna de las anteriores								
3. El eje de simetría de la parábola $f(x) = 2x^2 - 2x^2$	-8x + 3 es:								
A. $y = 2$ B. $x = 2$	C. $y = 4$ D. $x = 4$								
4. La gráfica de $y = (x - 4)^3$ se obtiene de la grá	fica de $y = x^3$ trasladándola:								
A. 4 unidades hacia arribaB. 4 unidades hacia abajo	C. 4 unidades hacia la derechaD. 4 unidades hacia la izquierda								
5. Si $f(x) = \frac{1}{2}x^4$, entonces la función tiene un:									
A. Estiramiento vertical por un factor de 2 B. Encogimiento vertical por un factor de $\frac{1}{2}$	C. Encogimiento vertical por un factor de 2 D. Estiramiento vertical por un factor de $\frac{1}{2}$								
6. ¿Cuál de las siguientes es una función polinón	nica?:								

A.
$$f(x) = 3x^5 - \sqrt{7}x^2 + 3x - 5$$

B.
$$f(x) = \frac{x+1}{x-2}$$

C.
$$f(x) = 2x^2 + \frac{3}{x} - x$$

D.
$$f(x) = x^{-2} + 3x + 1$$

7. Los interceptos con el eje x de la parábola $f(x) = 3(x-2)^2 - 3$ son:

A.
$$x = 1 \text{ y } x = 3$$

B.
$$x = -1$$
 y $x = -3$

C.
$$x = -1 \text{ y } x = 3$$

D.
$$x = 1 \text{ y } x = -3$$

8. Al realizar un encogimiento vertical por un factor de 0.5, seguido de una traslacion horizontal de 3 unidades hacia la derecha del punto (6, -4), se obtiene:

A.
$$(3, -1)$$

C. (3,3)

B.
$$(3, -2)$$

D. (9, -2)

9. La función $f(x) = 2x^2 - x + 3$, tiene:

A. 2 soluciones reales

C. No tiene solución

B. 2 soluciones complejas

D. Una solución real y una compleja

10. El conjugado del número complejo 2 + 4i es:

A.
$$-2 - 4i$$

C.
$$2 - 4i$$

B.
$$-2 + 4i$$

D.
$$-4i$$

11. El producto de 5-3i y su número complejo conjugado es igual a:

C. 5

B. 9

D. -34

12. El polinomio $f(x) = 3x - 5x^3 + 8$ escrito en su forma estándar es:

A.
$$f(x) = 3x - 5x^3 + 2$$

C.
$$f(x) = 2x - 5x^3 + 8$$

B.
$$f(x) = -5x^3 + 3x + 8$$

D.
$$f(x) = 5x^3 - 3x - 8$$

13. Si x-2 es un factor del polinomio P(x), entonces:

A.
$$x = 2$$
 es un cero de $P(x)$

C.
$$P(2) = 0$$

B. El residuo de dividir
$$P(x)/(x-2)$$
 es igual

D. Todas las anteriores

14. El residuo que se obtiene al dividir $x^2 - 9$ entre x - 1 es:

A. 8

C. 0

B. -8

D. 2

15. Al simplificar $i^{2023} + 2i^{2024}$, se obtiene:

A.
$$2 - i$$

C. 4

B. 2 + i

D. 0

16. El término líder del polinomio $P(x) = x(x-1)^2(x-3)$ es:

A. x^4

C. x^2

B. $2x^4$

D. x^3

17. En un cero de multiplicidad impar, la gráfica:

A. Cruza el eje x

C. Cruza el eje y

B. Toca el eje x

D. Ninguna de las anteriores

PARTE II. Abiertos (49 PUNTOS)

Realice los siguientes ejercicios en el espacio provisto. Debe mostrar todo su procedimiento.

- 1. Sean z = 2 + 3i y w = 4 2i. Efectuar las siguientes operaciones y dejar su respuesta de la forma a + bi
- i. (3 puntos) w + z

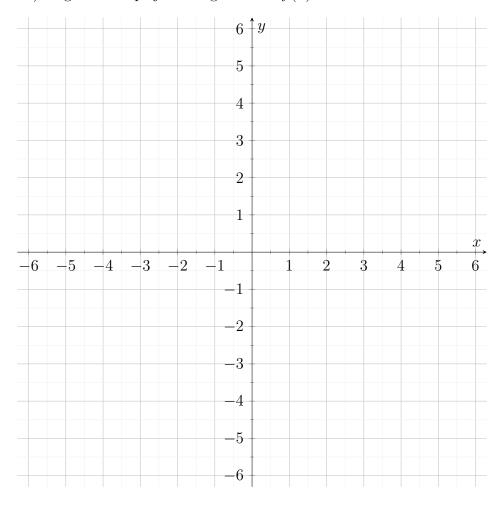
ii. (4 puntos) $\frac{z}{w}$

2. (5 puntos) Considere la siguiente función:

$$f(x) = -(x+2)^2 + 4$$

Describa verbalmente las transformaciones o reflexiones que se deben hacer a la función $g(x) = x^2$ para obtener a f(x).

2	(Q nuntag)	Halla la	forma	aatán dan	f(x)	(as 1	2)2 + 12	d. 1.	función	ou odnático	. :.	. d:
Э.	(8 puntos)	папе та	Iorma	estandar	J(x) = a	(x-t)	$i)^- + \kappa$	de la	Tuncion	cuadranca	еп	iaique
	el vértice.											


$$f(x) = x^2 - 6x + 13$$

4. (7 puntos) Realice división larga de polinomios para determinar el cociente y el residuo que resulta de dividir $P(x)=6x^4+x^3-3x-5$ por $3x^2+5x+6$.

- 5. (14 puntos) Sea $f(x) = x(x-1)^2(x-3)$. Hallar:
 - i. (4 puntos) El comportamiento en los extremos de f(x).

ii. (4 puntos) Los interceptos en x y sus respectivas multiplicidades.

iii. (6 puntos) Haga un bosquejo de la gráfica de f(x).

6. (8 puntos) Use divisón sintética para factorizar completamente el siguiente polinomio.

$$p(x) = x^4 - 5x^3 + 5x^2 + 5x - 6$$

.